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Foreword

Time series forecasting is a challenge in many fields. In finance,
experts forecast stock exchange courses or stock market indices; data
processing specialists forecast the flow of information on their net-
works; producers of electricity forecast the load of the following day.

The common point to their problems is the following: how can
one analyze and use the past to predict the future?

The European Symposium on Time Series Prediction (ESTSP’07)
is a new event in the fields of neural networks, statistics and econo-
metrics. It is held on 7-9 February 2007 in Espoo (Helsinki), one
of the most innovative towns in Europe. ESTSP’07 is a unique op-
portunity for researcher from statistics, neural networks, machine
learning, control and econometrics to share their knowledge in the
field of Time Series Prediction.

Forty-six papers have been submitted to ESTSP’07 and reviewed.
The best thirty-two papers have been accepted. All the presenta-
tion will be oral. The selection was difficult due to the high scientific
quality of the submitted papers.

We would like to thank all members of the scientific committee of
ESTSPO7 for their appreciated work in the reviewing process; they
were helped by many colleagues, most of them remaining anony-
mous, and we associate them in our grateful thanks.

For the steering and local committee,
Amaury Lendasse
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Prediction of ESTSP Competition Time Series
by Unscented Kalman Filter and RTS Smoother

Simo Sarkkéa, Aki Vehtari and Jouko Lampinen

Helsinki University of Technology
Department of Electrical and Communications Engineering
Laboratory of Computational Engineering
Box 9203, FIN-02015 HUT, Finland

Abstract. This article presents a solution to the time series prediction
competition of the ESTSP 2007 conference. The solution is based on op-
timal filtering, which is a methodology for computing recursive solutions
to statistical inverse problems, where a time varying stochastic state space
model is measured through a sequence of noisy measurements. In the solu-
tion, the overall behavior of the time series is first modeled by constructing
a linear state space model, which captures most of the visible features of
the time series. Residual analysis techniques are then used for correcting
the yet unmodeled features of the time series. These corrections result
in a non-linear state space model, which is solved using a combination of
linear Kalman filter, non-linear unscented Kalman filter and Rauch-Tung-
Striebel smoother. The unknown parameters of the state space model are
optimized to give the best possible prediction over 50 steps.

1 Introduction

In this article, a solution to the ESTSP 2007 time series prediction competition
is presented. The solution is based on modeling the time series with a non-
linear state space model, which is then estimated with unscented Kalman filter
and Rauch-Tung-Striebel smoother. The solution is similar to the time series
prediction method used in [1], but the underlying linear stochastic model is
different and an additional non-linear correction term is included in the model.

1.1 Optimal Filtering and Smoothing

The celebrated Kalman filter [2, 3, 4] considers optimal filtering, that is, recursive
statistical inference of linear state space models of the form

X = Ap_1Xp—1 +qQr_1 1)

Yi = Hpxp + 1y,

where xj; € R" is the state, y; € R™ is the measurement, qx—1 ~ N(0, Qx—_1)
is the process noise, and ry ~ N(0,Ry) is the measurement noise. The matrix
A1 is the transition matrix of the dynamic model and Hy, is the measurement
model matrix. In addition to producing the optimal estimates, the Kalman filter
can be used for computing optimal n-step prediction of the state space model
given a sequence measurements from the model.



The Exztended Kalman filter (EKF) [3, 5, 6] and Unscented Kalman filter
(UKF) [7, 8, 5] are extensions of the Kalman filter to estimation and prediction
of non-linear state space models of the form

xp =f(Xp-1,k—1) +qr1 @)
yi = h(xy, k) + 1,
where x;, € R™ is the state, y € R™ is the measurement, q_1 ~ N(0,Qx_1) is
the Gaussian process noise, ry ~ N(0,Ry) is the Gaussian measurement noise,
f(-) is the dynamic model function and h(-) is the measurement model function.
Optimal smoothing methods [9, 10, 11] can be used for computing better es-
timates of the signal than optimal filters in the cases that the whole history of
measurements from the time series can be used for computing the estimates. As
optimal filtering methods produce optimal estimates, which are optimal when
only causal estimators are considered, optimal smoothing methods produce op-
timal estimates based on the whole history of observations. Obviously, these
estimates can be, in principle, computed from the posterior distribution of the
states given the measurements, but the idea of optimal smoothing methods is to
provide computationally efficient methods for computing these estimates.

1.2 Stochastic Differential Equations

Stochastic differential equation [12, 13] is a white noise driven differential equa-
tion of, for example, the form

dx

E = f(X, t) + L(t) W(t)a (3)

where x(t) € R™ is the (continuous-time) state, f : R™ x Ry +— R"™ is the drift
function, L(t) € R™*5 is the dispersion matrix, and w(t) € R® is a white noise
process with spectral density matrix Q.(t).

The theory of stochastic differential equations is well known, and it is com-
monly formulated in terms of [t6 calculus, which is the theory of differential
calculus of stochastic processes (see, e.g., [12, 13]). In rigorous mathematical
sense the stochastic differential equation (3) should be actually interpreted as a
stochastic integral equation of the form

x(t) — x(s) :/ f(x,t) dt+/ L(t) dB(1), (4)
which can be written more compactly as
dx(t) = f(x,t) dt + L(¢) d3(t), (5)

where 3(t) is a Brownian motion with diffusion matrix Q.(t). If we define the
white noise w(t) as the formal derivative of Brownian motion w(t) = d3(t)/dt,
the equation (5) can be formally written in form (3). This kind of white noise



formulation only makes sense in the case when the dispersion matrix is indepen-
dent of the state, that is, L(x,t) = L(t), because it is the case when the It6 and
Stratonovich interpretations of the SDE are equivalent.

In this article, the dynamic model will be a linear time invariant (LTT)
stochastic differential equation of the form

dx =Fx(t) + Lw(t), (6)
dt

where x(t) is the state, F and L are constant matrices, and w(?) is a white noise

process with a constant spectral density matrix Q.. The theory of LTI equations

is much less complicated than the general 1t6 calculus and the relevant results

of it can be found in beginning Chapters many estimation theory oriented books

(e.g., [4, 6]).
2 Time Series Prediction

In this section the models and methods for time series prediction, and the pre-
diction results are described. The model is constructed as follows:

1. First a linear state space model is constructed, which captures the domi-
nant features of the time series.

2. A non-linear correction term is added to the model, which models the
unmodeled non-linearity in the periodic signal.

3. The remaining auto-regressive component in the residual is compensated
by fitting an AR-model to the residual.

The models are estimated using Kalman filter, unscented Kalman filter and
Rauch-Tung-Striebel smoother.

2.1 Linear State Space Model

By looking at the time series data, which is shown in Figure 1, it can be seen to
be sum of two main components, a bias component and a periodic component:

e The bias component can be modeled as a Brownian motion, which is for-
mally the integral of continuous-time white noise wy(t), and it can be
formulated as a solution of the stochastic differential equation model:

dxb

W = wb(t). (7)

e The periodic component can be modeled as a resonator with a certain
angular velocity w. The variations from perfect sinusoidal can be modeled
by including a random white noise forcing term w,(t) to the resonator
equation. This results in the stochastic differential equation model:

d%z,
1), ®
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Fig. 1: ESTSP 2007 time series prediction competition data.

The actual time series is the sum of the bias and periodic components. In order to
model the deviations of the data from the model a small Gaussian measurement,
noise r is assumed to be present in the measurements:

Yk = Jib(k) + xr(k) + 7k, (9)

where k£ = 1,2,.... The model can be equivalently written in form

dxb/dt 0 0 0 Tp 1 0 w
dz,/dt | =0 0 1 z, |+(0 0 (wf’> (10)

d?z,./dt? 0 —w? 0 dz,./dt 0 1/ 7"/
dx/dt F x L v
Ty
ve=(1 1 0)| ar |+r (11)
" \dz,./dt
H ————

If we define the state as x = (x z, dz,./dt)T, the model can be seen to be a
linear Gaussian continuous-discrete filtering model:

dx

dt
yr = Hx(k) + 7.

=Fx(t) + Lw(t) (12)



By the well known formulas for linear systems (see, e.g., [4]) the transition matrix
and covariance matrix of the equivalent discrete time model are given as

A = exp(F)
1 0 0
=10 cosw sin(w)

0 —w sin(w) cos“Zw)

1 T 1
Q:/ eXp((l—T)F)LQCLT exp((l—T)F) dr (13)
0
@ 0 0
_ 0 vt cos(w) sin(w) ¢, sin?(w)
2w3 2w? ’
0 ¢ sin?(w) qr w+q, cos(w) sin(w)
2uw? 2w

where ¢, and ¢, are the spectral densities of wp and w,., respectively. If we denote
the discrete-time state as x;, = x(k), the model can be written as

Xp=AXp 1+ qp 1 (14)
yr = Hxy + g, (15)

which is a linear state space model, and suitable for the Kalman filter.
The parameters w, g, and ¢, can be estimated such that they give the best
possible prediction as follows:

1. Find the places in the second half of the time series, which are similar to
the place where the time series ends.

2. Select a discrete set of possible parameter values and predict 50 steps a
head from the selected time series places.

3. Compute the errors in the predictions and select the parameter values that
give the least total error when the predictions at all the selected time series
places are summed.

The result of prediction with the estimated parameter values is shown in the
Figure 2. The result is the smoothing result, computed by running Kalman
filter and Rauch-Tung-Striebel smoother through the data. The estimated bias
xp(t) is also separately shown in the figure. The measurement noise variance is
set to an arbitrary value o2 = 1, because its value does not affect the prediction.

2.2 Non-Linear Correction Term

Although, the prediction of linear state space model in Figure 2 already captures
the essential features of the time series, it is far from perfect. One feature, which
can be seen in the time series is that the periodic component does not seem to
be perfect sinusoidal, but possibly a non-linear transformation of a sinusoidal.
This can be checked by plotting the measurements minus the estimated biases
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Fig. 2: Linear model smoothing and prediction result.

Fig. 3: Measurements minus the biases y; — Zp as function of estimates of the
resonator state Z,(k) and the fitted polynomial.

yr — &p as function of estimates of the resonator state &, (k). The result is shown
in the Figure 3 together with 5th order polynomial fitted to the function.
The fitted 5th order polynomial can be now included as part of the measure-



ment model as follows:
5 i
g = an(r) + i (e (k) + 7 (16)
i=0

where ¢; are the coefficients of the polynomial. The measurement model is now
non-linear, but fortunately of the form (2), which is suitable for the unscented
Kalman filter (UKF).

In order to get an estimate of the time series based on all the measurements
instead of the filtering estimate, which is based on the preceding data, Rauch-
Tung-Striebel (RTS) smoother was ran over the UKF filtering result. Note that
because the dynamic model is linear, linear RTS smoother is enough and there
is no need to use a non-linear smoother.

2.3 Auto-regressive Model for Residual

The non-linear correction term in (16) models the signal-dependence of the resid-
ual quite well, but there still exists significant auto-correlation in the residual as
can be seem in the Figure 4. There seems to be a small periodic component in
the residual, which needs to be compensated.

02 . . . . . . .
0 10 20 30 40 50 60 70 80

Fig. 4: Auto-correlation of the residual.

The periodicity of the residual time series {¢j : k = 1,..., N} can be modeled
with a second order auto-regressive (AR) model [14]

2
er = Zai (& 2] +T'ZI. (17)
i=1



The order of the model was selected to be two, because a second order AR-
model is able to capture the single periodic component in the residual and there
is no evidence of higher order phenomena. In article [1], an AR-model of the
same order was also successfully applied to modeling similar residual periodicity.
The variance of the Gaussian noise ri* was set to a suitable value 02, = 1. The
coefficients of the AR-model were estimated with the linear least squares method.

After the AR-model has been estimated from the residual time series data,
the final estimation solution is obtained by running the Kalman filter and the
Rauch-Tung-Striebel smoother to the model

2
dp =) ajdp_i + v},

2 19)
ex = d + 1%,

where the Gaussian process noise v} has variance ¢? = 1078 and the measure-

ment noise rﬁ has the variance a]% = 1079, The residual estimate dj, is summed

to the prediction computed by the UKF.

2.4 Final Prediction Result
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Fig. 5: The final prediction result.

The final prediction result is shown in the Figure 5. The prediction was
obtained as follows:

1. A high number of parameter values were selected and the values were
searched, which gave the best prediction according to the principle de-
scribed in Section 2.1.



2. With each parameter values, the non-linear state space model described in
Section 2.2 with the linear dynamic model (14) and non-linear measure-
ment model (16) was estimated with unscented Kalman filter (UKF) and
the prediction was done by iterating the prediction step of the filter 50
times. The non-linear correction in the prediction was applied only to the
predicted mean, which corresponds to EKF type of approximation. This
was selected, because according to the experiments it gave a lower predic-
tion error than the UKF type of approximation. In the estimation step
the UKF worked better than EKF.

3. The Rauch-Tung-Striebel (RTS) smoother was run over the time series
to get an estimate, which is conditioned to all the measurements. The
auto-regressive model was fitted to the smoother residual and the auto-
regressive correction was then added to the prediction results as described
in Section 2.3. This estimation was done using linear Kalman filter and
RTS smoother.

2.5 Discussion

The approach used in this article is exploratory in the sense that a simple linear
model is first constructed and it is then improved step by step. The approach is
not incremental, because at the final step the whole non-linear model is estimated
and used as whole instead of using the results of the models on the previous steps
as such.

The Rauch-Tung-Striebel smoother is only used in estimation stage, and
actually, it is only needed for computation of the residuals of the solutions. The
actual prediction is performed by using the prediction step of the unscented
Kalman filter and the non-linear correction is applied to the prediction result.
However, the smoother result is needed for estimating the non-linear residual
correction term and the AR-model of the residual.

The selection of parameters is based on predictive criterion, which tries to
mimic the competition error criterion as well as possible. The idea of the ap-
proach is to find the parameter values, which minimize the expected value of
the prediction error in the competition, when the expected value is computed
over the posterior distribution of the other parameters in the model. This can
be interpreted as optimal Bayesian decision [15] for selection of point estimates
for the parameters. In this case it is not optimal to use, for example, maximum
a posterior (MAP) estimate, minimum mean squared error (MMSE) estimate,
that is, the posterior mean or any other such point estimates, because they min-
imize wrong error criteria. Instead, it is best to explicitly minimize the 50 step
prediction error criterion of the competition.

3 Conclusion

In this article a solution to the time series prediction competition of the ESTSP
2007 conference has been presented. The solution is based on constructing a non-



linear state space model for the time series, which is then estimated using the
unscented Kalman filter (UKF) and Rauch-Tung-Striebel (RTS) smoother. The
residual auto-correlations were compensated with an AR-model. The parameters
were selected by systematically testing various combinations of parameters and
by selecting the ones, which gave the least error in 50 step prediction.
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Abstract. In this paper the variational Bayesian method for learning nonlinear
state-space models introduced by Valpola and Karhunen in 2002 is applied to pre-
diction in the ESTSP’07 time series prediction competition data set. The data set
is pre-processed by approximately removing the periodic component of the data
and the nonlinear state-space model is only learned on the residuals. The model
uses multilayer perceptron (MLP) networks to model the nonlinearities of the sys-
tem which allows the modelling of complex dynamical processes. The variational
Bayesian learning approach is resistant to overfitting and allows comparison of dif-
ferent model structures using the derived lower bound on marginal log-likelihood.
The desired predictions are evaluated as the mean of a Monte Carlo approximation
of the predictive distribution.

1 Introduction

Traditionally, time series prediction is done using models based directly on the past ob-
servations of the time series. Perhaps the two most important classes of neural network
based solutions used for nonlinear prediction are feedforward autoregressive neural net-
works and recurrent autoregressive moving average neural networks [10]. However,
instead of modelling the system based on past observations, it is also possible to model
the same information in a more compact form with a state-space model [3].

This paper uses the nonlinear state-space model (NSSM) introduced by Valpola and
Karhunen in 2002 [11] to model a time series. The primary goal of the paper is to apply
this publicly available! NSSM to the task of time-series prediction as a black box tool.

The nonlinearities of both the dynamics and the mapping from the states to obser-
vations are modelled with multilayer perceptron (MLP) networks. Training a nonlinear
state-space model is a computationally challenging task and prone to overfitting. The
NSSM in [11] uses variational Bayesian learning, which is both resistant against over-
fitting and computationally effective compared to e.g. sampling methods.

Uhttp://www.cis.hut.fi/projects/bayes/software/
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2 Nonlinear State-Space Models by Variational Bayesian Learning

2.1 The Model

The variational Bayesian nonlinear state-space model introduced by Valpola and Karhunen
in [11] uses a general nonlinear state-space model for the observations x(t)

s(t) = g(s(t — 1),0g) + m(t) 1)
x(t) = £(s(t), 0¢) +n(t) 2)

with states s(t), Gaussian innovation m and noise n, and multi-layer perceptron (MLP)
networks to model the nonlinearities f and g. The functional form of the MLP networks
is given by

g(s(t—1),0g) =s(t —1)+Dtanh(Cs(t — 1) +c) +d 3)
f(s(t),0¢) = Btanh(As(t) + a) + b, “4)

where A, B, C, and D are the network weight matrices and a, b, c, and d are the bias
vectors. Inference and learning in the model can be made more reliable and efficient
than in [11] by using the new linearisation described in [5].

2.2 Variational Bayes

Variational Bayesian learning [7, 2] is based on approximating the posterior distribu-
tion p(@, S| X, H) with a tractable approximation ¢(8, S|§), where X = {x(t)|t =
1,...,T}isthe data, S = {s(t)|t = 1,...,T} are the latent state values, 0 are the pa-
rameters of the model H, and & are the (variational) parameters of the approximation.
The approximation is fitted by maximising a lower bound on marginal log-likelihood

B p(X,S,0/H)
BQO 4(5,0/¢)

where (-) denotes expectation over ¢. This is equivalent to minimising the Kullback—
Leibler divergence D1 (q||p) between ¢ and p [6, 2].

The posterior approximations for the network weights and biases, as well as all the
other model parameters except latent states are modelled as Gaussian distributions with
a diagonal covariance. The posterior approximation for the latent states is modelled as a
Gaussian distribution with an almost diagonal covariance. The correlation between the
corresponding components s ;(t) and s;(t — 1) of subsequent state vectors is modelled,
however. This is a realistic minimal assumption for modelling the dynamical system
and does not increase the computational cost significantly [11].

>—MMXW)DHM&99M&MXWM )

2.3 Learning

The nonlinear state-space model is learned by numerically maximising the bound (5).
This optimisation requires evaluating the value of the bound and its gradient with re-
spect to all the variational parameters £&. To speed up this optimisation, a conjugate
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gradient method is used to update the variational parameters of the latent states and the
MLP network weights and biases instead of the heuristic algorithm presented in [11].
The other model parameters are updated as described in [11].

At the beginning of the learning, the network weights and biases are initialised to
random values drawn from a Gaussian distribution. The latent states are initialised
to the first principal components of embedded data vectors [11]. To ensure that the
learning does not get stuck in a local minimum early on, the latent states and the model
hyperparameters are not updated until the network weights and biases have converged
to reasonable values. It is also useful to use multiple different initialisations to avoid
local minima.

Modelling noise as part of the state-space model means that the model can filter out
most of the noise in the original data set. Dynamics of these smoothed-out observations
are often easier to learn than the dynamics of the original data set. State-space based
approach can also typically model the system in a more compact form than a neural
network model based directly on the past observations.

The variational Bayesian approach also provides a straightforward way to perform
model selection. The lower bound on marginal log-likelihood B can be used as a mea-
sure of model quality between models with different structure such as different number
of hidden units or different dimensionality of the state-space. Even if there is not enough
data for methods such as cross-validation, this lower bound can still be used to evaluate
relative model quality [11].

3 Time series prediction

Given data X and background assumptions H, the optimal way to make predictions
of an unknown quantity y with respect to mean-squared error is to use the mean of the
posterior predictive distribution p(y| X, H) as the point prediction [1].

The easiest way to compute predictions of future observations based on the NSSM
is simply to iterate Equation (1) starting from the posterior mean of the latent states
corresponding to the last observed data sample. In some cases it can be desirable to
ignore the innovation process m(t) (process noise) while doing these computations, as
long predictions can lead to very high variance and the mean values of the predictions
thus converge to the long term mean over very long prediction windows.

Even though the same techniques that are used in learning can also be used to com-
pute the predictions, sampling methods typically lead to more accurate inference. Using
the same approximation to evaluate g(s(t— 1), 8¢) as in learning consecutively leads to
severe underestimation of predictive variance because the parameters 8 ¢ used in con-
secutive steps would be assumed to be two independent sets even though they are the
same. This is not a problem in learning which only requires one-step prediction, but for
accurate long-term prediction the sampling approach is necessary.

For this purpose, the state values corresponding to the last observed data sample
as well as all the network weights are sampled repeatedly from the variational poste-
rior approximations, and the relevant predictions are evaluated using Egs. (1) and (2)
iteratively. This can be computationally much more demanding than using the same
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procedure as in learning, but in most cases the time required for sampling is still in-
significant compared to the training time of the original model.

In more complicated situations than direct prediction of future values, more ad-
vanced inference methods are needed to take into account the available future observa-
tions. This inference can be made more efficient by the method described in [9]. An
example of this approach is given in [8], where the NSSM described in this paper is
used to make predictions for a cart-pole system and at each time instant the new latent
states are inferred from the latest observations and the future is predicted based on the
model and the control signal.

4 Experiments: Prediction competition

The data set in the experiment was the prediction competition data set for ESTSP’07 2.
This is a one-dimensional time series with 875 samples. The data set appears strongly
periodic with a period of approximately 52 samples. To make prediction of the time
series easier, the data set is averaged over all the full periods (samples from 1 to 832)
and this average is subtracted from the original data set.

After this preprocessing, a state-space with three dimensions was used to model
the dynamics of the residual time series. A three-dimensional state-space was chosen
because it resulted in the best value for the bound on marginal log-likelihood B. Both
the observation MLP network and the dynamical MLP network had 20 hidden units.
During 400 first iterations of the learning, an embedded version of the data set was used
as described in [11]. The embedded data vector was %(t) = [x(¢t) x7(t — 1) x*(t —
2) xT(t — 4) xT'(t — 8) xT'(t — 16)]”. The latent states were initialised to the three
first principal components of the embedded data vector. The learning of the model took
about three hours on a 2.2 GHz AMD Opteron processor.

A short overview of the preprocessing and prediction algorithm for a periodic time
series x with length T, an approximated period T’ and a number of full periods N .,
can be seen in Table 1.

The predictions made using the sampling method with 1000 particles for the next
61 time steps can be seen in Fig. 1. The predictions were computed with the innovation
process ignored. The prediction length of 61 time steps was chosen so that the data set
with the predictions contains 18 full periods of 52 samples. The reconstruction of the
residual data set based on the model can be seen in Fig. 2. The latent state-space can
be seen in Fig. 3. As some of the state components appear clearly periodic, it is likely
that the period of 52 samples used in preprocessing was slightly incorrect. The original
data set may also have contained components with longer periods.

From the Figs. 2 and 3 it is clear that the model of the dynamics of the residual
system has a large associated uncertainty. This is natural, as the residual data set seen
in Fig. 2 is quite hard to predict as it appears to have very little structure and there is
little data compared to the very broad prior over different models. This uncertainty can
also be seen in the predictions of the states that are very close to the long-term mean,
along with large error bars for the first two states. These large error bars do not affect

2 Available at http:/estsp2007.org/files/competition. data.txt
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Table 1: Prediction algorithm for periodic data.

Learning:
1. Compute the periodic component X ,,.;- over the full periods. The periodic
component is given by

Xper(i) = ﬁ Z;V:pir x(mod(i, Tper) +G-1) 'Tper)’
where we define mod(a - n,n) =n

2. Subtract the periodic component from the original data set x. The result-
ing residual data set for each? = 1...7 is given by
Xres (1) = X(i) — Xper (i)

3. Use the NSSM to learn a state-space representation for the residual data
Set Xyes

Prediction:

4. Sample the initial state for the prediction s(T") and the network parame-

ters 6, and 8 ; from the model learned in step 3

Iterate Equations (1) and (2) using the values sampled at step 4

6. Add the periodic component back to the predicted samples to get the final
predictions

b

the predictions of the output, as the contribution of the third state to it is roughly 1000
times larger than those of the first two.

5 Discussion

The NSSM in [11] has been previously applied to several difficult prediction problems.
One such example is the prediction of the dynamics of a complex system consisting of
two Lorenz processes and a harmonic oscillator described in [11]. In [8], the model was
used to predict the dynamics of a cart-pole system and the predictions were then used by
a nonlinear model predictive controller. Even though the NSSM is better suited to mod-
elling higher dimensional systems, it can also be used for modelling one-dimensional
time series as in this paper.

The state-space model from [11] requires that the data set is evenly sampled. How-
ever, the recent extension of the model to continuous-time described in [4] allows the
prediction of unevenly sampled time series as well. Continuous-time models also allow
modelling both the short-term and long-term dynamics of the system more easily.

In theory the NSSM could have been used to predict the original data set without
any preprocessing. However, with the limited amount of available data and a flexible
prior over a large space of possible nonlinear models, there would have been significant
posterior uncertainty on the dynamics and the global prediction would soon have con-
verged to the long-term mean with large variance. In order to attain more meaningful
predictions, more prior information such as the apparent periodicity of the signal have
to be taken into consideration.
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Fig. 1: Top: The original time series and the predicted 61 next time steps. Bottom:
The original time series starting from time instant 800 and the predicted 61 next time
steps. The dotted lines in both figures represent pseudo 95 % confidence intervals. Note
that the intervals are smaller than in reality as the variance caused by the innovation is
ignored.
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Fig. 2: Top: The original residual data set. Bottom: The mean of the reconstruction of
the residual data set based on the model and its predictions. The reconstructed data set
is the original data set with the observation noise filtered out. The dotted lines represent
pseudo 95 % confidence intervals. The intervals are again smaller than in reality as the
variance caused by the innovation is ignored.
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Fig. 3: The three dimensional latent state-space. Each of the three components of the
state vector and their predictions are shown in its own figure. The dotted lines represent
pseudo 95 % confidence intervals. The intervals are again smaller than in reality as the
variance caused by the innovation is ignored.
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6 Conclusion

In this paper we have applied the variational Bayesian NSSM of Valpola and Karhunen [11]
to time series prediction. The prediction results with the ESTSP’07 prediction compe-
tition data set are presented.

Using state-space models for time series prediction has several benefits. The use of
latent states allows easy handling of noisy data as the noise can be filtered out of the la-
tent states. The state-space also allows creating models for partially observed systems,
where some of the observations are not available. Finally, state-space models can usu-
ally represent the dynamics of the model in a more compact form than a model based
directly on the past observations. Using variational Bayesian methods for learning these
NSSMs is both resistant against overfitting and provides a cost function which can be
used for model comparison.
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series prediction: a particular case study in
ESTSP 2007 time series prediction competition
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Abstract. Gaussian Process regression is a technique with good theo-
retical properties, that has been suggested as a replacement for supervised
neural networks in non-linear regression. Although Gaussian Process re-
gression is not widely used, its application to time series forecasting would
be straightforward . A study of several Gaussian Process models is carried
out over the data set of time series prediction competition in ESTSP 2007.

1 Introduction

Since Neal, in 1996 [2], showed that a RBF (Radial Basis Function) neural net-
work converges to a Gaussian Process model when number of units in its hidden
layer tends to infinity, Gaussian Process (GP) regression acquired importance
in the machine learning field. Moreover, he also showed that a large class of
neural networks behave in the same way. A solid mathematical background
and the ease of obtaining and expressing uncertainty in predictions are desirable
properties for a number of applications.

GP models depend on a kernel function (covariance function). Hence GP
regression may be classified as a kernel technique, like Support Vector Machines
([1]). GP regression has its roots in the Bayesian approach to neural networks
modelling. It allows a noise model and a prior over functions to be specified
in a practical way via covariance function parameters, called hyperparameters
in Bayesian framework nomemclature. One advantage of GP formulation over
neural networks is that the combination of the prior and noise models can be
exactly carried out using matrix operations. Hyperparameters can be estimated
from data, by optimizing GP with respect to a given criteria (traditionally,
reaching maximum likelihood [2],[6]).

2 Gaussian Process regression

A stochastic process {x;} t € T is Gaussian if and only if for all finite index
subset t1,...,t; from index set T, Xy, 4, = (x4,..., Ty, ) is a random variable
with Gaussian distribution.

GPs are defined by a covariance C(z, 2') and mean u(z) functions. Only GPs
where u(z) = 0 will be considered. Chosen covariance functions must generate
positive definite matrix for input data XN+ = {2V}, _;.

Training data consists of n inputs pairs and targets (zN,t;),i = 1...n, where
z; is a d-dimensional vector. We denote by Cy the covariance matrix generated
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by the covariance function C' with training data Cy(i,j) = C(va,wjv) and by
tn the input targets vector tx = (t1,...,t,)7. For new data to be predicted,

result will be a Gaussian distribution with mean and variance:

tyi1=K'Cy'ty (1)
A2 T ~—1
U£N+1_U_K ONK (2)
where K(i,j) = C(«l,z'*), U(i,j) = C(z}""',2}*"), and 2} € Xy,
the new data to be predicted. Predictive mean #x.; for test cases is interpreted
as predicted values and standard deviation &£N+1 defines the error bars on this
prediction.

2.1 Training a Gaussian Process

Given a covariance function C(z,y;©), where © are the hyperparameters © =
(01,04, ...,0,,), we want to learn these hyperparameters from the training data
D = (Xn,Tn). In maximum likelihood framework, we adjust the hyperpa-
rameters to maximize the log likelihood or, equivalently, minimize negative log
likelihood of the hyperparameters:

NLE = —logP(D|®) = logdet On + T Cy ' T (3)

but as Chapelle [8] remarks if we not trust the prior assumptions (i.e. covariance
function, prior over the hyperparameters values) cross-validation criteria can be
used, although they lead to more difficult optimization problems:

e Negative log predictive leave-one-out (NLP-LOO): NLE version with cross-
validation.

(Cy'T)?

(CNY)3

i

NLP — LOO =) "log(Cn)ii + (4)

e Mean squared error leave-one-out (MSE-LOO): ignores predictive variance.

—17\2
MSE — LOO = Zw
N

it

()

Priors over functions are expressed by a covariance function, but the prior
over the hyperparameters can also be incorporated in selection criteria. For
instance, if we prefer that hyperparameter values remain as low as possible (very
common condition in regularization), the following expression can be added to
the criteria:

prior(©) = 00T (6)
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2.2 Covariance functions

Covariance functions express in some way beliefs about the function we are
modelling. As already said, the only restriction over the covariance function is
that it must generate a positive definite matrix for input data X. Commonly
used covariance functions are the following:

C’(x(n)’x(n’); {01’02’7”}) =0 exp [,T”x(n') _ x(n)Hz} + 6, (7)

C(z™, 2™ {ow,0c}) = 0wz, 2') + 0¢ (8)

1 ’
5 2 rila") ")
i=1

C’(.r("), x("/); {61, 05, rile}) =01 exp l— + 05 (9)

d

’ 1 ’
C@™, 2" {01, 11, 0, 0c}) = 01 exp [2 S oria™) =)
i=1

+0oy <Ia 1:/) +oc

(10)
In practice function 10 has given good results [3], [6].
A noise model can be expressed by adding a term to the diagonal of the
covariance matrix or, equivalently, a term added to the covariance function:

Crm = C(z™, 2™ 0) +6,,,Z(z™; 0) (11)

where Z is a noise model and §,,, = 1 if n = m, and d,,, = 0 if n # m . For
instance, input independent additive Gaussian noise is expressed by Z(z("); ©) =
0., a new parameter that can be incorporated in the model to be optimized.

3 Experiments

The data set of the time series prediction competition in ESTSP 2007 is the only
information source we have, being the generating process totally unknown. A
simple strategy was adopted for the study: dataset was normalized setting its
mean to 0 and its variance to 1 and common beliefs and preference about the
function to be approximated and the model to find were assumed:

e there are additive Gaussian noise
e parameters with low values are preferable for the model (regularization)

We also decided to use covariance functions from 7 (Gaussian), 8 (Linear)
and 10 (Gaussian-Linear) with selection criteria for adaptation Negative Log
Evidence (NLE, see 3) and Mean Square Error Leave-One-Out (MSE-LOO, see
5) in order to compare them.
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3.1 Experiments results

For experiments, time serie data set was split in 2, the first 750 and last 125.
Input/output vectors were created with 15 regressors (¢t — 15,...,t — 2,t — 1)
and prediction horizon of ¢t 4+ 1 for each new data set, obtaining 735 vectors for
training and 110 for test. GP models were adapted by a gradient conjugate
algorithm with restarting in case of reaching local minima for a fixed number of
iterations (1000). Training MSEs (Mean Square Error) for the different model
selection criterias are chown in tables 1 and 2.

Covariance function | training MSE | test MSE
Linear 0.1640 0.1907
Gaussian 0.0167 0.2374
Gaussian-linear 0.0697 0.1732

Table 1: Results with selection criteria NLE

Covariance function | training MSE | test MSE
Linear 0.1475 0.1715
Gaussian 0.1242 0.1494
Gaussian-linear 0.1308 0.1512

Table 2: Results with selection criteria MSE-LOO

Covariance mean predictive variance | mean mse +
and criteria training+test MSE variance
Linear

NLE 0.1774 24.0757 24.2531
Gaussian

NLE 0.1271 23.5918 23.7189
Gaussian-linear

NLE 0.1214 23.8945 24.0159
Linear

MSE-LOO 0.1595 23.1274 23.2869
Gaussian

MSE-LOO 0.1368 23.1295 23.2663
Gaussian-linear

MSE-LOO 0.1410 23.3977 23.5387

Table 3: Training and test MSE vs prediction security (mean predictive variance)

In order to select a model, we compute the mean of training and test MSE,
and the mean of predictive variance, see table 3. Considering the MSE, the
best model is the GP with Gaussian-Linear covariance adapted with selection
criteria NLE. Considering the predictive variance, the best model is the GP
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Fig. 2: Training, test and prediction: criteria MSE-LOO, covariance Linear
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Fig. 3: Training, test and prediction: criteria MSE-LOO, covariance Gaussian

with Gaussian-Linear covariance adapted with selection criteria NLE. Finally,
considering the sum of MSE and predictive variance, the best model is the GP
with Gaussian covariance adapted with selection criteria MSE-LOO. As figures
1, 2 and 3 can show, predictive variance by itself seems not to be as informative
as the MSE of training and test.

4 Conclusions

The main conclusion of this paper is that without good priors about the data gen-
eration process NLE leads to over-fitting (see table 1) and MSE-LOO becomes
more reliable, as expected by Chapelle [8]. So the model chosen for competition
is the GP with Gaussian covariance adapted with selection criteria MSE-LOO.
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Bayesian Angle Information HMM with
a von Mises Distribution and its Implementation
using a Bayesian Monte Carlo Method

H. Sasaki!, Y. Nakada?, T. Kaburagi, and T. Matsumoto *

WASEDA University - Graduate School of Science and Engineering
55N-0403B 3-4-1 Okubo Shinjuku-ku Tokyo - Japan

Abstract. This paper proposes an angle information Hidden Markov
Model (HMM) with a von Mises distribution within a Bayesian frame-
work. To deal with angle information, this model expresses the emission
probabilities of HMM using a mixture of von Mises distributions. Since
closed form representation of posterior distribution is not available, this
study implements Bayesian Monte Carlo methods to train parameters.
The methods are used to compute posterior and related distributions as-
sociated with the proposed model. The scheme is applied to a pattern
recognition problem of time series sequences. The proposed scheme im-
proved the recognition rate by 3.1% over previous scheme.

1 Introduction

Angle information such as pen angles, joint angles, and direction angles are very
important for several problems in pattern recognition, system control, signal
processing and so on. In addition, such angle information usually involves noise
or statistical uncertainty, which are observed in other information too. There-
fore, we require a method that would enable us to deal with angle information
that is combined with noise or statistical uncertainty. In order to deal with an-
gle information in a probabilistic/statistical framework, one of the approaches is
to utilize the von Mises distribution, which is a ‘natural’ distribution for angle
information [1]. Recently, several studies have focused on the von Mises distri-
bution and its extensions (e.g. von Mises Fisher distribution) to deal with angle
or cyclic information in a natural manner (e.g. [2] [3]).

This paper proposes a novel semi-continuous HMM (continuous observation
HMM) with von Mises distribution within a Bayesian framework for modelling
time series data that contains angle information. In the proposed model, the
emission probabilities are expressed by using a mixture of von Mises distribu-
tions. Although the computational costs of Bayesian Monte Carlo methods are
high, these methods show several advantages, e.g. robustness of sparse and/or
noisy datasets, and high precision computation in many models [4] [5]. There-
fore, in order to train the parameters of the proposed HMM, this study has
implemented a Bayesian Monte Carlo method based on [6], that has been suc-
cessfully applied to several problems (e.g. [7] [8]). The proposed scheme has been
demonstrated in an on-line handwriting character recognition problem that uses
pen angle information.

*The authors would like to thank discussions with T. Kudo and K. Tto.
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Fig. 1: Examples of a von Mises probability density function (u = 0).

2 The von Mises Distribution

Before describing the model specification, the von Mises distribution is presented.
The von Mises distribution, also known as the circular normal distribution, is de-
fined on the range [—, ) of the random angle information . This distribution
can be expressed as

exp(k cos(z —
Mz ) = AT 1) 1)
where the mean direction parameter p € [—m, ) is the center of the distribution;
the concentration parameter k € (0,00), the sharpness of the distribution and
Io(k) == 3272 k% /2% (4!)? , the modified Bessel function of the first kind and
order 0 [9].

Figure 1 shows the shapes of the von Mises distribution with several settings
of the concentration parameter k. When x reaches oo, the von Mises distribution
approximately becomes a normal distribution AV (x; i, 1/k) with a mean of u and
a variance of 1/k. On the other hand, when x = 0, the von Mises distribution
becomes a uniform distribution U (z; [—m, w)) with the range [—m, ) [1].

3 Bayesian Angle Information HMM

In this part, we describe a model specification of the Bayesian angle information
HMM.

3.1 Observation data y and hidden variable z
(i) Observation data y
Firstly, consider an observation sequence y := {01, ..., o1}, where T is the length
of the sequence. In this paper, the observation data o; comprises an angle
information set v1; and the other information set vy (if any), i.e.

0; 1= (1)1,5,112,5), t=1,2,..,T. (2)
More concretely, in the demonstration described in Sec. 5, vi; represents pen
angle information, and ve; represents pen down/up information. For the sake
of simplicity, in the following argument, we deal with both vy; and vo; as one-
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dimensional values, and consider vo; as a discrete value.

(i1) Hidden variable z

In a HMM framework, it is necessary to assume a hidden state sequence that
underlies the observation sequence y. We denote this (discrete) hidden state
sequence as z := {qi,...,qr}, which has the same length as y. Here, ¢; €
{s1,.,, sN'}; s; represents the i-th state, and N represents the number of states.

3.2 HMM structure

The HMM structure depends on the HMM topology and the number of states
N. There are two well-known topologies; ‘ergodic’ and ‘left-to-right’. In the
ergodic topology, state transition is permitted between any two states. On the
other hand, in the left-to-right topology, state transition is restricted. More
specifically, in many cases of the left-to-right topology, state transition is per-
mitted from the current state ¢; = s; to the same state ¢;41 = s; or the next
state qy1 = s;41 wheret =1,...,7 —1 and ¢ = 1,..., N — 1. The left-to-right
topology is used in this study. In our formulation, which is described later, the
main differences between these topologies can be found in the prior distributions
of several parameters.

3.3 Likelihood function

Using the notations described above, the likelihood function, which denotes a
conditional probability distribution for the observation sequence y given the
parameter set 6, can be expressed as follows.

P(y|0) =3,P(y|0,2)P(z|0), (3)
P(y18.2) = 11— P(vielas, 0)P(vailge. 0), (4)
P(Z | 0) = P(Q1|9)Hfzgp(%|%—1,9)a (5)

where 6 represents the parameter set. More details of § and the probabilities in
(3) (5) can be described as follows.

(1) Emission probability for angle information vy,
The emission probability for angle information vy; is defined as a finite mixture
of von Mises distributions:

P(Ult|Qt :Siao) ::Zl/ikM('l}lt;MikaK'ik)a i=1,..,N, (6)
k=1
where v;;, is the mixture coefficient parameter of the k-th mixture in the state
s;, and vy, satisfies the constraints vy € [0, 1] and Zszl vir = 1. M(-; Wik /{ik)
denotes the von Mises distribution (1) with the mean direction parameter p;y
and the concentration parameter x;j.

(11) Emission probability for non-angle information vay
The emission probability for discrete information wvo; is
P(vay = g = $4,0):=bipy, i=1,.,N, m=1,...,M, (7)

where parameter b;,,, satisfies b;,, € [0,1] and Zf;l bim = 1. M is the number
of different symbols of vy;.
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(iii) State transition probability for a hidden state g;
The state transition probability from ¢;_1 = s; to ¢; = s; is defined as follows.

P(qt =sj|g—1 = 31,9) =ai;, 4,j=1,..,N, (8)
where a;; € [0,1] and Zjvzl a;; =1.

(iv) Initial state probability for an initial hidden state ¢,
The probability of initial state g; is defined by using parameter c;.

P(lesz|0) = Ci, ’i:l,...,N, (9>
where ¢; € [0,1] and vazl ¢ =1.

3.4 Prior distributions for parameter set 0

Within a Bayesian framework, not only the likelihood function, but the prior
distributions of the parameter set need to be defined. For the sake of simplicity,
this study assumes that the parameters of the prior distribution are independent.
Therefore, the prior distribution used in this study is defined as follows.

N
P (0) = [ P0i) P i) P(s:) P(b)) Pla:) - P(c), (10)

where Vv = (Vz'la ~--;ViK)a i 1= (’LLil, ...,,LLiK), KRi = (K“, ...,IiiK), bz = (bila ceey
bing), a; = (a1 -eeyain), €= (€1, .oyen), and 0 := ({pir }, {Kir b {vi}, {bi}, {ai},
¢). For most of the prior distributions in (10), this study uses a ‘natural conjugate
prior’ [4] [6], to simplify the implementation of the proposed model. The details
of these prior distributions are described as follows.

(1) Prior distributions for v;, pu; and k;

This part shows the settings of the prior distributions for the parameters v;, pu;
and x;, which correspond to the emission probability for angle information vy;.
For the mixture coefficient parameters v;, this paper defines the prior distribution
P(v;) with a (natural conjugate) Dirichlet distribution, as shown in the following

equation:

P(v;) :=Dvi; G), (11)
where ¢; := (i1, -+, Girc) is the hyperparameter vector with ¢ > 0 (k =1, ..., K),
and D(-; ¢;) denotes the Dirichlet distribution. In this paper, the direction pa-
rameters p; are fixed as y;, = 2rk/K — 7. 1 In other words, the prior distribu-
tions for p; can be described as follows.

K
P(ui) o= [ ] Szmnysc—r(in), (12)

k=1
where 0, (y) is the Dirac delta function with the center z, i.e. 0,(y) := d(y — ).
For the concentration parameters k;, let the prior distribution P(k;) be the

gamma prior distribution with the constraint k;; = k2 =+ -+ = Kk, 1-€.
P(ki) = G(Ki1; i, Ai) - H Orar (Kik ) (13)
k#£1

L Actually, we also considered a uniform distribution U (u; [—7, 7)) with range [—7, 7) for
the direction parameters {u;}. This uniform prior distribution, however, did not perform
better than that of the fixed direction parameters in our preliminary experiment.
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where G(+;7;, A;) is the gamma distribution with shape parameter 7; and scale
parameter \;.2

(i1) Prior distributions for b;
For natural conjugation, let the prior distribution P(b;) be

P(b;) := D(bs; Bs), (14)
where 3; := (081, ..., Bix) represents the hyperparameter vector with B, > 0
(k=1,..., K).

(#3i) Prior distributions for a;
(a) Ergodic topology: The prior distribution P(a;) for the ergodic topology can
be expressed by using the natural conjugate prior as
P(a;) :=D(a;; i), (15)

where a; := (aj1,...,;n) denotes the hyperparameter vector with a;; > 0
(j=1,..,N).

(b) Left-to-right topology: Considering natural conjugation of the prior distri-
bution and the constraints of the left-to-right topology, the prior distribution
P(a;) can be expressed as follows.

51(aii)~ H (50(0,@‘), le:N,
N .— j#i
P(a:) : D(af;af)- I dolai;), otherwise. (16)
JAiyit1
Here, a} := (am‘, ai(H_l)), and of := (afj,al,) represents the hyperparameter

vector with afj,al, >0 (i=1,...,N —1).
(iv) Prior distributions for ¢
(a) Ergodic topology: By using the natural conjugation, let the prior distribution
P(c) for the ergodic topology be
P(c) :==D(c7), (17)
where v := (71, ..., 7 ) is the hyperparameter vector with v; > 0 (k =1,...,N).

(b) Left-to-right topology: With the left-to-right topology presented in this pa-
per, ¢; is fixed as ¢; = 1 and ¢; = 0 (i = 2,..., N). Therefore, the prior
distribution P(c) in these cases can be described as

P(C) = 61(01) . H5O(Ci)~ (18)
i£1
3.5 Setting hyperparameters
In this study, the hyperparameters are fixed. More specifically, in the demon-
stration of Sec. 5, all the components of the hyperparameters corresponding to
the Dirichlet prior distributions are fixed as 1. 2 The other hyperparameters
and \; are fixed as 7; = 1 and A\; = 50.

2Althoug;h one can consider a gamma prior distribution P(k;) without the constraint x;1 =
.-+ = Kjk, this prior distribution did not perform well in our preliminary experiment.

3This is one of the simplest selections for the hyperparameters for the Dirichlet prior dis-
tribution.
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Fig. 2: Graphical representation of the Bayesian angle information HMM. Here,
a:={a;}, b:={b;}, v:={vi}, p:={w} and x := {k;}. The circles and double
circles denote the unobserved variables and the observed variables, respectively.
The arrows show probabilistic dependencies among variables. The dotted lines
denote groups of variables. The hyperparameters and their probabilistic depen-
dencies are omitted from this figure for visual clarity.

The proposed model described above can be summarized as shown in Fig. 2.

4 Implementation for Pattern Recognition Problems

4.1 Problem settings
Consider a pattern recognition problem as follows.

Problem:

Predict the unknown class Hygw of a new observation sequence yxpw, under

the following conditions.

(i) Set of classes can be written as {Hp} |, i.e. Hyew € {Hn}_,,

(ii) Observation sequence set (training data) Y}, is given, for each class
Hp(h=1,...,H), i.e. a one-to-one relation between Y}, and H, exists.

(iii) Observation sequence set Y}, of the class Hj, consists of several
independent observation sequences, i.e. Yp, := (Yn1, .-, YnL, )-

Here, y;; denotes the [-th observation sequence y of class Hjp, and Ly is the
number of observation sequences of class Hy. H denotes the number of classes.
In the demonstration in Sec. 5, Hj, denotes the class based on characters, e.g.
‘A’ ‘B’, and so on.

4.2 An approach using the proposed model

An approach to solve this kind of problem is the scoring of the fitness between the
new observation sequence yyrw and the class Hj with its observation sequence
set Yy. Under the model specification described in the previous section, the
fitness score between yyrw and the class Hj, can be expressed as follows:

Score(Yxrw; Hp) := P(yxew | Yn)s (19)



where P(yxew | Y3) represents the (conditional) marginal likelihood, which de-
notes the averaged likelihood function P(yxew | ) of the posterior distribution
PO|Yy):*

Pl | Ya) = / Pl | 0)P(0 | Y3)do. (20)

Here, the posterior distribution P(# | Y},) is derived from Bayes’ theorem :

POIY) = TraTarpam: PO 19 = T Pndo) 1)

4.3 Implementation using Bayesian Monte Carlo methods
Unfortunately, there is no closed-form solution for the integration (20). There-
fore, this paper utilizes Monte Carlo approximation methods:

R
1
P(yNEw ‘ Yh) ~ R E P(yNEW | 9(r)>’ (22>
r=1

where {#("}E_| denotes samples from the posterior distribution P(@ | Y3,). Here,
in order to ease drawing samples {#")}f | using the Bayesian Monte Carlo
method, we consider the joint posterior of the parameter set # and the hidden
state sequence set Zp: 5

P(Yy, | Zn,0)P(Zy, | 0)P(6)

PUO-20 1Y) = 5= B0 | Z.0)P (2 | 0)P(0)d0°
where
P(Yy | Z1,60) =TI\ Plynilans.0), P(Zu | 6) = TI24Planil0),  (23)
Zy, = (zn1, ..., znL, ) represents the hidden state sequence set corresponding to

the observation sequence set Y}, and zp; represents a hidden state sequence corre-
sponding to the observation sequence yp;. We obtain samples from P (6, Z}, | Y2),
but not directly from P(6 | Y;,). Once we draw samples of (0, Z;,) from the joint
posterior P(0, Zp, | Y3), we can obtain samples of 6 from P(6 | Y}) by discarding
samples of Zj,. © The details of our implementation can be summarized in Fig.
3.

5 Demonstration

In order to evaluate the proposed scheme, we applied it to an on-line handwriting
character recognition problem. The handwriting-character database (HANDS-
kuchibue_d-97-06) [10] was used as the dataset. The database contains six types
of characters: Japanese Kanji (Chinese characters used in Japanese), Japanese

4Instead of the Bayesian integration approach (20), one can consider a maximum likeli-
hood/posteriori approach. Unfortunately, several difficulties arise to deal with {;} in this
approach.

5Considering the hidden state sequence set Zj, enables us to easily implement the Gibbs
sampling method for several parameters [6].

6The two reasons for this are discussed in [6]. First, the Metropolis-Hastings procedures
that average over Zj, are useful; however, these tend to perform poorly when the dimension of
0 is large. Second, highly correlated elements of § under P( | Y},) are often nearly independent
under P(60, Z;, | Y},); therefore, including Zj, in the sampling algorithm provides an expanded
parameter space that may accelerate mixing with respect to 6.
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r Implementation using Bayesian Monte Carlo methods ~

(I) The training phase N
For all classes {Hp}, repeat (a), (b) and (c).
(a) Initializing step:
Initialize (9) by sampling from the prior distribution P(6).
(b) MCMC step:
For g =1 to G, repeat the following steps.
(i) Draw the g-th sample of Zj using the forward-backward sampling
method [6].
(ii) Draw the g-th sample of 6; using the Gibbs sampling method [4] [6].
(iii) Draw the g-th sample of 2 using the Metropolis-Hastings method [4].

(¢) Selection step:
For the Monte Carlo approximation (22) in the recognition phase, select
sample set {0(")}E_| from {9(9)}521.7

- y

(II) The recognition phase N

(a) Scoring step:
For all classes {Hp}, evaluate scores (19) by using the Monte Carlo
approximation (22) using samples generated by the training phase (I).
(b) Prediction step:
According to the scores evaluated in step (a), select Hxrw that has
the highest score:
Hyxew = argmax Score(ywew; H).
\ He{Hp} j
- J

Fig. 3: Procedure of the pattern recognition problem. This procedure consists
of two phases: (I) the training phase where we obtain samples of a parameter
set # and (II) the recognition phase where we estimate the scores for the classes
{Hn}. In this figure, let the parameter set 6 := (61,62), where 6; can be dealt
with by using the Gibbs sampling method. On the other hand, #; cannot be
dealt with by using this method. Therefore, the Metropolis-Hastings method
is applied. Concretely, in the demonstration of this paper, 6; and 65 are 6, :=
({vi}, {ai}, {bi}) and 6y := {k;}, respectively.®

Hiragana, Japanese Katakana, Western alphabets, numerals and symbols (punc-
tuation marks). For simplicity, this demonstration uses only 52 Western al-
phabets. The database comprises 120 datasets (120 persons) and each dataset
comprises 116 characters of which 50 are upper cased and 66 are lower cased.

"With the Markov chain Monte Carlo (MCMC) method, we usually need to discard the
samples in the first part [4]. In the demonstration of Sec. 5, we draw 500 samples during
the MCMC step (I)(b) (G = 500), and we use the last 50 samples for the Monte Carlo
approximation (R = 50) for each class.

8Note that the parameters {c;} are not required to be considered here because they can be
fixed using the left-to-right topology of the implementation (See (18)). The parameters {u;}
are also not required here, because this paper utilizes the fixed values for u; (See (12)).
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Table 1: Recognition rates of alphabets both in lower case and upper case (Exp.1)

st (%] | top 3 [%]
Proposed 77.80 96.68

BDHMM][12] | 74.14 95.60
DHMM]11] 74.66 96.16

Table 2: Recognition rates of upper cased Table 3: Recognition rates of lower cased

characters (Exp.2) characters (Exp.3)
st [%] | top 3 [%] 1st [%)] | top 3 [%]
Proposed 96.40 98.10 Proposed 89.32 97.50
BDHMM][12] | 94.20 97.90 BDHMM]J12] | 87.80 96.82
DHMM]11] 95.40 98.10 DHMM]|11] 87.12 97.05

Raw data of one character in this database consists of the two-dimensional pen
position sequence and the pen down/up information sequence. From these se-
quences, we obtain the observation sequences v, € [—7,m) and ve; € {0,1},
where vy; represents the angle information and ve; represents the pen down/up
information.

The first 100 datasets (100 persons) were used for training, and the remaining
20 datasets (20 persons) were used for recognition. By using these training and
test datasets, the following three experiments were conducted: Exp.1: train and
recognize a total of 52 types of characters both lower and upper case; Exp.2:
train and recognize 26 types of characters only upper case; and Exp.3: train and
recognize 26 types of characters only lower case. °

For a comparison, two other approaches with HMMs were tested using the
same datasets. The first is Bayesian discrete HMM (BDHMM) approach using
Bayesian Monte Carlo methods reported in [12]. Bayesian Monte Carlo methods
in [12] are also based on the forward-backward sampling reported in [6]. Emis-
sion probabilities of this approach are defined as multinomial distributions with
quantized 16 directions, whereas the approach in this paper uses 16 mixture von
Mises distributions. The second approach described in [11] uses discrete HMM
(DHMM), which is not based on a Bayesian framework. This approach also uses
16 quantized directional observations. In this demonstration, the parameters in
this approach have been set to the same values as those in [11]. Three approaches
are evaluated using two criteria: (i) the first recognition rate, which is the rate

91n all of the above experiments, training was carried out using the following parameter (see
Sec. 3.5 and 4.3): all components of the hyperparameters for the Dirichlet prior distributions
are fixed as 1, the other hyperparameters are fixed as 7; = 1 and A\; = 50. We also fixed
the number of components K = 16, the number of MCMC steps G = 500, and the number of
samples R = 50. The number of states NV for each class is uniquely defined by using the method
presented in [11]. This method decide N based on (i) the number of the angle information
changes |vi¢ — vy(¢41)] larger than an empirical threshold value ¢o(> 0), and (ii) the number
of the changes of the pen down/up information ve;. In the demonstration of this paper, the
maximal value of N was 18 and the minimal value was 4.
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that the score of the correct character was ranked as first, and (ii) the top-three
recognition rate, which is the rate that the score of the correct character was
ranked in the top three. The first and the top-three recognition rates of three
approaches are listed in tables 1-3.

From the experimental results shown in tables 1-3, one can observe the pro-
posed scheme improved the first recognition rates in all three experiments, and
the top three recognition rates in most of the experiments. Among three exper-
iments, the largest improvement was observed in the first recognition rates of
Exp.1; 3.1% over the scheme in [11] and 3.7% over [12].

6 Conclusion

This paper proposed a Bayesian continuous (observation) HMM with von Mises
density function. Further, this paper applied a Bayesian Monte Carlo method
to a pattern recognition problem by using the proposed model. The proposed
scheme was applied to an on-line handwriting character recognition problem for
evaluation. The scheme improved the first recognition rate by 3.1% over the
scheme in [11].
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Abstract. Conventional artificial neural networks (ANN) cannot produce a
tolerable prediction result, especially when prediction of nonlinear time series
corrupted with noise is the main concern. In this paper, we present a solution to
this problem by applying Bayesian approach for learning process of multilayer
feedforward neural networks (MLP). The Bayesian approach, in general requires
explicit formulation of the underlying problem and conditioning on known
quantities in order to draw inferences about unknown ones. In general, it is not
obvious how large a time-window of inputs are suitable for accurate forecast, we
encountered with a problem in which there are many possible input variables. In
this paper we first use Automatic Relevance Determination (ARD) for selecting
the regularization constants of each input and then by employing Markov Chain
Monte Carlo (MCMC) technique, future values of time series are predicted.

1 Introduction

A time series can be modeled by

yi=fx)+eg t=12,..n
where f{.) is an unknown function and x is a vector of lagged value of y, the amount of
this time-lag is called the order of autoregressive model.

The determination of function f'has been one of central topics in statistics for a
long time. The ARIMA model [1] works well for linear time series but not adequate
for nonlinear ones. Two popular nonlinear models are bilinear model [2] and
threshold autoregressive model [3]. For these models the parameter estimation can be
carried out by, for example, maximum likelihood function.

Although these models generally perform well, they have some limitations.
First, without expertise it is possible to have false specification of the function form of
the most suitable model. Second, the models themselves are limited and may not be
able to capture some kinds of nonlinear behavior. To remedy these limitations, neural
networks have been applied to modeling nonlinear time series by many authors, for
example, Faraway and Chatfield [4]. While ANNs provide a great deal of promise,
they also embody much uncertainty. Therefore, researchers are not certain about the
effect of key factors on forecasting performance of ANNs (G. Zhang, et al [5]).

Usually a one-hidden-layer feedforward neural network can be suitably
determined to represent the function f{.), because this network with linear output units
can approximate any continuous function arbitrarily well on a compact set by
increasing the number of hidden units (Cybenko [6], Funahashi [7], Hornik,
Stinchcombe and White, [8])
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However, there is a question of weather the network weights corresponding to
the best fitting network are unique? [9]. The answer is no. This led to the Bayesian
learning of neural network which first proposed by MacKay [10] and further
developed by Neal [11], Muller and Rios Insua [12], Holmes and Mallick [13], Freitas
and Andrieu [14] to consider all possible weights by probability distribution.

A brief review on application and development of NNs to time series
forecasting, with focusing on Bayesian Neural Networks (BNNs), is given by T.
Zhang [15]. Geweke and Whiteman [16] present the principles of Bayesian
forecasting, and describe recent advances in computational capabilities for applying
them to economic forecasting. After that, Acernese and et al [17, 18] applied a
hierarchical Bayesian learning scheme to time series identification with
autoregressive NN models which overcomes the problem of identifying linear and
nonlinear parts in time series during the training stage. In both papers, the Gaussian
approximation of posterior pdf is used. Liang [19], proposed a Monte Carlo algorithm
for BNN training with an application into time series. He used the indicator function
for the selection of input variables which complicates the training process, because
the separate control of each connection is required. In this paper, we employ the ARD
to avoid unnecessary complications.

Some benefits of Bayesian methods are listed below [20, 21]:

1) The conventional training method of error minimization arises from a
particular approximation to the Bayesian approach.

2) Regularization can be given a natural interpretation in the Bayesian
framework.

3) Bayesian methods allow the value of regularization coefficients to be
selected using only the training data without the need of validation data set.

4) It provides an objective framework for dealing with system complexity and
preventing from over-parameterization.

5) Determining the relative importance of different inputs.

In this study, we apply BNNs to time series prediction by using MCMC, in
association with the ARD technique for determining suitable regularization constant
of each input.

The remaining part of this paper is organized as follows. In Section 2, we
introduce the time series which we want to predict, followed by section 3 presents the
Bayesian learning for MLP NNs and the ARD model. In Section 4, the results of
conventional NN, BNN with ARD using Gaussian approximation, and BNN with
ARD using MCMC are given along with a full discussion over the simulation results.
Finally, section 5 concludes the paper.

2 Data characteristics

The methods in this paper will be tested on the time series which is used for
prediction competition. Figure 1 shows the series. We suppose that the samples 1
through 787 are available and used for training the neural network and the goal of
prediction is to find proper values of the next 50 samples. Then, the goodness of
prediction is measured by evaluating its MSE between actual and predicted values as:
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Fig. 1: View of time series

3 Bayesian learning for neural networks

In the first subsection, we describe the method of Hybrid Monte Carlo (HMC) which
is useful for sampling from the multidimensional posterior probability density
function of network parameters and in the second subsection we discuss the ARD
model which selects the suitable regularization constants of each input.

3.1 Hybrid Monte Carlo

In training the network with a given architecture, the backpropagation approach
(equivalent to maximum likelihood), finds a single best set weight values by
minimization of a suitable error function. While in the Bayesian approach, the
predictions are based on all possible values for the network parameters.

As pointed out in [22]-[23], the aim of Bayesian approach is to obtain the

predictive distribution P(y,|x,,,,D) for a new test casex where y,,,;is the

n+l> n+l>

prediction for x, ;and D is the set of "n" training data:

D= {(x1, y1)5ee0 (X5 V) } (D
The predictive distribution can be modeled as follows:
POty D)= | POyl Do) POuD,x,,, )dw )
RN
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where, w=[wy,w,,---,wy] is the vector of all neural network parameters (weights &
biases) and "N" is its dimension. Since x,,; has no effect on P(MD, X,41)s Eq. (2)
can be rewritten as:
P(ypa1|x,41.D) = _| P(yps1[x,.15Dsw) P(WD)dw (€)
RN
Clearly, this predictive distribution is a function of y,,, . Therefore, for a single

value prediction, we calculate the expected value of this distribution which is equal to

its center of mass. If we consider a Gaussian distribution for P(y, ‘5 ai1» D> w) with
mean f(x,,;,w) and variance o? , then we can write:
3= EPpalxy.D) = | £y, P@fD)dw (4)

RN
where "f" is a mapping from input to output of a neural network with parameter w.
For evaluating ¥, we need at first to calculate the posterior probability density

function:
P(w)P(D

(w)P(D|w) )

P(D)

where P(w) is a prior pdf, chosen by designer. We select a Gaussian pdf with zero
mean and large variance. It is important to note that the posterior pdf becomes more
sharp by considering the data.

Now, the integral in (4) must be solved. It cannot be done analytically because of
the high dimension of the weight space. We consider the Hybrid Monte Carlo (HMC)
method [23], since it is faster than simple Monte Carlo or Gibbs sampling. The HMC
method is a combination of the Metropolis Hasting and the stochastic dynamic
method. A complete guide to MCMC methods is given by Andrieu and et al [24].

The Metropolis algorithm generates a sequence of vectors w,w;,... that forms

P(wD) =

an ergodic Markov chain with stationary distribution P(w|D). After that, the integral
is approximated by

1 I+M -1
pEs ZI @ ipo,) (6)

Here, [ initial values are discarded and M values of "f" are averaged. In the HMC
method, the candidate state w; is generated according to gradient information. For this

reason, the Hamiltonian function is defined as:

1) 2
H(w, p)= Ew) + |p @)
where, P is the momentum vector and £ (w) is:
(x )
E(w) = ‘ ‘ Z ol ©)
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where, @’ is variance of the prior pdf which comes from the ARD model and it
depends on which input component is more influential. The candidate state (w;, pl,)

is found by solving the following equations:

| odw_oH
dr op = 9)
d -
e
La’r ow

Since the Hamiltonian dynamic method cannot be simulated exactly, Eq. (9) is
discretized by step-size & , using the leapfrog method:

p(r+ §> = p(1) - %mv_v(r»
y(r+£):v_v(z')+££(r+§) (10)

p(r+e)=p(r+ %) —%VE(V_V(T +¢)

with L leapfrog iterations, the candidate state is generated, and accepted with
probability min{l,exp(—AH )} . Hence, the Hamiltonian is minimized.

3.2 Automatic Relevance Determination

In the context of prediction, the selection of inputs which have the most effect on the
output is very important. In the statistical method, a threshold is usually determined
first according to the correlation between inputs and output and then the inputs which
exceed the threshold value are selected and the rest are eliminated.

It is worth mentioning that it is not true to reject some inputs because of having
correlationcoefficient only slightly less than the threshold. The correct way is to
consider effects of all inputs simultaneously. In other words, the input which has only
slightly greater effect contributes slightly more to the final prediction value. In the
ARD model, this is done by adjusting the variance of the prior density function of
each input. For example, if one input has a little effect on the output, the variances of
the related weights become small, and leading a little contribution to the prediction
value.

As we mentioned before, the predictive distribution (3) cannot be done
analytically unless we assume Gaussian approximation for the posterior pdf, P(w|D)
[10]. With such an assumption, the formulation of the ARD model is simple and
given in [25] and is summarized below:

Ve =k, — aCTracec(Afl)
where y,.is the number of well determined parameters in class ¢ (each class can be
viewed as the weights connected to each input), k. is the total number of parameters in
each class, ¢, is the inverse of prior variance and 4 is the Hessian of error function

when the weights have their most probable (MP) values obtained by the BP
algorithm. Then, he re -estimation formulas for regularization constants are:



Ve

iec
4 Time series prediction

In this section, we consider three types of predictions associated with Neural
Networks. For all of these methods we require the normalized training data; this can
be done by finding the maximum and minimum of time series and scaled down it to
[-1,1]. The normalized time series are denoted by: 1],Y>....,Y,

The training pattern D is constructed as follows:
| Ykt |

=l
L Yl kal
Here, we use k previous values of time series for prediction of the next value. As a

result, the total training patters are n-k. The first test input is generated from this time
series by choosingi=n—k+1.

yl:Yl+k ,i:1,2,...,n_k

4.1 Conventional neural networks

We use a MLP neural network with 1 hidden layer and the BP algorithm as a learning
rule to predict the future values of the time series. The number of neuron in hidden
layer is 10 and the value of time lag is 8.

After predicting the first value );,1 +1, the test inputs for the next predictions are
built in the same way as before. The only difference is replacing the Y with? |

everywhere we do not have the actual value of time series.

This prediction is very sensitive to the initial values of weights. Since the BP is
a local search algorithm and the error function has more than one local minimum, it is
possible that the algorithm converges to different local minimum depending on the
initial weights. Figure 2 shows the best possible result.
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The MSEI value for the first 15 predictions is 0.9087 and the MSE2 value for
all 50 predictions becomes 0.6004

4.2 BNN with ARD using Gaussian Approximation

Here, we apply the ARD model using Gaussian approximation to the same neural
network considered in the previous subsection for determining proper regularization
constant of each input. The simulation results show that the time-lags of 1,8,2,5 have
the most important impact on the prediction, respectively. Figure 3 shows this
prediction with the time lag of 8.
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Fig. 3: BNN with ARD using Gaussian Approximation
The corresponding values of MSE1 and MSE2 are 0.8874 and 0.4820, respectively.

4.3 BNN with ARD using HMC

In the previous section, we determined the suitable variance weights, connected to
each input by assuming Gaussian approximation for the posterior pdf of weights. We
should note that this assumption is only true when the error function has only one
peak. It would be better to use Monte Carlo sampling method for prediction as
discussed in section 3 after the weights' variances are obtained.

The parameter values of the HMC method that we used for predictions are as
follows: the initial value of prior variance is 100, the initial value of predictive
distribution variance is 0.05, number of samples omitted at the start of chain (J) is
100, number of Monte Carlo samples returned (M) is 600, Leapfrog step-size (&) is
0.005 and number of leapfrog iteration (L) is 10.

Now the input relevance is determined automatically by increasing the value of
time-lag without getting worried about poor prediction, because the ARD mechanism
assigns the right a-prior density function to each weight input. Figure 4 shows the
prediction results for k=50.

The value of MSE1 and MSE2 are 0.2077 and 0.2054, respectively and as easily
observed the Bayesian neural network improves the predictions in both short and long
term.
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5 Conclusion

In this paper, we proposed a BNN with Hybrid Monte Carlo method for time series
prediction. The ARD technique was further used for determining suitable
regularization constants of weights connected to each input. Therefore, if one input
has a little effect on the output, the variances of the connected weights to that input
become small. Consequently, these weights will have small values leading to a little
contribution of the associated input to the final prediction. The simulation results
approved that this combined method outperforms the conventional neural network
and Bayesian learning with Gaussian approximation for predicting nonlinear time
series.
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Abstract. We describe improvements in multi-step forecasting which
are achieved by combining three strategies: the definition of states of past
information using the generalised shift operator; non-linear function ap-
proximation using Gaussian regression; and multi-step prediction by re-
cursive single-step construction. We illustrate the strategy using a well
known data set.

1 Introduction

Linear statistical time series models are now well understood, and forecasting
methods based on these models are well established [1]. However, for most real
life processes to which these methods are applied, the linear model would be
considered an over-simplification.

Unfortunately, the assumption that a process is driven by a nonlinear rela-
tion, results in forecasting becoming an exceedingly complex problem. Much
effort has been put into the development of nonlinear methods and models for
forecasting time series, as may be seen from the literature: [2], [3], [4] and [5].

We have carried out extensive experimentation using a range of methods for
non-linear forecasting of real and simulated series. Our conclusions, [6], enable
us to make clear recommendations regarding the construction of empirical non-
linear multi-step forecasts of a stationary series. The key points of our strategy
are:

a) the selection of the information set (states) from past observations, by ap-
plication of the generalised shift operator, [7]. See §2.

b) the construction of non-linear approximating functions using a Kriging
smoother, also called Gaussian Process Regression - closely related to the
Support Vector Machine estimator - [8]. See §4.

¢) use of the recursive scheme of [9] for construction of multi-step predictions.
See §3.

The following three sections describe these points in turn, then in §5 we show
how they are combined in our forecasting methodology. Finally, §6 presents the
results of the application of our methodology to the classical Sunspot time series.

*The first author is grateful to the UK EPSRC and Unilever Research and Development
for their partial support of this work.
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2 Linear time series models with generalised predictors.

The most common linear model used in time series forecasting is the autoregres-
sive (AR) model. Nonlinear models are generally extensions of the AR model,
in that lagged values of the series are used as predictors. In either case it is
necessary to select the number and lags of the predictors.

When developing a linear model, the problem reduces to selecting the order
of the process. This can be done using the classical AIC or BIC criteria, [10, 11].
On the other hand, when developing a nonlinear model, the selection of the
predictors is critical; i.e. nonparametric time series models are known to loose
performance when too many predictors are used, due to the curse of dimension-
ality. The number of parameters in a linear model is equal to the dimension
of the predictor space; whereas for nonlinear models the effective number of
parameters grows much faster as a function of the dimension.

An approach which is more economical in its use of lagged values, consists in
using as predictors linear combinations of the lagged series. Such a procedure has
been used in the field of automatic control, where discrete Laguerre coefficients
are used to define a finite set of p predictors, (zo, %14, Zp—1,1)- Each one
being an infinite weighted sum of the present and past values of the process.
The same type of predictors have been successfully used in speech processing
[12, 13]. They were introduced in the time series field by [14] and [15, 16, 7].
The corresponding time series model can then be expressed as

Ti41 = Q1204 +Q2T1¢ + - + QpTp_1,¢ + €441, (1)

with e; ~ WN(0, 02).

The particular set of predictors which we use, though closely related to La-
guerre coefficients, are defined in terms of the generalised shift operator W, i.e.
the states zy ¢, k= {0,1,...,p}, at time ¢ are given by

Tkt = Wkﬂ?t = Wfk—l,t, (2)

where for k£ =0, 2o, = z; and W is defined in terms of the lag operator B and
the discount parameter 6 € [0,1] by

B-0
1-Bo’ ®)

We then call (1) the ZAR model, and the set of predictors the ZAR states. Note
that for # = 0 the operator W coincides with the lag operator, W = B, and
the ZAR model reduces to a pure AR. The appearance of the ZAR states is
similar, at low frequencies, to the subset of series values shifted by multiples of
L =(1+0)/(1—0) lags, but, unlike this subet, the ZAR states form a complete
basis of the past, so no information is lost by their use. Historically, W is closely
related to the continuous time generalised shift operator used by Wiener. In

practice, the states are computed via a recursive expression derived from (2)
and (3):

W =

Tt =0Tp 1 + 1,01 —O0Tp_14. 4)
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We now write (1) as the univariate ZAR model in linear form, as
Ty = Q1Tog—1 + Q2T1 41+ ... +QpTp 141+ € (5)

where e¢; ~ WN(0, 02). The model is therefore linear in the coefficients a;, s,
.., ap. It may also be shown that the ZAR(p) model can be written as an
ARMA (p,p — 1) with prescribed moving average operator (1 — §B)P~1.

3 Multi Step Forecasting Tactics

The forecasting of time series further than one step ahead is not an easy problem
even if the data generating process (DGP) is known. Once a time series model
or a prediction method has been chosen, multi-step forecasts can be produced
in several ways. We call these ways, multi-step tactics to distinguish them from
optimal model-based prediction methods.

A multi-step tactic is therefore the form by which a multi-step forecast is
obtained. Traditionally two basic tactics have been used: plug-in and direct.
More recently a recursive tactic with promising results has been introduced [9];
following their terminology we call it multi-stage.

In the following, we describe these three tactics and give details of their
properties. In each case, a function of predicting variables is used to construct
a prediction, which is taken to be the ezpected value of the predicted variable,
conditional on the predicting variables. The prediction error is therefore uncor-
related with the predicting variables; an assumption which is generally strength-
ened to independence. For simplicity of exposition assume that y;_; is a sufficient
summary of past information, and that the single-step predictor may be then be
presented in the form of a DGP:

Y = d(yi—1) + e, (6)

with &, ~ WN(0, 02) and independent of y; s, s > 0.

First consider the tactic of plug-in multi-step forecasting, also known as it-
erated model multi-step forecasting. From the model (6), the one-step-ahead
conditional expectation of the DGP is,

E i1 |ye] = o(yr). (7)

The 2-step-ahead forecast is then built successively from previous forecasts

Yirot = Elyir2|ye]
= Elo(é(yt) +et+1) [yt ], (8)

and similarly for any k& > 1. The issue in (8) is the effect that the function ¢(-)
has on the noise €,11. Evaluation of such an effect can be done in several ways,
as described in [3]:
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e Naive. Tt ignores the noise, replacing it by its mean value of zero.

§t+2|t = ¢(¢(yt)) (9)

Its strength and weakness is its simplicity; it is easy and quick to com-
pute but generally biased due to E [¢p(p + €141)] # O(E [+ €141]) = d(1),
where p = ¢(y).

e Fzact, when the noise distribution, ¢, ~ F., is known and usable.

Bosae = / B(6(m) + 2)dF.(2) (10)

it is computationally complicated (requiring in general high dimensional
integrals). Tt can be biased if F; is incorrectly selected.

e Monte Carlo, when the noise distribution e; ~ F_ is known but the integral
above is not computable, it is possible to obtain a Monte Carlo forecast

N
Yrealt = %Zfﬁ(ﬁb(ytwﬁti)) (11)
=1

where sgi) are random samples Egi) ~ F. for ¢ = 1,2,..,N, and N being
the Monte Carlo sample size. This method is simpler than the previous

but has the same difficulties: selecting the correct noise distribution.

e Bootstrap, which uses the empirical distribution of the estimation residuals
g ~ F:

N
G = 5 30 G0 + ) (12)
=1

with e® ~ F for i = 1,2,..,N; N being the bootstrap sample size. It is
relatively easy to compute and should give good results if (7) is true, but
only if the errors are truly independent and stationary, e.g. not subject to
conditional heteroskedasticity.

The second tactic is direct multi-step forecasting. This tactic tries to solve
the multi-step forecasting problem directly by modelling the conditional expec-
tations:

Elyitrye] =5 (ve), k>0 (13)

Therefore for each desired step k, a direct modelling of the relation between y;
and y; is necessary. The forecast is obtained by simple evaluation of ¢7. Two
clear disadvantages are: it involves fitting a new predictor for each step and the
residuals are generally autocorrelated. Construction of the predictor is therefore
not statistically efficient. However, a well constructed direct multi-step predictor
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should be unbiased, overcoming one of the possible draw-backs of the plug-in
multi-step predictor.

The third tactic is multi-stage multi-step forecasting. This was introduced in
time series by [9]. Similarly to the direct method, it constructs each conditional
expectation

Elyiirly]l = 65 W), k>0

but it is based on a sequence of recursive steps. For example under model (6)

Elyiralyt] = E{E(Ye+2|ye+1) |y }
= E{o(ye+1) v } (14)
= 95 () (15)

Thus at step k the predictor ¢}®(y;) is constructed by modelling the pairs
(051 (y4+1) , i) rather than (yi+r , ;) which are modelled in the di-
rect tactic.

This tactic shares one of the disadvantages of the direct method, that a
different functional relationship has to be fitted for each k. However, at each
of the recursive steps y; is used to predict a function of y;11, so is efficient.
In general, the predictor set needs to be large enough to assure (14) holds. As
the authors in [9] show, their “multi-stage nonparametric forecast has smaller
asymptotic mean-squared error than the direct nonparametric”. It is easy to
show that, for linear models, multi-stage and plug-in forecasts coincide.

The practical estimation of the functions ¢}'® involves two steps, first a fore-
casting of the in-sample data using the previous function ¢}, and then a model
fitting of the pairs (¢} (y141),¥:). The authors in [9] found that the applica-
tion of this multistage tactic with nonparametric state smoothing has problems
of over-smoothing as k grows, because the kernel smoother which they use has
a tendency to “flatten” the functional relationship at each step. An important
modification which we propose is to use a Kriging smoother which is much less
sensitive to this problem. We describe this in the next section.

4 Kriging/Gaussian Process Prediction

The simplest form of Gaussian Process (GP) modelling, represents a set of re-
sponses ¥y as a function of explanatory variables x(Y € X C R?, by

y @ = Gx®D) 4D, i=1,2,.,N (16)
or in compact form
y =G(x) + e, (17)

where e(?) are white noise measurement errors with variance 72. The key to con-
struction of the smooth approximating function G(x) is the assumption that it is
the realisation of a zero-mean Gaussian random field with a specified covariance
kernel. (If the mean is not assumed to be zero, we apply a suitable correction
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to make it so.) This just means that the values of G(x(*) at any finite set of
points x( have a jointly normal distribution with mean zero and covariances
K= K(x®, x0)),

Given that the values of y have been observed, the value of G(x) at any
point x(%) can be estimated, as described below, as a conditional expectation,
evaluated by solving linear equations. From the model (16) we can write

y|X ~ N(0, K +7%1), (18)

where K has elements K;;, and is usually expressed as K = 0?R, where R is
a correlation matrix. From the context of spatial statistics, the measurement
error is called the nugget effect and 72 is the nugget effect variance.

It is well known that the best predictor of G(x(new)), at any point x("¢%) j_e.
that which minimises its mean square error, is its conditional expectation given
the data. To construct this we also need the vector k whose elements k; are the
covariances between G (x®")) and G(x(*). Then, with &’ the transpose of k,

E[G(x"")ly] = ' (K +7°1) "y, (19)
The accuracy of the estimate may also be determined as the conditional variance:
Var[G(x"*™)|y] = Var[G(x"™)] — k' (K + 721) " k. (20)

These formulae follow from the application of Bayes Law, and the Bayes
Linear approach [17] proposes the same solution from a slightly different position.
In complicated problems where the inclusion of a priori information is needed or
desired, it is easier to specify the prior for some parameters by their expectation
and covariance rather than using a full prior probability function. Therefore this
approach can be seen as a simpler definition of the prior specifications.

To fully determine the Gaussian process we need to specify the parametric
form of the covariance K (z,x) between the process at any two points z and x.
In our applications we have used the kernels:

e Gaussian kernel,
K(x,2) = exp (~s]x — 2]}3). (21)

e Hybrid Gaussian-Linear kernel
K(x,2) = ai1(1 +x"z) + exp (—s||x — z|3) .
with a7 > 0.

In both of these the term Gaussian is used to describe the functional form of the
covariance kernel by analogy with the Gaussian density function, but this is not
required for the application of the Gaussian Process smoother.

In practice we need to determine the hyperparameters: s, which is the scale
factor for the Gaussian kernel; A = 72 /02, which is the noise to signal ratio of
the observations; and, if appropriate, ay, which is the shrinkage factor for the
linear part of the hybrid kernel. We determine these by a search for the values
which yield the lowest cross-validation sum of squares of prediction errors, for
the given observations.



5 Combined Treatment: Multi-Stage Time Series Fore-
casting using Gaussian Regression and Generalised Lags

We propose the combination of the three tools described above: ZAR linear
states as predictors, the Multi-Stage tactic for forecasting, and Kriging (Gauss-
sian Process Regression) approximation of non-linear functions. The use of ZAR
states as defined in §2, has the main advantage that a smaller number of pre-
dictors may used; the multi-stage tactic retains statistical efficiency at high lead
times, and Kriging regression avoids the search problems of Neural Networks,
but suffers little from the curse of dimension associated with non-parametric re-
gression. We refer to our model as Krige(ZAR), when using the simple Gaussian
kernel, and KrigeLin(ZAR) when using the hybrid Gaussian-Linear kernel.

We now describe the steps to produce the multi-step forecast 7, given the
series =4 for t = 1,2,...,T. We first determine a suitable ZAR(6, p) base-model
(see §5.1), then:

1. Compute the ZAR(0, p) states: Zy = (20,4, 21,4 -+ - 2p—1,4) fort =1,2,..., T
2. 1-step-ahead prediction:

(a) Estimate the hyperparameters h") = (a, s, ) for the Kriging predic-
tor with responses z;1; and regressors Z;, for t =1,2,...,7 — 1.

(b) Produce the desired forecast #741 using this Kriging predictor applied
to the state Zr.

3. k-step-ahead prediction (applied from & = 2 up to the maximum lead

time):
(a) Produce (k — 1)-step-ahead predictions for the sample data under
the previous Kriging model: igf_fl)l, fort =1,2,...,T — k + 1; the

superscript indicates the forecasting lead time of k£ — 1.
(b) Estimate the hyperparameters h®) = (o, s, \) for the Kriging predic-

tor with responses :igi”'_;l) and regressors Z; for t = 1,2,...,T — k.
That is, we use the previous (k — 1)-step predictions of k-step-ahead
values as targets.

(¢) Produce the desired forecast Z1 1 using this Kriging predictor applied
to the state Zp

Now that the multi-step forecasting algorithm has been described, we explain
the procedure used to select the ZAR base model which it uses.
5.1 Selection of the base-model

The goal is to select the best set of predictors to be used as regressors in Kriging
Regression. Following our methodology of using ZAR base-models, the problem
reduces to choosing # and p. We propose the following two identification steps:

55



1. Selection of the “Region” of best linear ZAR(6, p) models. Com-
pute Schwarz’s (BIC) Information criteria for the ZAR(6, p) models with
6 € {0,0.1,...,0.9} and p € {1,2,...,Pmax}, Where ppax must be chosen
sufficiently large that the BIC has a well defined minimum at some lower
order. Plot the BIC contours plots with coordinates (6, p) and choose a
contoured region, Ry AR, around the minimum AIC values.

2. Selection of the best ZAR(6,p) base model for Kriging. For each
of the base-models in Ry A R, define the set of predictors as the ZAR states
at time ¢, (20,4, 21,4, -+, 2p—1,¢) and the ’predicting variable’ by zg+1 (i.e.
one step ahead forecast giving the ZAR states). Then fit a Kriging model
using GCV and save its Mean Squared Generalised Cross Validation Error.
Select the model with smallest GCV.

This procedure was derived from experience gained after performing a large
scale assessment with real and simulated time series, see [6] for details.

6 A classical Example: the Sunspot series

In this section we assess the performance of our multi-step forecasting methodol-
ogy with a real dataset. We consider a popular and challenging real time series:
the annual Sunspot Numbers (1700-1955). This dataset was chosen because of
its intensive modelling in the literature. In particular, we are comparing our
tools with the nonlinear time series methods reported in [18] and more recently
with the Bayesian Neural Networks proposed in [19)].

In [18], the authors proposed the estimation of subset Bilinear models; they
compared the multi-step forecast performance of various models: AR, subset
AR, SETAR and subset Bilinear. In [19] the same datasets were assessed, and
a Bayesian methodology for Neural Network estimation of time series was pre-
sented. The models the authors considered were: Bayesian Neural Network,
Traditional Neural Network and Nonparametric Regression.

The forecasting methods that we assess are:

e ZAR(6,p).The Linear ZAR time series model, with plug-in forecasting tac-
tic,

e Krige(ZAR(6,p)). The Nonlinear Kriging Regression with Gaussian kernel
and ZAR base-models with multi-stage forecasting tactic,

e KrigeLin(ZAR(0, p)). The Nonlinear Kriging Regression with Linear-Gaussian
kernel and ZAR base-models with multi-stage forecasting tactic.

We follow [18] and split the 256 observations into two sets: the first 221 are
used for model estimation, while the out-of-sample prediction is calculated with
forecasts of the last 35 observations. Forecasts are produced for lead-times 1 to
6.

We applied the modelling procedures described above. The best ZAR linear
model according to the BIC is ZAR(0.3,6) and the selected region Ry AR is the
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one determined by Ryar = {(p.0) : p € {3,4,5,6},0 € [0.15,0.8]}. The base
model in Ry AR, chosen with the smallest GCVS for Kriging regression, was
ZAR(0.7,5).

Summarising, our selected forecasting methods are to use the linear ZAR(0.3,6),
Krige(ZAR(0.7,5)) and KrigeLin(ZAR(0.7,5)) models. Table 1 summarise pre-
vious results from [18] and [19] through the Mean Squared Prediction Error for
lead times h = 1,2,..,6 (MSE(h)). For comparison, the results for our selected
models are presented in Table 2.

Summary of previous performances on the multi-step forecasting of the Sunspot series [19]

Model AR(9) Subset AR SETAR(2,4,t — 12) Subset Bilinear BNN TNN Kernel
in-sample MSE 199.27 203.21 153.71 124.33 124.74 162.94 78.51
MSE(1) 190.89 214.1 148.205 123.77 142.03 171.99 76.8
MSE(2) 414.83 421.4 383.9 337.54 347.85 407.71 317.3
MSE(3) 652.21 660.38 675.59 569.79 509.60 607.18 549.14
MSE(4) 725.85 716.08 773.51 659.047 482.21 615.52 779.73
MSE(5) 771.04 756.39 784.27 718.866 470.35 617.24 780.16
MSE(6) - - - - 468.18 578.15 736.03

Table 1: MSPE(h) for the Sunspot series, as reported in [18] and [19]. Description of
the models: AR(9), autoregressive with order 9; subset AR, autoregressive with lags: 1,2,9;
SETAR(2,4,t — 12), Self-Extracting Threshold Autoregressive with 2 regimes (orders 2 and
4) and threshold variable ¢ — 12; Subset Bilinear, Bilinear with lags 1,2, 3,4, 6,9; BNN, stan-
dard Bayesian Neural Networks using lags 1 to 9; TNN, (Reversible Jump) Bayesian Neural
Networks using lags 1 to 9; Kernel, Nonparametric Regression using lags 1 to 3

Our findings are that multi-step Kriging forecasting with Multi-Stage tactic
achieves better or similar results to the best models reported in the literature,
which are Bayesian Neural Networks and Bilinear models.

Multi-step Forecasting of the Sunspot series using the Proposed Tools

MODEL ZAR(0.3, 6) Krg(ZAR((0.7, 5)) KrgLin(ZAR((0.7, 5))
TACTIC plug-in multi-stage multi-stage
in-sample MSE 231.04 92.74 92.63
MSE(1) 194.37 149.91 150.05
MSE(2) 392.29 337.91 337.19
MSE(3) 585.22 464.77 464.55
MSE(4) 608.38 480.56 480.30
MSE(5) 613.05 455.08 454.72
MSE(6) 616.45 432.18 433.98

Table 2: MSPE(h) for the Sunspot series using ZAR(0.3,6), Krige(ZAR(0.7,5)) and
KrigeLin(ZAR(0.7, 5)).
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The Multi-stage Kriging forecasting methodology outperforms all the other
techniques at higher lead times. Low lead time forecasts obtained with this
methodology are also very competitive. We conclude from these comparisons
that the procedures we have described can be highly commended for non-linear
time series forecasting.
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Multistep-ahead time series prediction by
nearest neighbor based method

Syed Rahat Abbas and Muhammad Arif ~
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Abstract. In this paper, a modified nearest neighbor based method has been
proposed that can be used for multistep-ahead time series prediction. In the
original time series, optimal selection of embedding dimension that can unfold the
dynamics of the system is improved by using upsampling of the time series. Zeroth
order normalized cross-correlation, which is amplitude invariant, is used instead of
commonly used Euclidian distance as a selection criterion for nearest neighbor.
The proposed method is used to predict the ESTSP competition time series.

1 Introduction

In time series prediction, the past values of a time series are utilized to predict its
future values. A variety of prediction methods ranging from statistical methods to
artificial intelligence based methods are being used. Nearest neighbor method is a
pattern matching method in which the most recent pattern of the time series (reference
pattern) is matched with all the past patterns (candidate patterns). The prediction is
carried out by the next value of the best matched pattern.

Nearest neighbor method, initially proposed by Cover and Hart [1]. Its variants
have been used for classification, pattern recognition and prediction. Modifications in
the nearest neighbor method were suggested time to time for various prediction
problems. Time series prediction using delay coordinate embedding was proposed in
[2]; the mixture of direct and iterated method for prediction using four nearest
neighbors with interpolation was carried out and method was applied for Santa Fe
time series prediction competition in 1992. The comparison of nearest neighbor
method with other method for prediction of foreign exchange shows that results are
data dependent [3]. Simultaneous nearest neighbor method performed marginally
better than ARIMA and random walk methods as reported in [4]. The prediction of
chaotic behavior of market response is carried out using multivariate nearest neighbor
method for precise prediction [5]. Divide and conquer approach to develop pair-wise
class nearest neighbor method was proposed in [6]. Locally adaptive metric nearest-
neighbor classification method was also proposed in [7]; they have used updating of
weighted distance for getting optimal nearest neighbors. It was proposed that
advanced data structures significantly reduce the execution time of nearest neighbor
regression [8]. Subset features space was used by to improve nearest neighbor
classification [9]. Subspace of candidate was used by [10] for fast search of nearest
neighbors. Discriminate adaptive nearest neighbor classification was suggested by

" This work is financially supported by Indigenous PhD program of higher education
commission (HEC), of Pakistan.



[11]. They used local linear discriminant analysis to estimate an effective metric for
computing neighborhoods.

In this work we have used nearest neighbor method with upsampling of time
series before embedding and it is also proposed that zeroth order (zero time delay)
cross-correlation can be used as selection criterion for the search of nearest neighbor.
Most of the times it is observed that the embedding dimension approximated by
maximum in ACF plot, which is an integer value, is not true optimum. Therefore we
have upsampled the original series to get optimal fractional embedding dimension.
Moreover upsampling generated interpolated points between the data points of the
original time series. These data points increased the search space and helped in
searching for better nearest neighbor. The details and/or additional experimental
results can be found in our journal paper [12] . Here this method is used for the
prediction of European symposium on time series prediction (ESTSP) competition’s
time series.

2 Proposed method for time series prediction

The proposed method consists of following main steps
a. Upsampling the time series
b. Embedding dimension selection
c. Search of best match pattern
d. Multistep-ahead prediction on the base of best match pattern

2.1 Upsampling the time series

Upsampling is a process in digital signal processing, in which data values are
interpolated in between the original values of the time series. In statistics it termed as
interpolation. The length of the upsampled series becomes the multiple of original
length of time series and upsampling order. The upsampling order 1 means no
upsampling (the series length is multiplied by 1). Various interpolation methods are
being used to upsample the time series e.g. linear interpolation, spline interpolation.
We have used the upsampling method proposed by [13]. In this method zeros are
inserted in between the original data values of time series then these zeroes are
replaced with values suggested by finite impulse response filter (FIR). The design of
FIR filter is given in [13]. To illustrate the upsampling a time series of
Sin(807z1)+ Sin(160xt)for t = 0 to 2 with step 0.001 is shown in Fig 1. The

upsampled time series by 4th order is shown in Fig 2.

2.2 Embedding dimension selection

One of the main issues of nearest neighbor method is the selection of embedding
dimension or window size i.e. the number of data values in reference pattern. F.
Taken in his theorem [14] says that for sufficiently long time series of scalar
observations, one can reconstruct the underlying dynamics by embedding the time
series with proper time delays. So there are two parameters of interest, embedding
dimension (ED) and time delay (TD). There is no general rule for finding the optimal
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embedding dimension parameters. Various methods are proposed for calculating TD
and ED. Differential entropy based method for determining the optimal embedding
parameters of a signal are proposed in [15]. Some existing methods of optimal
embedding were reviewed by [16] and they proposed method based on evolution.
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ACF plot of ESTSP competition time series
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Fig 3: ACF Plot of ESTSP Competition Time Series

M. Small [17] proposed that instead of finding optimal values of individual TD and
ED, the product of TD and ED i.e. M = TD X ED can be determined.

We have take TD equal to 1 and found the optimal M (i.e. optimal ED).
Periodicity of time series was exploited to find the optimal dimension.
Autocorrelation function plot verses time lag is used to get the optimal embedding
dimension. The first maximum of the plot occurs at zero time delay. The second
maximum gives the best guess of optimal embedding dimension for the time series
[18]. The auto-correlation function (ACF) for ESTSP competition series is plotted in
Fig 3, which shows the optimal embedding dimension is 52. After upsampling the
time series and finding the optimal embedding, the sliding window technique was
used. It increased the database of candidate vectors and hence increased the prediction
accuracy. The optimal embedding dimension i.e. optimal window size for upsampled
ESTSP competition series was also calculated. The table of optimal embedding
dimension vs. upsampling order is in result’s section (Table 2).

2.3 Search of best match pattern

In nearest neighbor method the most recent data value (reference pattern) of the time
series of length equal to optimal embedding dimension is selected and the entire
patterns in the past values are matched. We used the sliding window for candidate
patterns. For this purpose the original time series is converted into matrix form having
rows equal to optimal embedding dimension. The full detail of matrix formation can
be seen in [12]. The schematic for nearest neighbor search is given in Fig 4.
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The best match pattern is usually selected which has the least Euclidean distance
from the reference pattern. The Euclidean distance ‘E4” between two vectors ‘X’ and
‘Y’ is given by (1)

, _\/Z(X(f)Y(f))z (1)

we proposed that instead of using the Euclidean distance as a similarity criterion,
normalized zeroth order cross-correlation can be used which is amplitude invariant. If
‘X’ and ‘Y’ are two vectors, the normalized cross-correlation with delay ‘TD’ is
defined as

D> X(@i) Y(i-1TD)
Xcorr, (TD) =———m—=— )

/Z X2 ()« (i)

For zeroth order cross-correlation TD is 0. The best match pattern is selected which
has maximum normalized cross-correlation value.

2.4 Prediction on the base of best match pattern

The best match pattern is one which has the maximum correlation value, after finding
it the prediction of one value is achieved as the next value in the time series of the
best matched pattern.

For the multistep-ahead prediction, the reference vector is updated by dropping
the oldest value in it and adding the forecasted value at the end so that the length of
the reference pattern remains intact. The new reference vector is again matched with
candidate patterns and this process is iterated for required prediction steps.

3 Results and Discussion

The proposed method is based on nearest neighbor method. Optimal embedding
dimension is estimated using ACF plot and nearest neighbor is selected using zeroth
order normalized cross-correlation. The proposed method was evaluated on six
benchmark time series, i.e. (1) Santa Fe prediction competition’s laser series (2)
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annual sunspot number (3) Mackey-Glass (4) Lorenz attractor (5) Henon map (6)
electric load of Towa City. The results can be seen in [12]. The upsampling order 1 to
7 was used. There were two reasons for using the upsampling order till 7, firstly we
achieved comparably better results till order 7 and secondly the huge CPU time was
required for computation of prediction for further orders. One of our studied series
was laser time series introduced in Santa Fe time series prediction competition 1992.
In the competition 1000 values was given to predict the next 100 values of laser time
series. The best prediction was achieved by Eric wan [19] with normalized mean
squared error (NMSE) equal to 0.028 and second best was by T. Sauer [2] with
NMSE = 0.080. Our proposed method with upsampling order 7 gives the NMSE =
0.047, which is in between the two top entries of the competition. This shows the
usefulness of the method. The effect of upsampling on the prediction error is plotted
in Fig 5. The normalized mean squared error without using upsampling and with
upsampling of order 7 is shown in Table 1.
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Fig 5: TheEffect of Upsampling on Performance
Table 1: NMSE without and with Upsampling

NMSE
Time Series
With out Upsampling | With Upsampling Order 7

Laser 1.0106 0.0468
Sunspot 1.9133 0.8130
Mackey-Glass 3.1561 0.7421
Henon 0.3476 0.9281
Lorenz 1.3707 0.9425
IOWA Electric 0.4915 0.2347




As described earlier the optimal embedding dimension for ESTSP competition
series is found as 52. The optimal embedding dimension changes, when the series is
upsampled and it is not the integer multiple of 52 (optimal dimension for original time
series). The optimal dimension with upsampling order is shown in Table 2. The
effective dimension (optimal embedding dimension of upsampled series divided by
upsampling order) is shown in parenthesis. The effective optimal dimension is
fractionally close to 52. We couldn’t get these fractional dimensions without
upsampling.

For ESTSP competition series prediction, first we evaluated our proposed
method to forecast the values from 801 to 875 (taken as a test set) using initial 800
values of ESTSP competition series. The mean squared error found using upsampling
order 1 to 7 for test set is shown in Table 3; which shows that MSE reduces when
upsampling order is more than 1. There was no more reduction in MSE after
upsampling order 2. The mean squared error equal to 0.013 has been achieved for
multistep-ahead prediction of values for steps 801 to 875. The prediction plot of test
set is illustrated as Fig 6.

Table 2: The Optimal Dimension for ESTSP Time Series

Upsamplin Op timal E'mbed(.iing'
Sr. No. psampiing (Effective dimension in
order .

Parenthesis)
1 1 052 (52.00)
2 2 104 (52.00)
3 3 155 (50.66)
4 4 207 (51.55)
5 5 259 (51.80)
6 6 311 (51.83)
7 7 362 (51.71)

Table 3: MSE in Prediction of Test Set of ESTSP Time Series

Sr. No. Upsampling MSE
order
1 1 0.018
2 2 0.013
3 3 0.013
4 4 0.013
5 5 0.013
6 6 0.013
7 7 0.013

For submission of competition entry we used upsampling order 7 in our proposed
method. Although the MSE for test set did not decrease after upsampling order 2, the
reasons for choosing upsampling order 7 is that in above mentioned experiments
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order 7 was giving good prediction. However in ESTSP competition’s series case the

values of the prediction did not change in first decimal place whether order 2 or 7 was

used. The predicted 100 values of ESTSP competition time series and plot is shown in

Fig 7. As required in the competition the 50 predicted values are illustrated in Fig 8.
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Conclusion

In this paper nearest neighbor based method, which is based on upsampling of time
series and cross-correlation based similarity measure is used to predict the ESTSP
competition time series. The MSE for test set of ESTSP time series, i.e. for prediction
of values from time step 801 to 875 is 0.0131. Proposed method has been used to
submit the competition time series prediction.
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Variable Scaling for Time Series Prediction

Francesco Corona and Amaury Lendasse *

Helsinki University of Technology - Laboratory of Computer and Information Science
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Abstract. In this paper, variable selection and variable scaling are
used in order to select the best regressor for the problem of time series
prediction. Direct prediction methodology is used instead of the classic
recursive methodology. Least Squares Support Vector Machines (LS-SVM)
are used in order to avoid local minimal in the training phase of the model.
The global methodology is applied to the time series competition dataset.

1 Introduction

Time series forecasting is a challenge in many fields. In finance, experts fore-
cast stock exchange courses or stock market indices; data processing specialists
forecast the flow of information on their networks; producers of electricity fore-
cast the load of the following day. The common point to their problems is the
following: how can one analyse and use the past to predict the future?

Many techniques exist for the approximation of the underlying process of a
time series: linear methods such as ARX, ARMA, etc. [1], and nonlinear ones
such as artificial neural networks [2]. In general, these methods try to build a
model of the process. The model is then used on the last values of the series
to predict the future values. The common difficulty to all the methods is the
determination of sufficient and necessary information for an accurate prediction.

A new challenge in the field of time series prediction is the Long-Term Predic-
tion: several steps ahead have to be predicted. Long-Term Prediction has to face
growing uncertainties arising from various sources, for instance, accumulation of
errors and the lack of information [2].

In this paper, a global methodology to perform direct prediction is presented.
It includes variable selection and variable scaling. The variable selection criterion
is based on a Nonparametric Noise Estimation (NNE) performed by Delta Test.

In this paper, Least Squares Support Vector Machines (LS-SVM) are used
as nonlinear models in order to avoid local minima problems [3].

Section 2 presents the prediction strategy for the Long-Term Prediction of
Time Series. In Section 3 Delta Test is introduced. Section 4 introduces the
variable selection and scaling selection. The prediction model LS-SVM is briefly
summarized in Section 5 and experimental results are shown in Section 6 using
the competition dataset.

*Part the work of F. Corona and A. Lendasse is supported by the project of New Infor-
mation Processing Principles, 44886, of the Academy of Finland. The work of A. Lendasse is
supported in part by the IST Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778. This publication only reflects the authors’ views.



2 Time Series Prediction

The time series prediction problem is the prediction of future values based on
the previous values and the current value of the time series (see Equation 1).
The previous values and the current value of the time series are used as inputs
for the prediction model. One-step ahead prediction is needed in general and
is referred to as Short-Term Prediction. But when multi-step ahead predictions
are needed, it is called a Long-Term Prediction problem.

Unlike the Short-Term time series prediction, the Long-Term Prediction is
typically faced with growing uncertainties arising from various sources. For
instance, the accumulation of errors and the lack of information make the pre-
diction more difficult. In Long-Term Prediction, performing multiple step ahead
prediction, there are several alternatives to build models. In the following sec-
tions, two variants of prediction strategies are introduced and compared: the
Direct and the Recursive Prediction Strategies.

2.1 Recursive Prediction Strategy

To predict several steps ahead values of a time series, Recursive Strategy seems to
be the most intuitive and simple method. It uses the predicted values as known
data to predict the next ones. In more detail, the model can be constructed by
first making one-step ahead prediction:

D1 = fr(Yes Ye—1,s s Yt—41), (1)

where M denotes the number inputs. The regressor of the model is defined
as the vector of inputs: yg, y¢—1, ..., Yyt—nm+1. It is possible to use also exogenous
variables as inputs in the regressor, but they are not considered here in order to
simplify the notation. Nevertheless, the presented global methodology can also
be used with exogenous variables.

To predict the next value, the same model is used:

Utz = J1(Jt41, Vo> Yem1s oo Ye— M 42)- (2)

In Equation 2, the predicted value of g1 is used instead of the true value,
which is unknown. Then, for the H-steps ahead prediction, ;42 to §rrpg are
predicted iteratively. So, when the regressor length M is larger than H, there
are M — H real data in the regressor to predict the H*" step. But when H
exceeds M, all the inputs are the predicted values. The use of the predicted
values as inputs deteriorates the accuracy of the prediction.

2.2 Direct Prediction Strategy

Another strategy for the Long-Term Prediction is the Direct Strategy. For the
H-steps ahead prediction, the model is

Ueh = fo(Wes Ye—1y oy Ye—nmr41) With 1 < h < H. (3)
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This strategy estimates H direct models between the regressor (which does
not contain any predicted values) and the H outputs. The errors in the predicted
values are not accumulated in the next prediction. When all the values, from
Jt+1 to iy 1, need to be predicted, H different models must be built. The direct
strategy increases the complexity of the prediction, but more accurate results
are achieved.

3 Nonparametric Noise Estimator using the Delta Test

Delta Test (DT) is a technique for estimating the variance of the noise, or the
mean square error (MSE), that can be achieved without overfitting [4]. The
evaluation of the NNE is done using the DT estimation introduced by Stefansson
in [5].

Given N input-output pairs: (z;,7;) € RM x R, the relationship between x;
and y; can be expressed as:

yi = f(:) + 74, (4)

where f is the unknown function and r is the noise. The Delta Test estimates
the variance of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables, namely, input and output pairs. The DT has been introduced for
model selection but also for variable selection: the set of inputs that minimizes
the DT is the one that is selected. Indeed, according to the GT, the selected
set of variables is the one that represents the relationship between variables and
output in the most deterministic way.

DT is based on hypotheses coming from the continuity of the regression
function. If two points x and z’ are close in the input space, the continuity of
regression function implies the outputs f(z) and f(z’) will be close enough in
the output space. Alternatively, if the corresponding output values are not close
in the output space, this is due to the influence of the noise.

Let us denote the first nearest neighbor of the point z; in the set {z1,..., 25}
by znn. Then the delta test, § is defined as:

1 N 2
o = W;’yNN(i)_yi ) (5)

where yy () is the output of zyy ;). For the proof of the convergence of
the Delta Test, see [4].

4 Variable and Scaling Selection

Variable scaling is a usual preprocessing step in both function approximation
and time series analysis. In scaling, weights are used to reflect the relevance
of the input variables to the output to be estimated. That is, scaling seeks

71



for redundant inputs and assigns them low weights to reduce the corresponding
influence on the learning process. In such a context, it is clear that variable
selection is a particular case of scaling: by weighting irrelevant variables by
zero we are, indeed, enforcing selection. For the sake of brevity, only the main
concepts referring to the regression problem are presented here. Nevertheless,
the extension to time series analysis is trivial.

4.1 Scaling the Input Space with Mahalanobis Matrices

The Mahalanobis distance dys(z;,z;) of two d-dimensional observations z;, z;
is a proximity (or ’similarity’) measure defined on the dependencies between
the embedding dimensions. Formally, dps(x;, z;) extends the traditional Euclid-
ean distance d(z;,z;) = [(z; — x;)" (z; — x;)]/? transforming the observations
subspace by means of a (d x d) full-rank matrix M:

(i, x5) = (2 — 25)" M (s — z5)]'/2, (6)

From the previous equation, it is evident that: i) if M = T then the original
Euclidean metric is retained, and ii) if M is a (d x d) diagonal matrix then the
original space is simply rescaled according to the diagonal elements. Matrix
M is also symmetric and semi-definite positive, by definition. Moreover, the
Mahalanobis matrix M can be factorized as:

M =S"s, (7)

with a matrix S that can linearly map the observations into the subspace
spanned by the eigenvectors of the transformation. The learned metric in the
projection subspace is still the Euclidean distance, that is:

d(ws,x5) = [(w5 — 25)T M (s — 2)]V/? = [(Sz; — Say) " (Swi — Sa)]'/?, (8)

where, by restricting S to be a non-square (s * d, with s < d) matrix, the
transformation performs both a reduction of the dimensionality and the scaling
of the original input subspace. The resulting subspace has an induced global
metric of lower rank suitable for reducing the 'curse of dimensionality’.

In this paper, we use a diagonal matrix M that is optimized in order to
minimize the delta test estimation in the scaled space define by S. Details
about the optimization method are given the the experiments section.

5 Nonlinear Models

In this paper, Least Squares Support Vector Machines (LS-SVM) are used as
nonlinear models [3], which are defined in their primal weight space by [6, 7]

g = wT(p<X) + b, (9)
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where @(x) is a function, which maps the input space into a higher-dimensional
feature space, x is the vector of inputs. w and b are the parameters of the model.
The optimization problem can be formulated as

mlnwbe* ( ) ) l(UT(U‘F'Y% sz‘vleqzv (10)
subject to wlo(x;) +b+e;,i=1,..,N, (11)
and the solution is
N
h(x) = oK (x.%;) +b. (12)

i=1
In the above equations, i refers to the index of a sample and K(x,x;) is

the kernel function defined as the dot product between the @(x)” and ¢(x).
Training methods for the estimation of the w and b parameters can be found in
[6]-

6 Experimental Results

In this paper, the ESTSP2007 competition dataset is used as an example. It
includes a total of 875 values. The dataset is shown in Figure 1.
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Time

Fig. 1: Competition dataset.

In order to test the methodology, the dataset is divided into two sets, a small
learning set and the global learning set. The small learning set consists of 465
first values and the global learning set consists in the 875 values. The regressor
size is set to 10 after many trial and error experiments. The small learning set
is used in order to evaluate the performances of the methodology.

The variable scaling is selected in order to minimize the Delta Test estima-
tion. Because the DT is not continuous with respect to the scaling factors, a
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forward-backward optimization is used. The variable scaling coefficients are se-
lected between a set of discrete values: [0 0.1 0.2 ... 0.9 1]. This discretization
provides satisfactory results and reduces computational time.

The variable scaling is performed for each of the 50 prediction models from
equation 3 used in direct prediction methodology. The estimation of the NNE
(using Delta Test) are shown in Figure 2.

3
g
s 7 |
S
S)
m1r ]
Z
z.

0 1 1 1 1

0 10 20 30 40 50

Prediction Horizon

Fig. 2: Estimation of the NNE (using Delta Test) with respect to the horizon of
prediction.

The result of the 50 step-ahead prediction is represented in figure 3.

Time Series

420 440 460 480 500 520
Time

Fig. 3: Comparison between the time series (solid line) and the prediction
(dashed line)

Then, the same methodology is used with the global learning set in order to
predict the competition values. The estimation of the NNE (using Delta Test)
are shown in Figure 4.

The result of the 50 step-ahead prediction is represented in figure 5.
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Fig. 4: Estimation of the NNE (using Delta Test) with respect to the horizon of
prediction.
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Fig. 5: Prediction of 50 next values of the competition dataset. The real values
are presented by the solid line and the dashed one presents the prediction.

7 Conclusion

In this paper, we have presented a methodology for the longterm prediction of
time series.

This methodology uses direct prediction methodology. This increases the
computational time but improves the quality of the results.

In order to perform the variable scaling, Delta Test estimation is used. The
scaling that minimized the NNE is selected. To reduce the computational time,
a discrete scaling is used and a forward-backward optimization is selected.

Further research will be done to improve the minimization of the NNE estima-
tion. Other experiments will be performed in the fields of time series prediction
and function approximation.
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Comparison of FDA based Time Series
Prediction Methods
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Abstract. Functional Data Analysis (FDA) provides an important ad-
dition to traditional data analysis methods. In FDA a function is fitted to
the data and the fitting coefficients are examined instead of the original
data. The function fitting, however, is not a straight forward task. The
choice of the function space is often crucial and the fitting may involve
unknown parameters that need to be determined. This paper presents a
comparison of different FDA based methods for time series prediction. The
experimented function types are B-splines, Wavelets and Gaussian kernels.
In all cases k Nearest Neighbor (k-NN) model is used for the prediction.
Furthermore, some input selection methods are experimented to improve
the k-NN performance.

1 Introduction

Common time series prediction methods operate in time space and estimate
future values directly. A rather different approach is to utilize Functional Data
Analysis (FDA) [5] in this task. The idea is to fit some function to the data points
and work with the fitting coefficients instead of the original data. In this case,
however, one needs to find a suitable set of functions. Smooth functions might be
a good guess, if the data is smooth or if the data is very noisy. In the latter case
the fitting might result in some noise cancellation. However, it is very difficult
to know a priori which basis is suitable for certain data. Furthermore, the fitting
usually involves some unknown parameters that need to be determined.

In this paper, we present a comparison of three function types, B-splines,
Wavelets and Gaussian kernels in FDA time series prediction task. For all of the
functions a k-Nearest Neighbor [3] (k-NN) prediction model is trained. k-NN
is suitable for this task because of its robustness and small computational load.
However, the drawback of k-NN is that it is sensitive to scaling of the inputs.
For this purpose some input selection methods are also examined [8].

The proposed FDA time series method is described in Section 2. Section 3
briefly presents the function types and some of their properties along with a few
notions related to FDA applications. The experiments are outlined in Section 4
followed by results and discussion in Section 5. Finally, Section 6 concludes the

paper.
2 FDA for Time Series Prediction

When applying FDA to time series prediction, the basic idea is to cast the origi-
nal prediction problem from time space to some function space. In practice this
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means that we work with the function coefficients instead of original data points.
The functional representation has some advantages in comparison to traditional
prediction schemes, such as dimensionality reduction and the possibility to work
with irregularly sampled data.

Consider a set of observations (z;, ;)" ; in a closed interval x; € [a,b]. First,
the data is divided into input windows I}, and output windows O}, of equal length
L. Output is the strictly following window of the corresponding input. The sets
are defined as,

I, = (:pf,yf)i’;’ﬁ = {(zs, ;) |a+ (h—1)d <zi<a+(h—1)35+ L}

(ziyyi))|la+(h—1)0+L<z; <a+ (h—1)+2L},

~= A

where h = 1,..., N and § stands for the shift between two sequential windows.
The number of windows is N = [(b—a — 2L)/§| + 1. The z! values are shifted
so that they all belong to an interval [0, L) for all h. Thus, the sample sets are
located in the same interval in the time space

If the data is regularly sampled, the sampling time is a natural choice for
. In this case the sets I, and Oy, intersect, given by Ijy1,/541 = O, for h =
1,...,(b—a—23l)/6. Regular sampling also implies that there is exactly L data
pairs in each set, i.e. mj = my = L. Furthermore, the z; coincide and we can
write 2/ = x; for all h. For simplicity, it is assumed from now on that the data
is regularly sampled.

Input Coefficients Output
(XY, . w @
Fqngtlon K-NN
fitting

Fig. 1: Prediction method. A function is fitted to the data points and the
prediction is done in the function space using k-NN. The output is also a set of
coefficients.

2.1 Function Fitting

The outline of the prediction method is presented in Figure 1. An interpolating
function is fitted for each window I, and Oy. To be more specific, it is assumed
that there exits some regular function f € L? so that y; = f(x;) + s;, where s;
stands for observation noise. Working with L? in practice, however, is impossible
because it is infinite dimensional. For this reason it is necessary to take some
finite dimensional subspace A C L? instead. Knowing the truncated basis ¢; of
A we can approximate f by minimizing the mean square fitting error,

m

minJ(w) = S (i — f(@)? with f(z) = 3 wipi(a) (1)
=1

i=1
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where w; stands for the fitting coefficients and ¢ is the dimension of A. The
coefficients w; define the approximation f uniquely and can thus be used as
"new” data in further analysis.

When working with the function coefficients w;, orthogonality of the basis
must be taken into consideration. One good property of functional spaces is that
the Euclidian operations (such as norm or innerproduct) can also be extended
to the functions. Therefore it is natural to require that the innerproduct of the
coefficients (i.e. (w,v) = wlv) is equal to the innerproduct of the functions
( Jo f(x)g(x)dz ). A direct substitution yields,

/f(x)g(ac)dm = / Zwlgol(m)kagok(x)dm =w!dv
R Ri=1 k=1

where ®; ; = fR @i(x)pj(x)dx. This implies that if the basis is orthonormal, the
matrix ® becomes an identity matrix and the requirement is automatically met.
Otherwise, a linear transformation w = Uw must be applied. Here the matrix
U is a Cholesky decomposition of ® = UTU and we get w’v = (Uw) Uv =
wIUTUv. The obtained input and output coefficient sets are denoted as Z;, =
w(Iy) and Oy, = w(Oy), respectively.

2.2 k-NN prediction

k-NN clustering is a widely used for example in pattern recognition [3] and time
series prediction [8]. Here, k-NN prediction for functional data is presented. For
working with original data directly, see [8].

Our goal is to build a prediction model P : 7, — Ojp. With k-NN, the
estimate for the future is obtained as a mean of the £ most similar outputs. Le.
given the training pairs (w;,v;), w; € Zp, v; € O and a previously unknown
input w we get the estimate,

v = P((.‘J):l Z vi,

{vi|w;ENg(w)}

where the set Nj(w) C Zj is the k nearest neighbors of w. Usually the Eu-
clidian metric is used to compute the distance between samples. The number
of neighbors, k, is unknown and must be validated separately. Quality of the
prediction is measured by evaluating the predicted function at the data locations
and taking mean square of the errors.

2.2.1 Input Selection

Due to its simplicity, k-NN is computationally very cheap which makes it suitable
for handling large data sets and time consuming parameter optimization tasks.
However, it is well known that the performance of k-NN can be greatly decreased
if the data is noisy or if there exists a lot of irrelevant information.

Because k-NN is based on pair wise distances, it may be useful to normalize
the inputs to zero mean and unit variance. This ensures that each dimension

79



a) 1b) (1)
-1

1

L I I ¢

0 -1

C) ¢ 1 —— i B 78
-1

1

0 *_\*_*_\*_”_‘\;1_?

Fig. 2: Basis functions. a) B-Splines b) Haar Wavelets for 8 dimensional data
¢) Gaussian kernels

will contribute equally to the distances. Normalization is helpful in situations
were certain dimensions have large variance and thus dominate the choice of
neighbors. However, it does not resolve the problem of irrelevant information.

As another choice, input selection [8] or scaling [9] can be used. In the case of
input selection the pair wise distances |w —wj;| are calculated using only a subset
of the data dimensions. In scaling, on the other hand, each dimension is scaled
separately before the computation of the distances. The latter can be formulated
as [wi,wa,...,wy| < [oawr, aaws, ..., aqwy], a; € [0,1]. Thus input selection
is actually a special case of the scaling where the scaling parameters «; are
restricted to be either 1 or 0.

Input selection increases the computational load significantly. For example,
running an exhaustive search, i.e. trying out all the possible combinations of
a; € {0,1}, increases the work load by a factor 2¢ — 1, which quickly leads into
unthinkable running times as ¢ grows. For scaling, unfortunately, the situation
is not any better, because the optimization problem is very difficult.

3 Functional Spaces

3.1 B-splines

Splines are piecewise polynomials developed for data interpolation. This section
presents a short revision of splines in the B-form. B-splines provide a convenient
basis function representation to the piecewise polynomials. For more detailed
information and discussion on algorithms see [2].

The B-spline basis B; 4 is uniquely defined by a order d and a non-decreasing
knots sequence t; with possible multiplicities. The basis can be computed recur-
sively [2],

- 1 ift;, <z <ting
Bia(z) = { 0 otherwise
r—1; tita —
Bia(z) = ———" B 1(z)+ —""" B4 ().
titd—1 —t; titd — tit1
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The basis has small support, since b; 4(x) = 0 for all © ¢ [t;, ;1+4]. The order
d is related to the smoothness constraints of the spline. The larger the d, the
smoother the fitting. In fact, if a knot has multiplicity r, i.e. t; =t;41 =... =
tjyr—1, then the number of continuous constraints at ¢; equals to d —r. So, if
r = d, the spline becomes discontinuous.

It is convenient to set the spline to be discontinuous at the first and last data
location and as smooth as possible in between. Thus the first and the last knot
has multiplicity d and the rest are simple. In this case, we have a handy relation,

number of knots =q+d

where ¢ is the number of basis functions. The location of the remaining knots
are set so that the fitting becomes as accurate as possible. There are several
methods available, the one used in this paper is presented in [7]. An example of
3rd order B-spline basis is presented in Figure 2.

In FDA the B-splines have some clear advantages; The fitting is guaranteed
to be smooth by definition and it is well suited for reducing data dimensionality.
However, the two unknown parameters ¢ and d need to be to optimized. Fur-
thermore, the basis is not orthonormal, so the Cholesky decomposition described
in Section 2.1 must be applied.

3.2 Wavelets

Wavelet transformation resembles Fourier transform in that both provide a time-
frequency description of the data [1]. Wavelets, however, are able to encode
spatial information as well, which make them appealing for multiresolutional
signal processing. Given some mother wavelet function v, the basis can be
written as,
ig(a) = 27227 e — j),

where ¢ and j are integers that represent variation in frequency and spatial lo-
cation, respectively. The wavelet basis functions form an orthonormal basis for
L?. An example of the simplest wavelet, Haar (or Daubechies 1) is presented
in Figure 2. There are many wavelet families available with different proper-
ties, such as Daubechies (in [1] these are called compactly supported wavelets),
Biorthogonal and Mayer wavelets.

Usually there is no need to compute the transformations using the basis func-
tions. Instead the transformation can be obtained efficiently using digital sub
band filtering [1]. In this case, however, we have to assume that the data has a
constant sampling rate. Furthermore, due to the nature of the basis, data length
should be a power of 2. Otherwise some data points must be generated during
the filtering process, and the transformation actually becomes longer than the
original data. Thus discrete wavelet decomposition cannot reduce dimensional-
ity.

Although dimensionality cannot be reduced, the wavelets have some good
properties for FDA. First of all, orthonormality of the basis is always desirable,
and on the other hand there are no additional parameters involved. Thus only
the window length and wavelet type must be tested.
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3.3 Gaussian kernels

The Gaussian fitting is the simplest function type presented here. The basis
functions are Gaussian kernels,

Hx—téuz
pi(r)=e i | (2)
centered at t; and with width parameter o;, i = 1,...,q. Thus there are

two unknown parameters for each kernel. In total we end up with 2 4 2q free
parameters, (window length, number of kernels, centers and widths) which is
considerably more than with Wavelets or B-splines.

One way to ease the parameter optimization is to fix the locations ¢; so that
they are equally distributed on the interval of the data. This is justified in the
case of regularly sampled data, although it may be far away from the optimal.
Furthermore, all the kernels can be share the same width parameter o. This
reduces the number of unknown parameters down to 3 which is feasible for a
grid search, for example. The grid search optimization was presented in [10].
An example of such Gaussian functions is presented in Figure 2.

When the locations and widths are known, the fitting weights are obtained
by solving the problem (1). The solution is the well-known pseudo inverse w =
(GTG) 'GTy [6], where y = [y1,¥2,...,Ym]" are the values to be fitted and
G = ¢;(z;). In practice the matrix GT'G tends to become singular on some
occasions. In that case it can be replaced with GTG + €I using a small € to
ensure the existence of the inverse.

3.3.1 Optimizing widths and locations

The locations and widths has a major role in the quality of the fitting, so it would
be desirable to relax the rather artificial constraints given above. Optimizing
the average fitting error, is a non-supervised and relatively fast way to find good
parameter values. The optimization methods, however, require gradient that
exists in closed form since all the functions in (1) are analytical.

To derive the gradient, we first define the error functional. Squared fitting

error of all the functions A = 1,..., N can be written as,
1 N T
E = 3 }; (Gwr—yn) (Gwi, —yn)

Il
Do =
M=

(Wi GTGwy, — 2y] Gwy, +yLyn)
h

Il
-

The columns of G are denoted as Gy = [pr(71), Pr(T2), - -, vk (zm,)]T and
it’s derivative with respect to t; and oy,

) _ [Ti—t Tm — Uk T
G, = [ P 99k(331),-~-707]399k(93m)]
o Ty — g 2 T — T 2 T
G = [Wohl @), B )
Uk Jk:
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respectively. With this notation we obtain,

0
aTk(yZGWh) = yng)wh,k
0
Tm(ngTGwh) = 2W£GTG,(€t)wh7k,
which finally yields,
Z (Gwp, —yn) fo)wh,k-
(9tk =

Following similar steps for 9/do}, we get,

n
D LR

When the gradient is known, the locations and the widths are optimized using
unconstrained non-linear optimization. Actually, the problem is constrained
because o cannot be negative. But the kernel (2) is an even function with respect
to o so negative values can be accepted as well. In this paper a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) Quasi-Newton method with line search is used [4].
BFGS method resembles quadratic algorithms, such as Newton method, in the
sense that it assumes that the problem is quadratic, but with BFGS there is no
need to actually compute the Hessian matrix at any stage.

It should be noted, however, that the optimization of the fitting is not equiv-
alent to running a grid search as described above. With the grid search, the
prediction performance is optimized directly, while the goal in here is only a
good data fitting. Still, a good fitting is a key for a good prediction, since the
prediction error cannot be smaller than the fitting error.

4 Experiments

The different function fittings were experimented with the regularly sampled
ESTSP’07 benchmark data. First 465 values were used as a learning set and all
the parameters were optimized using Leave-One-Out error (LOO). The remain-
ing 410 data points were used as test set to evaluate the quality of the obtained
models. In all the tests only the first 15 predicted values were taken into account.

The tests were run for Wavelet, B-spline and Gaussian fitting. The wavelet
families Daubechies {1,2,3,4}, Biorthogonal {1.3,2.2} and discrete Meyer were
tested. For B-splines orders 2, 3 and 4 were experimented. The Gaussian ker-
nels were tested with fixed kernel locations and grid-search optimized width (as
explained in Section 3.3) but also with the Quasi-Newton optimization. The
maximum amount of Quasi-Newton iterations was 100. For a reference, a plain
k-NN prediction test was carried out. The neighborhood parameter k ranged
from 1 to 15 in all the cases.
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The experimented window lengths L varied from 15 to 35. Number of coef-
ficients ¢ ranged from 5 to 29. In the case of fixed Gaussian kernels, the width
parameter o got values from 0.3 to 0.93 with 0.07 step size!.

For comparison, the effect of input normalization was experimented for all the
tests. And finally, input selection was tested by running an exhaustive search.
For this purpose the models that gave the best LOO error for each number of
coefficients (¢q) were selected. However, due to a rapid increase in computational

load only values ¢ < 11 were experimented.

5 Results

The results are presented in Table 1. The best setup is 2nd order B-spline with
input normalization. Functional approach improves results compared to plain
k-NN prediction. B-splines give the best overall results and LOO errors are less
than one third compared to plain k-NN. The Gaussian fitting is slightly worse.

Wavelet results, on the other hand, are quite similar to plain k-NN. This may
be due to the fact that dimensionality is not reduced. k-NN prediction tends to
become more difficult as dimensionality grows.

Normalization is beneficial only for the B-splines. With plain k-NN there is
not much difference, while in the case of wavelets it is clearly disadvantageous
since LOO error becomes roughly 6 fold.

In the case of Gaussian fitting, the fixed kernels with one width parameter
perform better. However, the Quasi-Newton method seem to be more robust
since test errors are smaller.

5.1 Input Selection

The exhaustive search results are presented in Table 2. Performance is slightly
worse compared to the last results, because number of coefficients were restricted
to be less than 12. Due to high dimensionality wavelets were left outside of this
test. Based on the previous results, inputs were normalized only for B-splines.

Surprisingly the B-spline results were exactly the same because all the inputs
were chosen. This may explain the good performance in the previous test; all
the coefficients carry relevant information. There was a slight improvement with
the Gaussian fitting. But even in this case almost all inputs were selected; Only
9th input out of 11 was omitted for the fixed kernels and 1st, 9th and 10th for
Quasi-Newton.

Based on these results, exhaustive search is not recommended because the
benefits are minor compared to the increase in computational load.

1The width was normalized so that value 1 stands for the distance between the centers



6 Conclusions

Three function spaces were experimented for 15-step ahead prediction of the
ESTSP’07 benchmark data. The best setup was 2nd order B-splines with nor-
malized inputs. Gaussian fitting was quite as good while wavelets performed
clearly worse.

The results support the notion that the choice of function space is not trivial
in FDA. The fact that normalization was beneficial in some occasions stress the
problems related to k-NN; input scaling can have a remarkable effect on the
performance.

Functional approach improved performance compared to direct prediction
method. Moreover, all the methods presented here can be modified to work
with irregularly sampled data, which is out of the scope of the traditional time
series prediction methods.
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B-splines Normalized
Degree LOO Test LOO Test
2 0.0082 | 0.2004 | * 0.0079 | 0.2004
3 0.0086 | 0.2088 0.0080 0.2017
4 0.0105 | * 0.1921 | 0.0103 | * 0.1921
Wavelets Normalized
Type LOO Test LOO Test
Daubechies 1 0.0331 | 0.2189 0.1815 0.4451
Daubechies 2 0.0414 | 0.1897 0.2933 0.2537
Daubechies 3 0.0393 0.1948 0.2978 0.1675
Daubechies 4 0.0342 | 0.1948 0.2446 *0.1609
Biorthogonal 1.3 | 0.0325 | 0.1834 0.1712 0.2323
Biorthogonal 2.2 | 0.0335 | 0.1852 0.2680 0.1851
Discrete Meyer | 0.0328 | 0.2082 | * 0.0313 0.2665
Gaussian Normalized
Type LOO Test LOO Test
Grid search 0.0110 0.1999 *0.0093 0.2029
Quasi-Newton 0.0155 | * 0.1820 0.0163 0.1958
Plain k-NN Normalized
LOO Test LOO Test
0.0328 | * 0.2082 | * 0.0313 | * 0.2082

Table 1: Results for 15 step ahead prediction. The values are normed mean
square errors. The best values for each function type are marked with an asterisk.
The cases were normalization improved the results are in bold face.

B-splines
Input Selection Degree LOO Test L | ¢q
Yes 2 0.0102 | 0.1893 | 30 | 11
No 2 0.0102 | 0.1893 | 30 | 11
Yes 3 0.0087 | 0.1901 | 34 | 10
No 3 0.0087 | 0.1901 | 34 | 10
Gaussian
Input Selection Type LOO Test L | ¢q
Yes Quasi-Newton | 0.0145 | 0.2142 | 35 | 11
No Quasi-Newton | 0.0173 | 0.2088 | 35 | 11
Yes Grid-Search | 0.0138 | 0.2304 | 30 | 11
No Grid-Search 0.0140 | 0.1936 | 30 | 11
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Table 2: Input selection results. An exhaustive search was run to best models
with ¢ = 5,...,11. Improvements are in bold face. For B-splines all the inputs
were selected.
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Abstract. Time series prediction is an important problem in many areas
of science and engineering. We investigate the use of a parsimonious set of
autoregressive variables in the long-term prediction task using the direct
prediction approach. We use a fast input selection algorithm on a large set
of autoregressive variables for different direct predictors, and train non-
linear models (LS-SVM and a committee of LS-SVM) on the parsimonious
set of non-contiguous set of autoregressive variables. Results will be shown
for the time series competition task.

1 Introduction

Time series prediction aims at predicting future values of a time series based on
a recorded, finite collection of time series samples. Time series prediction has
many applications in natural sciences, engineering, and economics [2, 5, 11].

In this work, we perform input selection of autoregressive variables to pro-
duce a parsimonious, or sparse set of input variables for the prediction problem.
The resulting set of variables is typically a non-contiguous set of variables, un-
derlying the importance of a few relevant variables that will produce a good
predictor. Inputs of the sparse models are selected from a large set of autore-
gressive input variables for a given past horizon [8, 9]. In addition, the reduction
of input space dimension helps us to avoid the problems caused by the curse of
dimensionality [10]. On the basis of the selected variables, we train a non-linear
predictor, since the linear models do not produce sufficiently accurate predic-
tions in many applications. Here, we have chosen to use the least squares support
vector machine (LS-SVM) [7], since it is relatively fast to train and it has only
two tuning parameters in the case of Gaussian kernels. The LS-SVM has been
successfully used in the time series prediction context, for instance in [6].

In addition to selecting the best model based on cross-validation, we train
several perturbed models around the optimum, and give the average prediction
of the set of models as our final prediction. This approach takes into account
that the tuning parameters are evaluated in predefined grids and small changes
in their values could lead even better prediction performance.

The article is organized as follows. The Section 2 describes our approach to
long-term time series prediction. In Section 3, the two phase modeling strategy
is described. We briefly present the data provided by the conference organizers
and present the empirical experiments in Section 4 followed by summary and
conclusions in Section 5.
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2 Long-Term Prediction of Time Series

In a time series prediction problem, future values of time series are predicted
using the previous values. In the long-term prediction, or multi-step-ahead pre-
diction, recurrent or direct approaches can be used. In the recurrent prediction,
the previous predictions are used as inputs, thus errors may accumulate and
diminish the quality of predictions. In this work, we rely on direct prediction
strategy, where the model

Utrk—1 = foWi—1,Y—2, s Y1) (1)

is used for k-step-ahead prediction. The predicted values are not used as inputs
at all in this approach, thus the errors in the predicted values are not accumu-
lated into the next predictions. However, when all the values from y; to yi1x—1
need to be predicted, k different models must be constructed. This increases the
computational complexity, but more accurate results are achieved using the di-
rect than the recursive strategy as shown in [8]. In addition, the direct approach
allows us to select different input variables to various k-step-ahead prediction
models.

3 Two Phase Prediction Approach

3.1 Phase I: Input Selection

Consider the regression problem that there are N measurements available from
an output variable y and input variables z;,¢ = ,...,l{. In this phase, the
dependency is assumed to be linear

l
yj = Biwjite j=1....N. @)
i=1

The errors ¢; are assumed to be independently normally distributed with zero
mean and common finite variance. All the variables are assumed to have zero
mean and unit variance, thus the constant term is dropped out from the model.
The ordinary least squares (OLS) estimates of the regression coefficients f; are
obtained by minimizing the mean squared error (MSE).

Usually, the quality of the model (2) can be improved by selecting the input
variables. Firstly, the generalization ability of the model may increase if only
a subset of input variables are used. Secondly, the final model highlights the
most important dependencies better and the underlying model is easier to un-
derstand or interpret. In this work, we use a previously proposed efficient input
selection procedure [8], [9]. The procedure starts by estimating the linear model
using all the available inputs. The sampling distributions of OLS estimates B;
and the standard deviation sy of the training MSEs are estimated using M
times k-fold cross-validation. Mk estimates of each coefficient 3; formulate the
sampling distributions. The median mg, is used as the location parameter for
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the distribution, since it is a reasonable estimate for skewed distributions and
distributions with outliers. The width of the distribution of ﬁz is evaluated us-
ing the difference Ag, = ﬁi}”gh — Bl where Bimgh is Mk(1 — ¢)th and glov is
Mkgth value in the ordered list of the Mk estimates ﬁz [3] and ¢ can be set,
e.g., ¢ = 0.165. With this choice of ¢, the difference Ag, is twice as large as the
standard deviation in the case of the normal distribution. The difference Ag,
describes well the width of both asymmetric and symmetric distributions.

The ratio |mg,|/Ag, is used as a measure of significance of the corresponding
input variable. The input with the smallest ratio is dropped out from the set
of inputs. After that, the cross-validation procedure using the remaining inputs
and pruning is repeated as long as there are variables left in the set of inputs.

In the end, we have [ different models. The purpose is to select a model
which is as sparse as possible, but it still has comparable prediction accuracy.
The final model is the least complex model whose validation error is under the
threshold EI"™ + s where s is the standard deviation of training MSE
of the model having the minimum validation error E™".

Advantages of the used algorithm is the ranking of the inputs according
to their explanatory power and sparseness of the final model. In addition, it
is applicable in the case of large number of inputs, since the computational
complexity is linear O(l) with respect to the number of available inputs I.

3.2 Phase II: Non-linear modeling using LS-SVM

Although the linear models are easy to interpret and fast to calculate they are
not accurate enough in some problems. Our proposal is to use the selected in-
puts also in the non-linear model. Goals of this approach are to avoid the curse
of dimensionality, over-parameterization, and over-fitting in the non-linear mod-
eling phase. In addition, the interpretability of the non-linear model increases,
since only a subset of inputs is included to the model. In this work, we choose
the least squares support vector machines (LS-SVM) as a nonlinear predictor
[7]. In the primal space, the LS-SVM model is defined as

j=w"¢(x)+b, 3)

where ¢(+) is the mapping to the high dimensional feature space. Given a data
set {x;,y; }éV:l, the optimization problem is formulated in the primal space as
follows

min

N
1 72:2

s.t y; =wlo(x;)+b+e;, j=1,...,N,

where « is the regularization parameter. In practice, the problem (4) is solved
in the dual space and the resulting model is

y(x) = Z%K(w,wj) + b, (5)
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where «; are Lagrange multipliers and the kernel trick K (x;, ;) = ¢(x1)" ¢(x;)
is applied. The Gaussian kernels K (z;, z;) = exp(—||z; — z;||*/0?) are used in
this work. In this case we have two tuning parameters, which are selected using
cross-validation. The LS-SVM model is presented in detail, for example, in [7].

From the input selection point of view, the two phase approach is a so called
filter approach [4], since a linear model is used to select a parsimonious set
of inputs and a non-linear predictor is trained on top of them. In the earlier
work [9], we also performed sensitivity analysis on the selected input variables
in order to investigate the importance of variables in non-linear model. Since
the competition setting does not give too much weight on the interpretation, we
omit this aspect from this work.

4 Experiments

In this section, we present our empirical experiments with the competition data
set provided by the symposium organizers. The data set is briefly described in
the Section 4.1, model selection in Section 4.2 and the results are shown in the
section 4.3.

4.1 Prediction competition data set

Time series competitions are a good way to measure out-of-the sample gener-
alization ability of predictors; they have a long history [11] and have become
a relatively popular setting for comparing methods for time series predictions.
In this competition, the domain of origin of the data remains so far completely
unknown to the competitors.

The data set provided by the organizers of the conference is a scalar time
series y¢, t = 1,..., N with N = 875 samples measured in a discrete time grid.
The goal of the competition is two-fold: both the 15 and 50 next predicted val-
ues of the time series will be used to measure the goodness of the prediction
approach. The accuracy of the predictors will be measured by the MSE between
the predicted values and the true values, which are not accessible by the com-
petitors. The goodness measure has then the form with K = 15,50 : MSEx =
% Zk},(:l(yprk,l — 91+ k-1)2. The MSE measures an overall performance averaged
over the whole prediction horizon. The short-term prediction being supposedly
easier and resulting in smaller MSE values.

4.2 Model selection with cross validation

In order to generalize well, the prediction must be accurate not only in the
training set, but also in a data set that is not part of the training. We have left
out the last 50 samples from the original data set, which is used as a test set. This
simulates the competition setup. In order to estimate generalization properties
of the predictors, we have used rest of the data in training and validation. All
the models are trained using normalized (zero mean and unit variance) data,
but all the results, for instance the errors, are shown in the original scale.
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| | | |
23 21 19 17 15 13 11 9 7 5 3 1
number of inputs left in the linear model

Fig. 1: Mlustration of input selection in the prediction of y;4 94, training error
(solid line with circles) and validation error (dashed line with dots) as a function
of the number of inputs in the linear model. The vertical line marks the minimum
validation error and the horizontal dash-dotted line represents the threshold,
which is used in the selection of the final model.

In the input selection, 10-fold cross-validation repeated M = 100 times is
used. This choice produces 1000 estimates for the coefficients (3;, which is con-
sidered to be large enough for reliably estimating the distribution of the pa-
rameters in the linear model. The LS-SVM models using selected inputs are
evaluated using 15 values of the regularization parameter v and 15 values of
the kernel parameter o2, which are logarithmically equally spaced in the ranges
v € [1072,10%] and 02 € [1073,10%]. The optimal values of v and o2 are selected
using 10-fold cross-validation repeated ten times to increase the reliability of the
results.

For the final predictions used in the competition, we used all the available
data to train the models with the parameters producing minimum validation
errors. These models cannot obviously be validated against the available data
set anymore.

4.3 Results

As a result of our approach to predict the time series, we get a parsimonious set
of inputs, which provides insight to the system itself. Since this is of little value
in the competition setting, we concentrate on the prediction results.

The maximum number of inputs is set to be [ = 50, i.e. the available inputs
arey;_;,l =1,...,50 in each of the 50 prediction cases. Figure 1 illustrates how
the training and the validation errors develop as a result of our input selection
procedure in the case of 25-step-ahead (y;124) prediction. It is notable that
the validation error does not increase drastically until almost all the inputs are
dropped out from the model. If the final model had been selected according to
the minimum validation error the number of inputs would have been 7. However,
even more parsimonious model is achieved when the thresholding is used. The
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Fig. 2: The selected inputs in the final models. The outputs y; 4%,k =0,1,...,49
are in the z-axis and the available inputs y;4,1 = —1,—2,..., =50 are in the
y-axis. The selected inputs are denoted by black rectangles in each column.

final number of inputs is 5 and the validation error does not increase significantly.

In Figure 2, we illustrate the selected inputs in our direct prediction tasks
with prediction horizon varying from 1 to 50 (v, - .., Yr+49). The black squares in
each of the vertical columns denote the inclusion of the variable to the prediction
model. The figure shows that each of the direct predictors has a different set of
variables. The first available autoregressive input variable y,_1 is interestingly
included in all the models for predicting y; 1 upto the value of k = 32. Also,
the last autoregressive input ;5 is included in most of the models. The partial
diagonal patterns indicate the inclusion of a variable with the same absolute lag
difference from the value to be predicted. It is noteworthy, that the pattern
of selected input variables is relatively sparse, approximately only 5 inputs are
chosen from the available 50 autoregressive input variables (y;—1,...,%:—50)-
For instance, the selected 5 inputs in 25-step-ahead prediction model (y;424)
are Ys 1, Y4, Yt—12, Yt_o27, and y;_50. The direct predictor will then have the
form gt+24 = f24(yt717 yt74ayt712ayt727ayt750) and the form of the prediction
function fo4 is left to be specified.

In Figure 3, the validation mean squared errors for direct k-step-ahead pre-
dictions Y41,k = 1,...50 are shown. The dashed line with circles indicates the
mean squared errors of the linear predictors using the parsimonious, or sparse
pattern of autoregressive input variables. The solid line with dots indicates the
mean squared errors of the LS-SVM models trained using the same inputs as
the linear models. The non-linear predictors (LS-SVM) show consistently bet-
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Fig. 3: The mean-square error (MSE) calculated for the validation set for dif-
ferent direct predictors y;yx—1,k = 1,...,50. The MSE for the sparse linear
model has been plotted with a dashed line marked with circles, the MSE for the
LS-SVM has been plotted with a dotted solid line.

ter performance over whole prediction horizon in the validation set. The errors
increase when the prediction horizon increases, which is expected behavior.

In Figure 4, the absolute errors of predictions |y;yx—1—G¢t—k+1], &k = 1,...,50
are shown for the linear models (dashed line with circles) and for the LS-SVM
models (solid line with dots) in the test set. The LS-SVM model has smaller
absolute error in 19 cases out of the 50, but it only performs clearly better in the
prediction of 19-22 steps-ahead. On the other hand, the linear model is clearly
more accurate in the prediction of 9-11 and 34-46 steps-ahead.

In order to improve the performance of the LS-SVM models we train a com-
mittee of LS-SVM models for each k-step-ahead prediction. It is known that
combining the models to form a committee can significantly improve the pre-
dictions on new data [1]. For each k-step-ahead prediction case we train a com-
mittee, which consists of 10 LS-SVM models. To get variation for the members
of committees we train them as follows. Firstly, we train each member using a
random subsample of data whose size is 9/10 of the original data. Secondly, the
kernel parameters for the members of committee are linearly equally spaced in
the range 0 € [02,, — 02,,/2,02,; + 02,1/2,], where o, is the optimal value
obtained using cross-validation. The same value of regularization parameter ~y
is used for each member of the committee. Obviously, the agpt and v might
vary in different k-step-ahead prediction models. In the end, the output of the
committee is a mean of the outputs of the members of the committee.

The mean-square test errors MSEx = % Zle(yt+k,1 — k1)L K =
15,50 for the linear models, the LS-SVM models, and committees of LS-SVMs
are presented in Table 1. Although the cross-validation has been done carefully,
the test set (the last 50 points not part of the validation or the training set)
indicates worse performance for the LS-SVM models than for the linear models.
The committees of LS-SVM do not either perform as well as the linear models.
This is clearly a contrary finding with the results from the validation results.
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Fig. 4: The absolute errors of predictions |y¢1x—1 — Jt—k+1],k = 1,...,50 in the
test set. Dashed line with circles and solid line with dots indicate the errors in
the linear and LS-SVM models, respectively.

MSE sparse linear | LS-SVM | LS-SVM committee
15-step-ahead 0.51 0.98 0.90
50-step-ahead 1.18 1.63 1.60

Table 1: The averaged MSEs for linear models, LS-SVM models, and committees
of LS-SVM models for 15- and 50-step-ahead prediction in the test set.

Certainly, Figure 3 indicates the superiority of the LS-SVMs over linear models
in the validation set. At this time, we cannot attribute this phenomenon to
any particular cause. However, we noted that the averaged MSEs are largely
influenced by a small fraction of unsuccessful predictions in the evaluation of
test errors in Table 1. Thus, these results can be considered as a precautionary
example how well-validated methods can perform poorly in a small test set. In
this setup, we have only one sample for each k-step-ahead prediction model in
the test set.

The given predictions that will be our contribution to the prediction compe-
tition are illustrated in the Figure 5. The upper panel indicates the predictions
of the linear predictors with the selected inputs. The lower panel illustrates
the predictions using LS-SVM models using selected inputs (black dashed line)
and committee of LS-SVMs (gray dashed line). The values on left from the
vertical black line are the input values, i.e last 50 values of given time series.
No final conclusions can be drawn about quality of the predictions, since the
actual values are unknown. However, the predictions using linear model are ob-
viously smoother than predictions using non-linear models. Especially, the time
steps from 908 to 920 may be poorly predicted by the non-linear methods. It is
also noteworthy, that there are almost no differences between the predictions of
LS-SVMs and the committees of LS-SVMs.
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Fig. 5: The predicted values for the purpose of the competition. All 50 predicted
values are shown, the predictions are given by the sparse linear model (upper
panel), LS-SVM (lower panel, black dashed line) and a committee of LS-SVM
models (lower panel, gray dashed line).

5 Summary and Conclusions

Parsimonious sets of input variables provide many advantages in time series pre-
diction. For instance, the final model requires less parameters to be trained.
Also the sparsity provides a good basis for interpretation, and highlights the
relevant dependencies in time series. In a time series prediction competition set-
ting, we have selected parsimonious inputs in the spirit of backward selection,
and trained a LS-SVM prediction model based on the selected inputs. As a
final attempt to improve the prediction accuracy, we have trained a set of mod-
els on slightly perturbed parameters around the optimal cross-validated model
parameters and averaged the results. The goal of our approach is to produce
accurate results, and at the same time provide comprehensible views into the
system through the set of parsimonious regressors.
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Abstract. Some stars vary in brightness with respect to time. Plot of the brightness
versus time is called Light Curve. A star named Mira in the constellation Cetus
fluctuates in brightness with a long period, about 11 months. There are several
different methods of time series prediction and analysis which can be applied to
variable stars light curves. We used a neural network named: CNLS (Connectionist
Normalized Local [Linear] Spline) that is an extension of RBF neural network to
predict of Mira light curve future values based on 10,000 AAVSO (American
Association of Variable Stars Observers) data.

Keywords: Mira, Light Curve, Astronomy, CNLS, Neural Network, AAVSO,
RBF, Prediction, Linear Spline

1 Introduction

It is possible for individual stars to vary in brightness all by themselves. Thousands of
such stars are known in astronomy. The periods of the variations can be seconds for some
stars or years for others. Plots of the brightness in magnitude versus time are called Light
Curves [1]. One type of the variable stars named Mira variables after its brightest
member, Mira star (in constellation Cetus). Mira itself may appear sometimes in
magnitude 9, and is thus invisible for naked eye. In this research, we considered Mira star
light curve data as time series which it is found in AAVSO website [2].

Time series modeling by neural networks is known as intelligent modeling [3,
4]. The advantages of intelligent modeling are: robustness, better fitting and simplicity of
use. Among neural networks: MLP, RBF and some of their extensions have been used
widely in modeling researches and applications.

In this paper, we have shown the predictive ability of the CNLS neural network.
The model based on CNLS which has been prototyped is a contribution to observatory
team.

* The work was supported in part by Sciences and Astronomical Center of Tehran (SACT)



2 Theory

In this section it is shown how we are able to model a time series behavior and use
estimated model to prediction tasks.

2.1 Takens Theorem

If we suppose A as time lag and m is an integer value then:

Xoop =S (X0oX 1= 20X 1205+ X 1= (m=1)A) M

Where p is predicted time and f is a smooth function. Takens theorem says: “upper limit
for m to predict of x at t+p is equal to 2d+1 for any desired approximation where d
is fractal dimension of time series attractor” [5]. Then we are sure with satisfied data
of past values we can predict future values of known time series.

2.2 Neural Networks

Neural networks due to their universal approximation property constitute a good solution
for modeling complex functions, and then we may use them to make a map of function f

in (1) [6].
2.2.1 CNLS: Topology

CNLS neural network is considered as RBF extension which is shown in Figure 1 with
one output for prediction tasks.

Fig. 1: CNLS Neural Network Topology with Single Output

Suppose x as input vector, w as weighting vector then u is output and ¢ is kernel
i

function for i-th neuron as:

x —mi )

& (o=exp[-0.5(" "y

Oi
In CNLS, kernel function is similar to RBF.
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2.2.2  CNLS: Learning Rules
Equations (3) show iterated equations to update the Weights (w) and Coefficients (d)

vectors, in brief:
P, (x,) 2, (x,) a)
B Wlp + ﬂ\«'[d(‘xﬁ) - u(x,))]',k;l .

;ﬂu)

» i (Xp_ml')¢l. (x,,)z ¢k (-xp) (3.b)
d!"=d+ g [dx) —u(x )l YN |
zt(xl)_mi) ¢k (xp)J

k=1

p+l

i

here: 1 initial values fi .
Where U JL, < A and random initial values for vectors [3]

Indeed, CNLS differs from the RBF in two ways:

- Kernel function Normalization, and
- Addition of a linear term, due to Taylor expansion about x.

3  Experimental Results

3.1 Preprocessing

In this research, we have analyzed over 10,000 visual measures of Mira made by the
AAVSO during the past 35 years as raw data and then with mean average of adjacent

irregular samples, we have constructed a regular sampled time series.

MIRA LIGHT CURVE WWW. AAVSO. ORG

T T T
E ]
*
b .
- - o
* * —
§ 5
} . 1
.
-
' : : ]
*
-
- . ¥ N
< - - *
t ] * i
E 3 *
10 ! | L
2451500 2452000 2452500 2453000 2453600
Julian Date

Fig. 2: Mira Light Curve for JD2451500 to JD2453500. (The last 2000 days are shown)

Irregularity in astronomy observations is occurred often as it is seen in Figure 2. Julian
Date can be considered a very simple calendar, where its calendar date is just an integer.

This is useful for reference and conversions.
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3.2 CNLS as Predictor

3.2.1  Structures

We used several structures of CNLS to train over regulated samples of Mira light curve
time series for prediction future values ahead with p=1,12,25. CNLS (30-17-1) resulted
the best among 10 different structures which it had 30 inputs and 17 neurons with single
output. Besides, we considered MLP (30-11-7-1) with 2 hidden layers and trained it same
as for CNLS and compared the results.

3.2.2  Predictions

Figure 3 shows the CNLS outputs for p=1, 12, 25. Only 1200 samples (about 3.5 periods)
are shown. CNLS shows its ability for prediction, at least for small p values.

CHMLS Prediction for P=1

T T T T L

—
]

hMagnitude
(]
1

|:| 1 1 1 1 |
0 200 400 &00 800 1000 1200

Samples
CHLS Prediction for P=12

Magnitude

1] 200 400 &00 800 1000 1200
Samples

CHLS Prediction for P=24

Magnitude

1]
1] 200 400 GO0 800 1000 1200
Samples

Fig. 3: CNLS (30-17-1) Predictions for p=1, 12, 25.

3.3 CNLS vs. MLP

In Figure 4, it is shown the learning curves for CNLS and MLP in our experiment when
p=1. All results are compared after 10000 epochs. In this figure LSN is considered as:

LSN(dB) =1010g, [MSE /(X = %,,)"] “)

We can say CNLS is a fast learner vs. MLP and it gives us a reasonable result
after few epochs. Instead, MLP may achieve the better result if learning continues.
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Fig. 4: Learning Curves for CNLS and MLP (p=1).

In Table 1 it is shown the final (after 10000 epochs) results for both CNLS and MLP.
Error in predicted magnitude is about 0.2 for -33dB.

P CNLS(30-17-1) MLP(30-11-7-1)
1 -33 27
12 25 24
25 17 20

Table 1: CNLS and MLP Final Results (LSN Values) for p=1, 12, 25.

4  Conclusions

In this paper, CNLS neural network used for prediction of Mira light curve time series
and all results for 3 different predicted values compared with MLP ones. CNLS was a
very fast learner in adding, it used few computational resources. MLP needed to huge
resources for learning and its results had no promising advantages except for long-term
prediction. CNLS short-term prediction of Mira light curve was excellent.

Using new features [7] to train CNLS, new methods [7, 8] for this research and
also comparison with other methods is our current study.
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Abstract. In this paper, a method based on spectral analysis and
neurofuzzy modeling is proposed that is capable of issuing very accurate
long term prediction of natural chaotic phenomena. A locally linear
neurofuzzy model is optimized for each of the principal components
obtained from singular spectrum analysis, and the multi step predicted
values are recombined to make the natural chaotic phenomena. As real
world case studies, the method has been applied to the long-term
prediction of Darwin sea level pressure and sunspot number time series.
Results depict the power of the proposed method in long-term prediction
of chaotic time series.

Keywords. Long-term prediction, chaotic time series, singular spectrum analysis,
locally linear neurofuzzy model.

1 Introduction

The neural and neurofuzzy models, as general function approximators [1, 2], have
performed well in the prediction of nonlinear and chaotic time series [3, 4]; but when
the number of observations for training is limited; they can neither reconstruct the
dynamics nor can learn the shape of attractor. They may present the most accurate one
step ahead predictions, but in larger prediction horizon their performance dramatically
falls down.

In this paper a decomposition method based on singular spectrum analysis is
used to make an intuitive nonlinear black box modeling technique applicable to long
term prediction of natural time series. Singular Spectrum Analysis (SSA) is originally
designed to extract information from short noisy chaotic time series, to provide an
insight to the unknown dynamics and to enhance the signal to noise ratio [5, 6]. In
addition, SSA performs a data adaptive filtering in the lag coordinate space of data
and yields the principal components of time series which have narrow band frequency



spectra and obvious temporal patterns. The principal components include linear or
nonlinear trends, periodic and quasi periodic patterns and some lower amplitude
signals which can be considered as colored noise. Most of the narrow band periodic
components can be estimated via simple and optimal linear models, while there are
always some more complex patterns which present nonlinear characteristics. Thus in
reconstructing the original time series from the principal components, one should use
both linear and nonlinear techniques and also the linearity tests.

The locally linear neurofuzzy models [1] have a key advantage in this situation;
with an incremental tree based learning algorithm the model starts as an optimal linear
least squares estimation, and the nonlinear neurons are added if they result in an
enhancement in performance. Thus the learning algorithm eliminates the need for
linearity tests, and automatically constructs the model to achieve the highest
generalization. The locally linear neurofuzzy model can be used as a general
framework to predict the main patterns of the time series. The components obtained
from SSA, most of which have linear or simple nonlinear behaviors, are long term
predictable, and long term prediction of the original time series is accessible via the
fourth stage of SSA by recombining the extrapolated components.

The paper consists of six sections. The mathematical description of SSA is
presented in section 2. Section 3 presents the main aspects of the locally linear
neurofuzzy model. Section 4 is devoted to describe the learning method used for
locally linear neurofuzzy models to predict chaotic time series. Prediction of three
well known nonlinear case studies has been considered in section 5. Long-term
prediction of the selected time series is very difficult due to their chaotic
characteristics and positive Lyapunov exponents. Darwin sea level pressure time
series and sunspot number have been considered as difficult real world case studies in
this section, where long term prediction of the 22" and 23" solar cycles has been
presented and compared to the predictions made by physical precursor and solar
dynamo techniques. The last section contains the concluding remarks.

2 Spectral analysis

SSA is defined as a new tool to extract information from short and noisy chaotic time
series [6]. It relies on the Karhunen-Loeve decomposition of an estimate of
covariance matrix based on M lagged copies of the time series. Thus as the first step,

the embedding procedure is applied to construct a sequence {X(t)} of M-
dimensional vectors from time series {X (¢):t =1,...,N }
X(t)=(X(t), X (t+1),.... X (t+M ~1)),
t=1,..N. N =N-M+1

The N'xM trajectory matrix (D) of the time series has the M dimensional

(1

s

vectors as its columns, and is obviously a Hankel matrix (the elements on the
diagonals i+j=const are equal). In the second step, the M x M covariance matrix

C, is calculated as
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1
C,=—D'D (2)
ST
and its eigenelements can be determined by Singular Value Decomposition (SVD)
c =Uuzv' ; U'U=I,V'V=I 3)
The elements of diagonal matrix X = [diag(c,,...,G,,)] are the singular values
of D and are equal to square roots of the eigenvalues of C . The eigenelements

{(kk,pk ):k = 1,...,M} of C, are obtained from
C.p, =1,p, “)

Each eigenvalue, ., estimates the partial variance in the direction of p, , and

the sum of all eigenvalues equals the total variance of the original time series. In the
third step, the time series is projected onto each eigenvector, and yields the
corresponding principal components

AO=XX(t+j-1p, () ®

Each of the principal components, being a nonlinear or linear trend or a periodic
or quasi-periodic pattern, has narrow band frequency spectra and well defined
characteristics to be estimated. As the fourth step, the time series is reconstructed by
combining the associated principal components

R, (t)=LZUZAk (t-j+1)p, (4) (6)

 keK j=L,
The normalization factor (M, ), and the lower (L ) and upper (U, ) bounds of

reconstruction procedure differ for the center and edges of the time series, and are
defined by the following formula

[(1
I\ =Lt . 1<t<M-1
t

—.LM |, M<t<N
[\ M

(1
{( ,t—N+M,MJ, N'+1<t<N
N -t+1

To enhance signal to noise ratio, one can use the singular spectrum plot (the
logarithmic scale plot of singular values of covariance matrix in decreasing order).
The principal components related to lower singular values can be omitted in
reconstruction stage to obtain adaptive noise cancellation. If all the components are
used in reconstructing the time series, no information is lost.

(M,.L,U,)=

3 Neuro-fuzzy modeling
The fundamental approach with locally linear neuro-fuzzy (LLNF) model is dividing

the input space into small linear subspaces with fuzzy validity functions. Any
produced linear part with its validity function can be described as a fuzzy neuron.
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Thus the total model is a neuro-fuzzy network with one hidden layer, and a linear
neuron in the output layer which simply calculates the weighted sum of the outputs of
locally linear models (LLMs).

5’,-:(9;0+wi,”1+wi2“:+~-+m;pup (®)

M
y= Z 3’1¢1(g) ©)
i=1
where u = [ uu, - u, ]T is the model input, M is the number of LLM neurons, and

o, denotes the LLM parameters of the ith neuron. The structure of LLNF is shown in
Fig. 1.

Fig. 1: Structure of locally linear neuro-fuzzy model

The validity functions are chosen as normalized Gaussians; normalization is
necessary for a proper interpretation of validity functions.

¢,-@)= H;(E) (10)

M=
R
=

u—c,) (up 7cip)2
1 (m=c.) WJz "

yi(g):exp(— 2 ot 2
l\ ZK (op o, J

Each Gaussian validity function has two sets of parameters, centers (C,.J- s) and

standard deviations (O i s) which are the M.p parameters of the nonlinear hidden

layer. Optimization or learning methods are used to adjust both the parameters of
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local linear models (a) s) and the parameters of validity functions ( Cjjs and O ; ij s).

Global optimization of linear parameters is simply obtained by Least squares
technique. The complete parameter vector contains M( p+ 1) elements:

Qz[a)lo O . O, Oy Oy e @y e a)MpJ (12)

and the associated regression matrix X for N measured data samples is

x=[x, X, .. X,] (13)
| 6,(u(®)  u (), (ull) e (16,(() |
| ) uCRGED . H) 19
(66N (BN (V)
Thus
y=Xo ; o=(x"x)"X"y (15)

The remarkable properties of locally linear neuro-fuzzy model, its transparency
and intuitive construction, lead to the use of least squares technique for rule
antecedent parameters and incremental learning procedures for rule consequent
parameters, the advantages of which are considered in the next section.

4 Learning methodologies

The most important property of locally linear neuro-fuzzy model is that one can use
some intuitive algorithms in training. The model starts as an optimal least squares
estimation, and the new local linear models are created to reduce the prediction error.
In each iteration the worst performing locally linear neuron is determined to be
divided. All the possible divisions in the p dimensional input space are checked and
the best is performed. The splitting ratio can be simply adjusted as %, which means
that the locally linear neuron is divided into two equal halves on the selected input

dimension. Based on such a division the centers (¢;) and standard deviations (o ; )

of the new neurons are computed and the fuzzy validity functions for the new
structure are updated according to the equations 3 and 4. The center of validity
functions are the centers of the new hyper-cubes, and the standard deviations are
usually set as 0.7. The algorithm is as follows:

1. The initial model: start with a single locally linear neuron, which is a
globally optimal linear least squares estimation over the whole input space
with @ (u)=1,and M =1.

2. Find the worst neuron: Calculate a local loss function e.g. MSE for each of
the 1 =1,...,M locally linear neurons, and find the worst performing
neuron.

3. Check all divisions: The worst neuron is considered for further refinement.
The validation hypercube of this neuron is divided into two halves with an
axis orthogonal split. Divisions in all dimensions are tried, and for each of
the p divisions the following steps are carried out:
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a. Construction of the multi-dimensional validity functions for both
generated hyper cubes.

b. Local estimation of the rule consequent parameters for both newly
generated neurons.

c. Calculation of the total loss function or error index for the current
overall model.

4. Validate the best division: The best of the p alternatives in step 3 is
selected. If it results in reduction of loss functions or error indices on
training and validation data sets, the related validity functions and neurons
are updated, the number of neurons is incremented M= M+ 1, and the
algorithm continues from step 2, otherwise the learning algorithm is
terminated.

This automatic learning algorithm provides the best linear or nonlinear model
with maximum generalization, and performs well in prediction applications. The error
index used in the experiments of this study is Normalized Mean Square Error
(NMSE), which is defined as

fﬁ(yw‘ﬂ (16)

NMSE L =l

;(y—f)z

where y, ¥, and y are observed data, predicted data and average of observed data

respectively. This algorithm can be implemented to yield a locally linear neurofuzzy
model for each component of a chaotic time series which is given by SSA and
nonlinear trend of such time series could be modeled by combining the output of each
neurofuzzy model.

5 Case studies

5.1 Long-term prediction of Darwin sea level pressure time series

Among the most commonly used and analyzed sets of climate time series are the El
niflo indices such as the Southern Oscillation Index (SOI) [7, 8]. In this case study,
long-term prediction of Darwin Sea Level Pressure (DSLP) as one of the SOI indexes
is considered. The DSLP consists of 1400 data (from 1890 to present). 800 data is
used for training and the next 600 samples are used to test the long-term prediction.

Fig. 2 shows the singular spectrum of DSLP time series. The window length is
30 and the first 8 components, related to the first 8 singular values, are chosen to
reconstruct the time series. The incremental learning algorithm constructs the locally
linear model automatically and the embedding dimension of each component is
defined by an autocorrelation analysis. A locally linear model is trained for each of
the components and is then used in long term prediction by reconstructing the long
term trend of the time series via long term prediction of each component which have
long term predictable trends. The result of 15 steps ahead predicting of the Darwin sea
level pressure index using LLNF with SSA approach is presented in Fig. 3.
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Fig. 2: Singular spectrum of Darwin Sea Level Pressure time series by SSA algorithm
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Fig. 3: Fifteen step ahead prediction of DSLP time series by the proposed method;
(Upper) solid: the real time series values, dashed line: prediction via proposed
method; (Lower) Fifteen step ahead prediction error

5.2 Long-term prediction of solar activity

The level of sun’s activity, defined by the occurrence of solar flares, coronal mass
ejections, and sunspots, has quasi periodic variations with a period of about eleven
years. Each eleven-year solar cycle starts with a period of quiescence called solar
minimum, and gradually turns into a period of activity called solar maximum. A good
measure of activity level is sunspot number, which has been saved since the early 18"
century. Long term prediction of solar activity is of great importance due to its harm
to satellites and space missions. The numerical prediction techniques including the
most powerful neural and neurofuzzy models with appropriate learning
methodologies [9, 10, and 11], however can perform the most accurate one year ahead
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predictions, cannot be used in long term predictions. As a result of this fact, the
physical precursor and solar dynamo methods are preferred for long term solar
activity forecasting [12, 13, and 14].

The solar cycle is an excellent case study for the method proposed in this article.
In this case study, the first 12 components, related to the first 12 singular values, are
chosen to reconstruct the time series. These components are shown in Fig. 4 and the
others, with maximum amplitude of 3, are eliminated to enhance the signal to noise
ratio. A locally linear model is trained for each of the components and is then used in
long term prediction. This method is used in predicting the current solar cycle (cycle
23). The observations to 1995 are used for training, and the multi step predicted
values are shown in Fig. 5. The predicted value is 132 which is very close to the
actual value (120). Table 1 presents a comparison between this method and the
predictions made by physical precursor and solar dynamo techniques. Using all the
available data of sunspot number time series results in an early prediction of the peak
of next solar cycle; the maximum international smoothed sunspot number is predicted
to be near 145 in late 2011.

80 50 50
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o o
40
20 A0 A0
0 100 200 300 a 100 200 300 a 100 200 300
20 20 20
0 W 0 0 WMMWWWMVW
-20 =20 =20
o 100 200 300 n} 100 200 300 n} 100 200 300
10 10 10
10 -10 -10
o 100 200 300 n} 100 200 300 n} 100 200 300
10 a a
-0 & 5
o 100 200 300 n} 100 200 300 n} 100 200 300

Fig. 4: The first twelve principal components of sunspot number time series by SSA
algorithm; left to right then top to bottom: PC1 to PC12.

Time of prediction Predicted value for the

maximum

Precursor 1996 160 + 30

Solar Dynamo 1993 170 £25

Solar Dynamo 1995 138 £30

Solar Dynamo 1998 143 £30

The proposed method 1995 132

The actual value | - 120

Table 1: Several methods in long term prediction of solar cycle 23 via the smoothed
peak of sunspot number time series (the observed value is 120 in 2000)
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Fig. 5: Long term prediction of solar cycle 23 by the proposed method; (A) dotted: the
observed values, solid line from 1920 to 1996: the reconstructed and one step ahead
predicted values, and thick line from 1996 to 2003: long term predicted values; (B)
one step ahead prediction error

6 Discussion

Long term prediction of natural phenomena with limited number of observations is
usually difficult. In this research a combination of singular spectrum analysis and
locally linear neurofuzzy modeling is proposed to improve the capability of automatic
black box modeling techniques for long term prediction. The principal components of
natural time series, obtained from SSA, have narrow band frequency spectra and
definite linear or nonlinear trends and periodic patterns. The main patterns of these
components are long term predictable and the incremental learning algorithm for the
locally linear neurofuzzy model, constructs the best linear or nonlinear model with
highest generalization for each of the components. The original time series and its
long term prediction are obtained by recombining the multi step predicted
components. The proposed method has been primarily tested on two difficult case
studies from chaotic systems, and has been successfully used in solar activity
forecasting. The accuracy of predictions has been initially validated via the
neurofuzzy modeling of components, and the reconstructed results for solar cycles 22
and 23 are compared to the well-known physical precursor and solar dynamo
techniques and show the usefulness of the proposed method.
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Abstract. Several methods have been introduced for modeling and system
identification of different types of processes. Unfortunately, most of these
methods have a training phase which should be done offline. This paper
develops LoLiMoT learning algorithm as one of the most useful learning
methods for system identification of nonlinear systems to an on-line
learning algorithm which is called O-LoLiMoT. This method obviates
some of the LoLiMoT restrictions in tuning premise parameters of the
locally linear models via some clustering approaches. Two case studies are
considered. Results depict the power of the proposed method in on-line
system identification of nonlinear time-variant dynamic systems.

Keywords. Nonlinear systems, on-line learning, neuro-fuzzy models, clustering,
O-LoLiMoT.

1 Introduction

System identification aims at finding a mathematical model from the measurement
record of inputs and outputs of a system. To do so, in most proposed methods a
collection of input output data is used offline to tune the parameters of the model
according to a performance index or a cost function. It is obvious that this produced
model is a time invariant model. But when one looks around, there are lots of
phenomena which possess time variant behavior which is often caused by aging or
wearing of components. Also, in some applications, may the model structure used for
modeling a process be too simple in order to be capable of describing that kind of
process in all relevant operating regimes with the desired accuracy. Therefore to
identify a system, why the parameters of a model should be tuned offline? Although
there are lots of methods which tune the parameters of a linear systems on-line [1],
[2], and [3] there are few methods for on-line nonlinear system identification and
developing ordinary learning algorithms for nonlinear system identification to on-line
applications should be a great development [4], [5], [6], and [7].

On the other hand, Locally Linear Neuro-Fuzzy (LLNF) models are particularly
well suited for on-line learning since they are capable of solving the so-called
stability/plasticity dilemma [8]. One of the most popular learning algorithms for
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LLNF models is Locally Linear Model Tree (LoLiMoT) algorithm [3] which is an
incremental learning algorithm in adjusting the premise and consequence parameters
of such models. LLNF models with this incremental learning algorithm were
implemented to model several complex systems and the performance of this approach
was great in describing complex phenomena [9], [10], [11], and [12]. Unfortunately,
this algorithm should be done offline and has some restrictions in its structure. First of
all, as it said before this algorithm is a growing and a one way learning algorithm and
it is not possible to return to some former state during learning phase. Also, in this
algorithm the region which should be divided to two sub-regions, is always divided in
to two equal halves. In addition, it has to be said that using LoLiMoT algorithm for
on-line learning is difficult to utilize directly since its computational demand grows
linearly with the number of training data samples [13], [14].

This paper develops the ordinary LoLiMoT algorithm by proposing a novel
learning method for on-line system identification of nonlinear time variant systems.
This method is called On-line Locally Linear Model Tree (O-LoLiMoT) algorithm.
To obviate the restrictions of the ordinary LoLiMoT algorithm in tuning the premise
parameters of LLNF models, this algorithm uses k-means clustering algorithm to tune
the parameters of premise parts. To show the performance of this novel learning
algorithm for on-line applications, several case studies are considered. Results depict
the great performance of this on-line learning algorithm in describing such complex
systems.

The remaining of this paper is structured as follows. Section 2 briefly illustrates
the main aspects of locally linear neuro-fuzzy models. Section 3 is devoted to
describe the on-line learning methodology which is used for locally linear neuro-
fuzzy models to model nonlinear time variant system. Section 4 is devoted to show
the performance of the proposed learning algorithm in modeling some nonlinear
systems. The last section contains the concluding remarks.

2 Neuro-fuzzy modeling

The fundamental approach with locally linear neuro-fuzzy (LLNF) model is dividing
the input space into small linear subspaces with fuzzy validity functions. Any
produced linear part with its validity function can be described as a fuzzy neuron.
Thus the total model is a neuro-fuzzy network with one hidden layer, and a linear
neuron in the output layer which simply calculates the weighted sum of the outputs of
locally linear models (LLMs).
j/,:a)l.o+a)ilul+a)izu2+...+a)ipup (1
M
y= Z Y9, (Q) @)
i=1
where gy = L wu, --u, JT is the model input, M is the number of LLM neurons,
and o, denotes the LLM parameters of the ith neuron. The validity functions are

chosen as normalized Gaussians; normalization is necessary for a proper
interpretation of validity functions.
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40)= u,(u) 3)

Each Gaussian validity function has two sets of parameters, centers (cjj s) and

standard deviations (O i ) which are the M x p parameters of the nonlinear hidden
layer. Optimization or learning methods are used to adjust both the parameters of
local linear models (coij) and the parameters of validity functions (Cij and 51)‘ ).
Global optimization of linear parameters is simply obtained by Least squares
technique. The complete parameter vector contains M x ( p+ 1) elements:

5 5
a):Lwlo O, .. O, O, O @y e a)MpJ %)

Ip
and the associated regression matrix X for N measured data samples is

X=[X, X, .. X,] (6)

o) nME0) e w06 ()

| I
x| #EO) @) @b | o
I ' ' |
16,(u(N)) u,(N)g, (u(N)) u, (N)g, (u(N))]
Thus
y=Xé ; &=(X"X)'XTy )

3 On-Line learning method for LLNF models

This section is devoted to describe the novel on-line learning method for locally linear
models based on LoLiMoT learning algorithm and k-means clustering algorithm to
identify time variant nonlinear systems. In this algorithm, it is tried to obviate some of
the restrictions of the LoLiMoT algorithm.

The LoLiMoT algorithm belongs to the class of growing strategies because it
incorporates an additional rule in each iteration of the algorithm. During the training
procedure some of the formerly made divisions may become suboptimal or even
superfluous. However LoLiMoT does not allow one to undo these divisions. In this
paper with a pruning strategy which is able to merge formerly locally linear models, it

115



is tried to remedy this drawback. In addition, in this algorithm splitting is always done
in a way that the sub-regions be equal halves. This paper uses the k-means clustering
algorithm in the proposed algorithm to obviate this restriction. K-means clustering
minimizes the following loss function:

C N
1 =22#ﬁ

u(i)—cj
j=i=1

where the index 7 runs over all elements of the sets S;, C is the number of clusters,

2
— min Q)

¢, are the cluster centers (prototypes) and L =1 if the sample u ( i) is associated

(belongs) to cluster j and =0. The sets S; contain all indices of those data

samples (out of all N) that belong to the cluster j, i.e., which are nearest to the cluster
center C; . The cluster centers c; are the parameters that the clustering technique

varies in order to minimize (9). The k-means algorithm used for tuning premise
parameters (validity functions) of LLNF models in the proposed method is modified
to be useful for on-line applications. This clustering method works as follows:

» Assigning current data sample to a proper cluster (locally linear model): in
proposed method, the number of clusters or locally linear models is not
known a priori and according to the current data sample it is decided to label
a new cluster to the current data sample or assign it to a proper existing
cluster via some distance criteria. To do so, the minimum distance between
the current data sample and the clusters’ prototype are calculated. If this
value is more than a threshold value, a new cluster with a prototype as
current data sample is created and if it is not, current data sample is assigned
to the cluster with nearest cluster prototype.

»  Tuning the center of validity functions: If current data sample is assigned to a
cluster, the centroid (mean) as the prototype of that cluster should be
modified. The cluster prototype is modified as

S uli)
1€
¢, :7’N | (10)

J

where u (i ) is the current data sample, and N i is the number of those data

samples that belong to cluster j, and ¢ i is the cluster’s prototype. The

modification rule has a recursive form to be useful for on-line applications.
» Tuning the covariance matrix of the validity functions: in this paper, the
validity functions are set to be Gaussian. Therefore, the covariance matrixes
of these validity functions should be tuned either. To do so, after tuning the
clusters’ prototype the covariance matrix of each validity functions is set as
follows:
. .
z jzgxdmg mm(cj,ci) an

i#j
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where Z,. is the covariance matrix of validity function j (cluster j), and
c; is the cluster prototype of the cluster j, and ¢, is the cluster prototype for

other clusters.

» Checking for merging: this part is considered to remedy the other restriction
of the LoLiMoT algorithm in tuning the premise parameters. After tuning the
parameters of the cluster’s prototype (mean of Gaussians validity functions)
and covariance matrixes, it is checked that if some clusters are close enough
to consider as a unique cluster. This could be done by calculating the
distance between cluster’s prototypes. Again, if the distances between some
clusters are smaller than a merging threshold, these clusters is merged to a
single cluster and the prototype for this new cluster could be calculated as

follows:

ZN,-C,-

i=

¢, =—————, p:number of current clusters

SN, (12

p
N, = Z N,
The covariance matrix of this validity function (cluster) could be
tuned according to 3.

» Local estimation of the rule consequent for newly generated clusters: For an
on-line adaptation of the rule consequent parameters the local estimation
approach is chosen. Therefore the numerical robustness becomes a critical
issue since the number of parameters in global estimation can be very large
[3]- To do so, the Weighted Least Square (WLS) algorithm is used for local
estimation of the rule consequent parameters for newly generated clusters.

Fig. 3 shows the proposed on-line algorithm “On-line Locally Linear Model
Tree algorithm (O-LoLiMoT)” which is used for system identification of some time
variant nonlinear dynamic systems in next section.

4 Case studies

4.1 Mackey-Glass time series prediction

The Mackey-Glass system has been introduced as a model of white blood cell
production [15]. This time series is produced by a time-delay difference system of
the form:

dx(t) :Bx(t)+ axl(ot T)
dt 1+x (t - r)
where x(f) is the value of the time series at time t. This system is chaotic for
7 >16.8. In this paper, the Mackey-Glass time series is constructed with parameter
values @ =0.2, B=-0.1, =30 and x,=1.5. Parameter 7 is changed two times

(13)
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during this simulation: in sample 300, the parameter 7 is changed to 50 and in sample
800 this parameter is changed to 17. The threshold parameter for splitting in O-
LoLiMoT algorithm is set to 0.5 in this case study and the threshold parameter for
merging is set to 0.3. Fig. 2 shows the performance of the O-LoLiMoT algorithm in
one step ahead prediction of Mackey-Glass chaotic time series. It can be seen that in

the beginning, the performance of the model is poor, but after a short time, the

Initialize
(set the parameters
randomly)

(Relaxation Condition):
Is the system in relax mode?

No

h 4

Read New Data
Sample: X

Update the Premise (Splitting Condition)
parameters Min (X, Clusters) > Splitting threshold

Yes

Create a new cluster
with prototype = X

(merging Condition)
Min (X, Clusters) < merging threshold

Merge neighbor
clusters

Update the Premise
parameters

o

v

Update the Consequent Parameters
via a Locally Weighted Least Square
Algorithm

Fig. 1: The O-LoLiMoT algorithm structure for system identification of nonlinear
systems.

performance of the model increases rapidly. In addition, it is obvious that during
samples 300 and 800, the performance of the model gets a little poor, but after a short
time, model learns the new dynamic as well.

Fig. 3 shows the number of clusters (locally linear models) during O-LoLiMoT
algorithm’s operation. Table 1 presents the results obtained from O-LoLiMoT, MLP
and RBF (which are trained on-line). In contrast, LoLiMoT shows noticeably better
predictions. It can be easily seen that the result of the LLNF is superior in comparison
to the results of the prediction by other methods.
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online modeling a LLNF with RLOLIMOT for one step ahead prediction of chaotic dynamic systerm (Macky-Glass)

z T T T T T
[ - i mackey-Glass Time Series T
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Error in one step ahead prediction a LLNF with RLOLIMOT
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Fig. 2: One step ahead prediction of Mackey-Glass time series by the proposed
method; (upper) solid: the real time series values, dashed line: prediction via O-
LoLiMoT algorithm; (lower) one step ahead prediction error

number of chusters during the aperatian of FLOLIMOT algarithm
T T T T T

number of clusters
i

i i i i i i i i i i i
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sample data

Fig. 3: Number of clusters (locally linear models) during O-LoLiMoT algorithm’s
operation for one step ahead prediction of Mackey-Glass time series.
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Model MLP RBF LLNF
Learning Algorithm BP RLS O-LoLiMoT
Number of neurons 14 20 Often 4

MSE (best fit) 0.0016 0.00102 0.000961

Table 1: Comparison of several methods in predicting time variant Mackey-Glass
chaotic time series on-line

4.2 System identification of heat exchanger dynamics as a nonlinear
time variant system

This section is devoted to check the performance of the proposed on-line learning
method in modeling a heat exchanger dynamics as a nonlinear time variant dynamics.
The data set of this dynamics is available on-line [16].

The threshold parameter for splitting in O-LoLiMoT algorithm is set to 1.5 in
this case study and the threshold parameter for merging is set to 1. Fig. 4 shows the
performance of the O-LoLiMoT algorithm in modeling heat exchanger nonlinear
dynamics. It can be seen that in the beginning of the O-LoLiMoT algorithm’s
operation, the performance of the model is poor, but after a short time, the
performance of the model increases rapidly. Fig. 5 shows the number of clusters
during O-LoLiMoT algorithm’s operation. Table 2 presents the results obtained from
O-LoLiMoT, MLP and RBF for system identification of this nonlinear dynamic
system.

orline modeling a LLNF with RLOLMOT for heat exchanger nonlinear time variant systems

2

LLMF output

output data vs.

heat exchanger output
=== LLNF Output

i I I
10 20 00 100 500 500 0 500 o0 1000
input data

Error in online modeling a LLNF with RLOLIMOT

1 | 1 1 1 1
100 200 300 400 500 00 700 800 900 1000
input data

Fig. 4: modeling the heat exchanger nonlinear time variant dynamics by the proposed

method; (upper) solid: the heat exchanger output values, dashed line: prediction via
O-LoLiMoT algorithm; (lower) modeling error
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Fig. 5: Number of clusters (locally linear models) during O-LoLiMoT algorithm’s
operation for modeling heat exchanger nonlinear time variant dynamics.

Model MLP RBF LLNF
Learning Algorithm BP RLS O-LoLiMoT
Number of neurons 21 45 Between 3 and 4

MSE (best fit) 0.048 0.018 0.0031

Table 2: Comparison of several methods in modeling heat exchanger nonlinear time
variant dynamics.

5 Conclusions

In this paper, the problem of on-line system identification of nonlinear time variant
systems is considered. It has to be said that the literature on-line identification methods
of nonlinear system is not as rich as the literature on offline identification methods.
Basically, our motivation was the possibility of using LoLiMoT algorithm as an
incremental learning algorithm to use its useful characteristics for tuning the parameters
of LLNF models. The difficulty was the offline structure of this learning algorithm. So
we had to develop this algorithm to on-line applications. To do so, this paper proposes
a new learning method called O-LoLiMoT algorithm as an incremental learning
algorithm to tune the parameters of LLNF models with the aid of k-means clustering
algorithm. In this algorithm some restrictions of LoLiMoT algorithm are obviated. The
great performance of LLNF models with O-LoLiMoT learning algorithm in predicting
nonlinear time variant dynamics such as Mackey-Glass chaotic time series and
modelling heat exchanger system as a nonlinear time variant dynamics depict the
potential of proposed learning method in this subject.
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Combining predictions of a time-series and the
first-order difference using bagging of
competitive associative nets

Shuichi Kurogi, Shinya Tanaka, and Ryohei Koyama

Department Control Engineering, Kyushu Institute of Technology, Japan

Abstract. This article describes the method which we have used for the
prediction competition held at the first ESTSP (European Symposium
on Time Series Prediction). In order to obtain small MSE (mean square
error) for both 15 and 50 multi-step predictions, we have employed the
predictions of the original and the first-order-difference time-series, and
combined them. For a good generalization performance on the prediction,
we have used the bagging method and competitive associative nets as the
base learning predictors.

1 Introduction

The time-series provided for the prediction competition held at the first ESTSP
(European Symposium on Time Series Prediction) consists of 875 data points,
and the unknown values of the succeeding 50 data points have to be predicted.
The performance of the prediction is evaluated by means of M SFE; and MSFE,
which, respectively, are the MSE (mean square error) obtained for 15 and 50
multi-step predictions next to the provided time-series. In order to reduce both
MSFE, and M SFE,, we make multi-step predictions of the original and the first-
order-difference time-series, and combine them.

On the other hand, we use a bagging scheme of the competitive associative
net called CAN2 for a good generalization performance in the prediction. Here,
the bagging [1, 2] is a method for improving a single predictor, and the CAN2 is a
neural net for learning an efficient piecewise linear approximation of a nonlinear
function (see [3, 4, 5] for details).

2 Method for the Prediction Competition

Here, we describe our method for the prediction competition after formalizing the
prediction problem as follows. Namely, at the competition, the time-series of real
values, y(t) (€ R), is given for ¢ in T9v¢™ £ {1,2,--- 197"} where t9'U¢" = 875,
A prediction 7(t) of y(t) is evaluated by means of MSE; & MSE(t97" t,) and
MSEy & MSE(t97" t5), where t; = 15 and t, = 50, and

tp

. (y(te +1) — Gt +1))%, (1)

1

MSE(tp,t,) £
tp

where ¢, represents a point in time for a predictor to learn y(t) for t < ¢, and
t, represents the prediction horizon.
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2.1 Predictions of a time-series and the first-order difference and
their combination

Firstly, we suppose that the time-series y(t) (t = 1,2, -- - ) satisfies
y(t) = f(z(t) + €), (2)

where f(x(t)) is a nonlinear function of x(t) = (y(t—1),y(t—2),-+ ,y(t—kz))T,
k. is the embedding dimension, and €(t) represents noise. At the competition, we
use the bagging of the CAN2 (see below for details) as a learning predictor. The
predictor, at first, is used for learning the original time-series y(t) (t € T9ive")
to make the multi-step prediction as

Yo(t) = f(=(t),0r), ®3)

where 0 represents the parameter values of the predictor, and the elements of
the vector Z(t) £ (z(t —1),z(t — 2),--- ,2(t — k,))" are given by

o oa [ y(t) forteTotven
1) = { At) fort e Tpred, )

Here, Té’”d S {t, +1,t, +2,--- ,t; +t,} and t, = 50 for the final prediction.

In order to estimate MSE, = MSE(t9%" t,) for p = 1 and 2, it seems
effective to calculate the validation performance given by M SE(tr,t,) for several
tr, < t9wen — ¢, such as t;, = 825,800,725, --. From several experiments, we
found that a good parameter 6; for MSFE; is not good for MSE;. Moreover,
the following first-order-difference prediction is found to be effective for reducing
MSE;. Namely, we make the first-order-difference time-series yq(t) = y(t) —

y(t — 1), and use a learning predictor to learn yy(t) for ¢t = 2,--- ¢, and get
the prediction yq(t) = g(zq(t),0y) for t =ty +i (i = 1,2, ,t; = 15), where
zq(t) 2 (Ta(t —1),74(t — 2),--- ,zaq(t — ks,))" whose elements are generated

by means of replacing z(t) and y(t) in Eq.(4) by z4(t) and yq(t), respectively.
Here, k,, represents the embedding dimension, g(z4(t),0,) a nonlinear function
of x4(t), and 0, represents the parameter values of the predictor. Then, the
prediction of y(t) for t = ¢, + 1,t; +2,--- is given by

t

Ti(t) Eylt) + > Gald). ()

j=tr+1
Finally, we make the prediction (t) via combining 7o(t) and 71 (¢) as
U1(t)+ Wo(tr +t1) = (tp +t1)) (t —tr) /ta for tp, <t <tp+ty,

y(t) £
Yo(t) for t > tr, +t1.

(6)
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Fig. 1: Schematic diagram of the CAN2

2.2 CAN2 and the bagging for making predictions
2.2.1 Assumptions on the given dataset

Let D™ £ {(x;,y;)|i € I"} be a given training dataset, where I™ £ {1,2,--- ,n}
denotes the index set of the dataset, and x; 2 (241,40, - ,24) " and y; denote
an input vector and the target scalar value, respectively. Note that x; and y;,
respectively, correspond to x(t) and y(t), or x4(t) and y4(t), introduced in the
previous section. Here, we suppose the relationship given by

A
yi =rit+e = f(x)+ e, (7
A . . . .
where r; £ f(x;) is a nonlinear function of x;, and €; represents zero-mean noise
with the variance o?.

2.2.2 CAN2

A CAN2 has N units (see Fig. 1). The jth unit has a weight vector w;
(wj1,+++ ,wi)T € R¥*! and an associative matrix (or a row vector) M
(Mo, Mj1, -+, Mj;,) € R¥>EFD for j € [N £ {1,2,... N}. The CAN2 ap-

(1> 11>
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proximates the above function f(x;) by
Ui & f(@) £ Gy & Moy T, (8)
where #; £ (1,2])T € R*+TUX1 denotes the (extended) input vector to the
CAN2, and y.(;y = M ;@ is the output value of the c(i)th unit of the CAN2.
The index c(i) indicates the unit who has the weight vector w.; closest to the
input vector x;, or
c(i) £ argmin|jz; — w;]. (9)
jEIN
The above function approximation partitions the input space V = R¥ into the
Voronoi (or Dirichlet) regions

V; £ {z | j = argmin|z — w;||}, (10)
ielN

for j € IV, and performs piecewise linear approximation of the function f(x).

Note that the CAN2 has been introduced for utilizing competitive and asso-
ciative schemes|3, 4, 5], on which there are differences to other similar methods.
For example, the method of local linear models [6] uses linear models obtained
from K-nearest neighbors of input vectors while the CAN2 utilizes linear models
(associative memories) optimized by the learning involving competitive and as-
sociative schemes. The CAN2 may be viewed as a mixture-of-experts model that
utilizes linear models as experts and competitive scheme as gating. Although
the MARS (multivariate adaptive regression splines) model [7] as a mixture-of-
experts model executes continuous piecewise linear approximation, the CAN2
executes discontinuous one intending for optimizing each linear model in the
corresponding Voronoi region.

Furthermore, we have developed an efficient batch learning method (see [5]
for more details), which we also use in the present competition.

2.2.3 Bagging

Let D7"* be the jth bootstrap sample set (multiset, or bag) involving an ele-
ments, where the elements in D"* are resampled randomly with replacement
from the given training dataset D™, and « > 0. Here, we would like to mention
that an element in D™ is not in D§™* with the probability (1 — 1/n)*" which
approximately is exp(—«) when n is large. Thus, the number of “individual”
or different elements in D$™* approximately is neg(a) £ n(1 — exp(—a)). For
example, nyg(1) ~ 0.632n which is used in the conventional bagging methods
[1, 2], and n,g(0.7) ~ 0.503n, which we have employed in the present method
(see Section 3 for details).

The bagging (bootstrap aggregation) for estimating the target value r; =
f(x;) is done by the arithmetic mean given by

b a1 L
g =g >l (11)
jeIb
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where g{ £ §J(x;) denotes the prediction by the jth predictor (CAN2) which
has learned the resampled dataset D™

2.3 Analysis of the present method

Here, we show some analysis of the present method for examining how the
method works.

2.3.1 Prediction by means of the first-order difference

As noted before, the prediction via the first-order difference empirically provided
a good performance in the 15 step prediction, but not a good performance in the
50 step prediction. One of the reasons for the good performance in the 15 step
prediction is supposed to be based on that the range of the input vector x4(t) =
(ya(t — 1), ya(t — 2), -+ ,ya(t — kz,))’ to learn the function yu(t) = g(x4(t)) is
smaller than that of of the original input vector (t) = (y(t—1),y(t—2),--- ,y(t—
k:))T. Thus, even if there are few training data near the data to be predicted in
the original input space, much more training data are available via the first-order
difference.

One of the reasons for the bad performance in the 50 step prediction can
be understood from the following example; suppose that the given time-series is
represented by y(t) = y(t — 1) + a + ¢ for t = 1,2,---, where y(0) =0, a # 0
and €; represents a noise. Then, the time-series without noise is represented
by r(t) = at. The first-order difference without noise is written by a linear
combination of y4(t) = a and yq(t) = ya(t — 1), or ya(t) = (1 — b)a + bya(t — 1)
for a certain b (0 < b < 1). If a predictor learns to predict the ideal first-order
difference without noise §4(t) = (1 — b)a + byq(t — 1), the prediction of y(t) for
t =ty +i (i =1,2,---) is given by §4(t) = a + (e, — €1, —1)b""*¢. Thus, the
reconstructed prediction is given by y;(t) = at + &, + (&1, — €1, 1) Z;;tf b,

So, the absolute value of the prediction error, |y;(t) — r(t)| = |e, + (€1, —
€1,—1) Z;;tf b?| increases with the increase of time t for ¢, # €;,_1 and b # 0,

and the sign of the error becomes positive if €;, > ¢, _1 and negative otherwise.
The present method seems to utilize the above advantage and eliminate the
above disadvantage of the prediction using the first-order difference.

2.3.2  Coefficients of the bagging

Instead of the bagging prediction given by Eq.(11), a more general aggregation
of predictions is given by

gAY b, (12)

jerv

where we suppose that b; > 0 and Zjelb b; = 1. Since the prediction QZ involves
the variation caused by the noise ¢; in the training data and the variation of the
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bootstrap resampling dataset D7"* for j € I b the mean j;, the variation 5{ and

the variance p? of the prediction §7 = y; + & are given by

Hi = B, pgn) (yf) (T O ((5‘3)2) (13)

where E(ei,D;.m*)(') is the mean with respect to the variation of ¢; and the vari-

ation of D7"*. Since the predictor learns y; = r; + €;, the variation 6{ of the
prediction is supposed to have a positive correlation with ¢;, or

Ees.pgme) (51?'6@) > 0. (14)

Then, the expectation of the squared prediction error (62°)% = (32" — y;)? is
given by

E(e; ,panv) ((ég*)g) = z:b b [(Ui —r)’ + Ele;,pan) ((5f - Ei)2)] ,
lel

> % [(Nz —r)° + Ee;,pan=) ((53 - 6@')2)} ; (15)

where the inequality is derived by the arithmetic-geometric mean inequality, and
the equality holds when b; is constant. Thus, the mean of the square error of the
aggregation takes the minimum when b; =1/b (j € I %). Therefore, the bagging
prediction given by Eq.(11) is supposed to be the most effective predictions
among the aggregation given by Eq.(12).

2.3.3 Bias and variance decomposition of prediction error

The generalization error or the prediction error for the population data is given

*y 2 o 1. . .
by LI £ 3. 105 (€27)7, where IP°P indicates the index set of the population,
ei—’* = g}ﬁ’* — y; indicates the prediction error. Let us suppose gjf’* = ,ui-’* + 5;’*?
where 1 2 B¢, paney (§7") (= ps) is the prediction mean, & = (1/) 3 jo- 0

the variation from the mean. Then, the expectation of LI°" is given by

2
Eopoy(@) = (02 + 5 +02). (16)

ieIvop

where ﬁf* = E(%D}m*) (@f* — yl) = ,ui-’* — r; denotes the bias term, and p?/b
represents the variance term. Thus, the variance term of the bagging, p? /b, can
be reduced by the increase of b. Here, we would like to note that in order to
reduce the bias term (32")?, we have developed a bagboosting method [8] for
the CAN2, but we had few improvements. We think it is because the amount
of the bias is not so large. We had a huge computational cost instead of the
performance improvement, so we have abandoned the use of the bagboosting
method.
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Fig. 2: Prediction results. (a), (b) and (c) show the predictions 7y (t), 7o(¢),
71(t) and y(t) for t = 826,827, -- ,875 after learning the training data y(t) for
t=1,2,---,825, and (d) shows g (t) and y(t) for t = 876, - ,925 after learning
y(t) for t = 1,2, ,875.

. .. .. o ; *\ 2
Incidentally, the training (empirical) error is given by Ltren & Y icin (ef ) ,
and the expectation of L!"%" is given by

B, pgoy (D7) = 37 (87 + Brepgey (B —)) . (10)

ielm

where 6% = (1/b) 3° jer 67 or the variation of the prediction has a correlation
with €; as shown in Eq.(14). Thus, we should not select the predictor only from
the training error L"%" because 67" may overfit the error e;.

3 Experimental Results

Here, we show some experimental results. We have examined our method with
y(t) (t =1,2,---,825) for training, and y(t) (t = 826,827,---,875) for predic-
tion. The result is shown in Fig. 2(a),(b) and (c¢). From (a), we can see that
Ya(t) seems to predict yq(t) very well although the magnitude of the fluctuation
of 7y(t) is not so big as yq(t). From (b), we can see that 7 (t) is near y(t) at
the begging of the prediction, but the prediction error seems to increase with
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the increase of time. From (c), the prediction () seems to be better than the
prediction ¥ (t) shown in (b) over the prediction period. Furthermore, the com-
bined prediction y(t) is slightly better than go(t). Precisely, the MSE of g (t)
and y(t) was M SE(825,15) = 0.16467 and 0.1142, respectively, for the 15 step
prediction, and M SE(825,50) = 0.5598 and 0.5446, respectively, for the 50 step
prediction.

The above results are obtained with k, = 220 and Ny = 40, where k, is
the embedding dimension of Z(t) for y(t) = f(Z(t),0s), and Ny represents the
number of units of the CAN2 as one of the parameters represented by 6;. The
number of training data given by (x(t),y(t)) is n = t9%" — k, — 1 = 654, and
the single CAN2 has a possibility to learn k; x Ny = 8800 linearly independent
data, so that the single CAN2 is able to learn all of the 654 training data almost
perfectly (the MSE for the training data was about 1.0 x 1071*), and it could
reproduced the time-series y(t) from the t = k,, +1 = 221 to 875 by means of the
multi-step prediction after learning all training data. However, as explained in
Section 2.3.3, we shoud not use this single CAN2 as the predictor only from the
point of view of its small training error. We did use the bagging of the CAN2
from the point of view of the performance for the validation test as explained
above, such as M SE(825,15) and M SFE(825,50), where the bagging provided
some variation to the prediction error owing to the bootstrap resampling scheme,
and it provided small MSEs for the validation dataset.

Furthermore, we would like to note that we have used a = 0.7 and b = 20
for the bagging because they provided good generalization performance in many
validation tests. Although a = 0.7 indicates that only the half of the training
data is used for training each base predictor (see Section 2.2.3), this may have
provided a good variation of the prediction error to each base predictor for the
bagging prediction to achieve good generalization performance.

4 Conclusion

We have described our method used for the prediction competition at the first
ESTSP. The method employs the predictions of the original and the first-order
difference time-series in order to reduce the errors for both the 15 and 50 multi-
step predictions. The method also uses a version of bagging for a good general-
ization performance.

This work was partially supported by the Grant-in-Aid for Scientific Re-
search (B) 16300070 of the Japanese Ministry of Education, Science, Sports and
Culture.
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Abstract. The cyclic solar activity has significant effect on earth, climate, satellites
and space missions. Several methods have been introduced for the prediction of
sunspot number, which is a common measure of solar activity. In the past two
decades, descriptor systems and related fuzzy descriptor models have been the
subjects of interest due to their many practical applications in modeling complex
phenomena. This paper introduces a new learning method, Generalized Locally
Linear Model Tree (GLoLiMoT) algorithm as an intuitive incremental learning
algorithm to tune the parameters of fuzzy descriptor models to predict two solar
activity indexes: sunspot number and DST index. Simulation results depict the
power of this method in predicting such chaotic dynamics in comparison with
other methods.

Keywords. Chaotic dynamics, solar activity, fuzzy descriptor, neurofuzzy,
GLoLiMoT.

1 Introduction

Among the various conditions that affect space weather, the sun-driven phenomena
dominate the others. Origin of many space weather changes is the solar activity which
varies in an eleven year period, called solar cycle. The solar cycle consists of a period
of activity, the solar maximum, and a period of quiet, the solar minimum. During the
years of solar maximum there are more solar flares causing significant increase in
solar cosmic ray intensity. The high energy particles disturb communication systems
and affect the lifetime of satellites. Coronal mass ejections and solar flares are the
origin of shocks in solar wind and cause geomagnetic disturbances in earth’s
magnetosphere. High rate of geomagnetic storms and sub-storms result in atmosphere
heating and drag of low earth orbit (LEO) satellites.

In the past decade, several methods have been proposed to predict the solar
activity in advance [1-4]. Following the achievements in the field of chaotic systems,
several methods can be used in the prediction of solar activity indexes; namely
polynomial function approximation, reconstructions using Lyapunov exponents,
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detecting periodicity in chaotic time series and the intelligent predictions based on
neural networks and neurofuzzy models [5].

On the other hand, descriptor systems and related fuzzy descriptor models have
been the subjects of interest over the last two decades due to their many practical
applications in describing complex systems [6]. Such systems describe a wider class
of systems, including physical models and non-dynamic constraints. It is well known
that descriptor system is much tighter than the state-space expression for representing
real independent parametric perturbations [7]. This motivates one to use the fuzzy
descriptor models in the prediction of some solar activity indexes which have
complex dynamics.

This paper proposes a new method, which is the extension of Locally Linear
Model Tree algorithm (LoLiMoT) to fuzzy descriptor models [8] for adjusting the
parameters of such systems for prediction. This method is called the Generalized
Locally Linear Model Tree algorithm (GLoLiMoT). To show the advantage of this
method, the performance of fuzzy descriptor model with this extended learning
algorithm is compared with several neural and neurofuzzy models in the prediction of
two solar activity indexes: sunspot number and disturbance storm time (DST) index.
Results depict the great performance of this method in prediction of solar activity
compare to the other neurofuzzy models.

The remaining of this paper is structured as follows. Section 2 briefly introduces
nonlinear descriptor system and presents its characteristics compare to the regular
systems and address some complex phenomena which can be used for some good test
beds to show the performance of such systems in describing the characteristics of
such phenomena. Section 3 introduces fuzzy descriptor models and discuss about
their characteristics. Section 4 is devoted to describe the learning methodology which
is used for fuzzy descriptor models to predict solar activity. In section 5, the fuzzy
descriptor model is used to predict sunspot number and DST index to show the
performance of fuzzy descriptor model in comparison with other methods. The last
section contains the concluding remarks.

2 Descriptor systems

A singular implicit differential equation is an implicit ordinary differential equation
which takes the form of

F(X(t),X(t),U(t),t):O, X(t0)=X0 (1)
where x is an n-dimensional state vector, u is an m dimensional control vector, t is

time and the Jacobian matrix o is singular. Such implicit systems often arise in a
X

wide variety of cases, e.g. in electrical power system, flight control, robotics,
microeconomic systems, and contact or constrained problems in mechanic. A system
which is described by singular implicit differential equation is called a singular
system. Singular systems are often referred to as differential algebraic equations
because they frequently are a mixture of differential and algebraic equations, that is,
they take the form of
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x(t) =1 (x,u.t)

O:g(x,u,t) @)
One can define a matrix E such that
Ex(t)=F (x,u,t),
|1 0]
= 3)

)

F (x,u,t) _ \‘f (X,u,t)J
g( x,u,t)

This general form of differential equation is used as a canonical form of
nonlinear singular systems in many papers. In addition these systems are also called
as descriptor systems because they are the way in which the system is initially
described. Other names for descriptor systems are constrained systems, degenerate
systems, generalized state-space systems, semi-state systems, non-canonic, and
differential equation on a manifold [9]. These systems arise in the study of robotics,
optimal control, economics, large-scale interconnected systems, etc [10, 11].

It can be seen that if E is regular, the implicit ODE (3) is equivalent to the explicit

ODE x(t) = E'F (X(t),u(t)) . This case has been quite thoroughly studied and now

rather well understood. When E is singular in (3), resulting in what we shall term a
generalized state-space system or descriptor system, this behaviour is considerably
modified. In contrast to regular state-space system we find that the number of degrees
of freedom of the system, i.e., the number of independent values that Ex(0.) can take,
is now evidently reduced to
fZrank E <n “)

It is proposed the term generalized order for f[12]. Therefore, in such systems
state spaces have to satisfy some constraints and state variables have to be on a
manifold in state space. In addition, it is proved that the output of such systems may
include some impulsive motions even if there is no impulse input to the system [12].
Such characteristics show the power of descriptor systems in describing complex
phenomena. For example, in modelling sub-storm dynamics of magnetosphere which
its prediction is considered as one of the case studies in this paper, it is proved that
both the surface and the corresponding circulation flows turn out to be surprisingly
close to a very simple low-dimensional scheme of the magnetospheric sub-storm as a
cusp catastrophe (inverse bifurcation) first proposed by Lewis [13] and illustrated in
Fig. 1 where z Parameter is the state parameter and c; and c, are the control
parameters [13].
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expansian

Fig. 1: Hypothetical cusp catastrophe manifold that was expected to approximate the
sub-storm dynamics of the magnetosphere according to the model [13]. The evolution
of an isolated sub-storm is shown by dashed arrows.

3 Fuzzy descriptor models

In this section the mathematical formulation of fuzzy descriptor models are
considered [8]. The fundamental approach with such systems is dividing the input
space into small linear subspace with fuzzy validity functions and their appropriate
linear descriptor systems. Therefore the total fuzzy descriptor model is an extended
neuro-fuzzy network with one hidden layer for locally linear descriptor systems and a
linear neuron in the output layer which simply calculates the weighted sum of the
outputs of locally linear descriptor systems. Therefore, in this paper a fuzzy descriptor
model can be defined by extending the T-S fuzzy model. The fuzzy descriptor model
is defined as

Rule i: If z;(t) is Mj; and ... and z,(t) is M,;

{Ei)i(t)zAiX(t)+B,.u(t)
en:
y(t)=Cx(t)

where x(t)e R", y e R, u(t)e R". M, is the fuzzy set and r is the number

)

of if-then rules. x(t)e R"is the state vector, u(t)e R™is the input vector,

y € R”is the output vector, E, e R"™", A eR™, B, eR"™, and C, e R"".

zi(t) ~ z,(t) are the premise variables. Each linear state and output equations in the
consequent parts are called “descriptor subsystem”.

The overall fuzzy model is achieved by fuzzy ‘blending’ of the linear descriptor
subsystems. Given a pair of (x(t),u(t)), the final output of the fuzzy system is inferred
as follows:

Zh (Z(O)Ex(t)= Y b (z()(Ax(t)+ Bu(t))
(6)
y(t) =Z:1h,- (z()C,x(t)
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n

o, (z(t))=TT.M,(z (1)) In (6),
h, (Z(t)) =, (Z(t))/ga)i (Z(l’)) h, (z(t)) can be regarded as the normalized

weight of each if-then rule. M i (Zj ( t )) is the membership if z(f) in Mj;. Defining

where

x’ (t) = LX ! (t) x’ (t )JT , the fuzzy descriptor system (6) can be written as

E'X(6)= Y h (z0)(Ax (0 +Blu(0))

. (7
y(t)=_z;h,-(2(t))cfx*(t)
where i
P T
_LO OJ’ ik_LAi _EkJ
b |0 .
e ¢ =[c, 0]

In this paper, the validity functions are chosen as normalized Gaussians. Each
Gaussian validity function has two parameters, center C; and standard deviation G-

There are M.m parameters for nonlinear hidden layer. In addition, in this paper fuzzy
descriptor model is used to predict solar activity as natural chaotic dynamics.
Therefore it is obvious that in this application the dynamic system has not control
input u(t). Therefore, fuzzy descriptor model for prediction application can be written
as

E'X(0)=Yh (z0)(Ax ()
®)
Y=Y h (2O x ()

4 Learning methodologies

This section is devoted to describe new learning method for fuzzy descriptor models
to adjust its two kinds of parameters. As it said before, the consequent part of a fuzzy
descriptor model, is a linear descriptor subsystem which is an improper system by its
own. Therefore, to adjust parameters of the consequent parts it is need to use an
identification method which is proper for improper systems. Unfortunately, there was
no such a well-known method to identify the parameters of a descriptor system.
Therefore, in this paper, first of all it is tried to develop a method which could identify
the parameters of a descriptor systems. In following subsection this new method is
described.
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4.1 A (quasi-static algorithm for system identification of linear
descriptor systems

Consider a linear descriptor system such as
Ex(t)=Ax(t)+ Bu(t) )
y(t)=Cx(1)
The output and input under zero initial conditions (i.e., Ex(0.)=0) are related by
the transfer function G(s), as follows:
G(s)=CGSE-A)'B (10
It is found that the transfer function G(s) may no longer be strictly proper, in

which case it may be written as the sum of a strictly proper part G (S) and a
polynomial part D (s) . Therefore, we have:
G(s)=G(s)+D(s) (11)

where

G(s)=C (sI —K)il B, strictly proper (12a)
and
D(s):é(l—sﬁ)71§=C~(I +sE +~--+s"1§”)§, polynomial  (12b)

A R B R C R B s C and E are came from a restricted standard equivalence of

the system (9). Here v is less than the size of E , since E is nilpotent (i.e. has all
eigenvalues = 0) [12].

It is obvious that the polynomial subsystem in discrete domain will be a moving
average subsystem. Fortunately, each sub system could be identified by classical
identification methods. Therefore, one can adjust the parameters of a descriptor
system by decoupling it in to two subsystems, and then adjust these parameters
simultaneously. The quasi-static algorithm to identify parameters of linear descriptor
system is as follows:

«» To identify the parameters of the strictly proper subsystem, consider the
output of the polynomial part (which is not identified yet) as a
measurement noise to the strictly proper part.

< Estimate an ARX model A(g)y(k) = B(q)u(k) + y»k) from the data

{u(k), y (k) by

O =(X'X) X"y (13)
< Calculate the prediction error of this ARX model
eur (K)=A(q)y (k)-B(q)u(k) (14)

whose A(q) and é(q) are determined by 0

< To identify the parameters of the polynomial part, consider the output of the
strictly proper part (which is identified in this iteration) as a measurement
noise to the polynomial part.

< Estimate the d; parameters of the following FIR model by least squares

ARX *
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s (K)=D(q)u (k) 13

This algorithm can be iterated until the convergence is reached. This method
yields the linear descriptor systems’ discrete transfer function in frequency domain.
This model has to be converted to the state space model to be useful for fuzzy
descriptor models. This could be done by Silverman-Ho algorithm which gets the
state space model of the descriptor system via its transfer function [14, 15].

4.2 An incremental learning algorithm for premise part of the fuzzy
descriptor models

After adjusting linear descriptor system's parameters, it is time to adjust the
parameters of validity functions for each locally linear descriptor system. In this
section GLoLiMoT algorithm (Generalized Locally Linear Model Tree algorithm)
which is based on LoLiMoT algorithm for locally linear neuro-fuzzy models [16] is
introduced to adjust both validity functions' parameters and locally linear descriptor
systems' parameters. The GLoLiMoT algorithm is described in five steps:

1. Start with an initial model: start with a single LLDM (Locally Linear
Descriptor Model), which is a global linear model over the whole input

space with B (g ) =1 and set M =1. If there is a priori input space

partitioning it can be used as the initial structure.
2. Find the worst LLDM: Calculate a local loss function e.g. MSE (Mean

Squared error) for each of the 1=1,..., M LLDMs, and find the worst

performing LLDM.

3. Check all divisions: The worst LLDM is considered for further refinement.
The hyper rectangle of this LLDM is split into two halves with an axis
orthogonal split. Divisions in all dimensions are tried, and for each of p

divisions, following steps are carried out:

a. Construction of the multi-dimensional membership functions for both
generated hyper rectangles.

b. Construction of all validity functions.

c. System identification of linear descriptor systems for both generated hyper
rectangles by decoupling method introduced in former subsection.

d. Construction of new fuzzy descriptor system according to new linear
descriptor systems in state space form which is produced by Silverman-
Ho algorithm.

e. Calculations of the loss function for current overall model.

4. Find the best division: The best of the p alternatives checked in step 3 is

selected, and the related validity functions and LLDMs are constructed. The

number of LLDM neurons is incremented to M =M +1.
5. Test the termination condition: If the termination condition is met, then stop,
else go to step 2.
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5 Solar activity forecasting

5.1 Sunspot number forecasting

The sunspot number is a good measure of solar activity and is computed according to
the Wolf formulation:
R=k(10g+s) (16)

The GLoLiMoT algorithm is implemented as a MATLAB m-file and is used to
predict the sunspot number. The number of iterations is also optimized by an
intelligent program: the model will be checked by the test data in each iteration and
the training will be stopped when the mean square error (MSE) of validation data
starts to increase. In this way, the over-fitness is avoided and the most accurate
prediction is prepared. Three other networks have been implemented to be compared
with fuzzy descriptor models and its algorithm GLoLiMoT; the MLP network with
conjugate gradient learning method, the RBF network, and its predecessor LLM
network with LoLiMoT learning method. All of these models are compared in their
optimum performance. Table 1 contains the results of several methods; the RBF and
the MLP (Multi Layered Perceptron) and the LLM (Locally Linear Model) networks.
Fig. 3 presents the prediction of sunspot number (total test set) by GLOLIMOT
algorithm. This algorithm shows good performance in the solar maximum (peak
points of sunspot number), especially in 1958, while the other methods do not.

Test set 1 Test set 2 Test set 3 Total test
MLP 0.2 0.3 0.22 0.23
RBF 0.1186 0.184 0.1421 0.1392
LoLiMoT 0.0702 0.1518 0.1519 0.1136
GLoLiMoT 0.0634 0.1056 0.1392 0.0873
Table 1. NMSE of several methods in the prediction of yearly sunspot numbers
T // AN / pothef f
/ AV \ A W/ / \\/ \/j

vear

Fig 3: prediction of sunspot number by a fuzzy descriptor model with GLoLiMoT
algorithm; Upper: Predicted and Observed values of test set, Lower: Prediction error.
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5.2 DST index forecasting

In this section, it is tried to predict the daily average of the DST index during 1957 to
2005. 11789 data (from 1957 to 1990) is used to adjust the fuzzy descriptor
parameters and about 5800 (from 1990 to 2005) data is kept to test the performance of
the fuzzy descriptor system in predicting daily average of the DST index. Figure 4
depicts the performance of the fuzzy descriptor model in predicting the daily average
of the DST index in test mode. It can be easily seen that the fuzzy descriptor system
in this problem has very good results.

output of the fuzzy descriptor mods| vs. daiy average DST index

: Daily average DST index
50 SN U SO model output 4

outputs of model and DST index

g I i
90 1985 2000 2008
Test Years

zoomed output of the fuzzy descriptor madel ve. daily average DST index

— —— Daily average DST index | ™|

ol : B maodel output B

outputs of model and DST index

I I I I i I I I i
1994 19941 19842 19943 1994 4 19845 19948 19947 19348 19949 1995
Test Years

Fig 10: One step ahead prediction of daily average of the DST index by a fuzzy
descriptor model; Upper: Predicted and Observed values of test set, Lower: Predicted
and Observed values of test set during 1994.

The comparison between this combined method results and MLP technique's
result in daily average predicting DST from 1957 to 2005 is presented in Table 2.

Method NMSE in predicting DST index
MLP 0.0952
GLoLiMoT 0.0384

Table 2. NMSE of proposed method in compare of the result of MLP method in the
prediction of daily average DST index.

6 Discussion and Conclusion

This paper has defined a fuzzy descriptor system by extending the ordinary T-S fuzzy
model. Such system can be used as predictor when it is trained by constructing
learning methods. In this research, several optimization methods have been used with
GLoLiMoT algorithm, to predict two important measures of solar activity: the
sunspot number and DST index. By optimizing the number of neurons, the splitting
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ratio and the standard deviations, an accurate prediction has been provided. The
especially low prediction error of the proposed method in the peak points of sunspot
number (solar maximum) even with few neurons in its structure is an interesting
achievement. Due to its high generalization and low prediction error, this method can
be used in predicting the solar activity several years in advance.
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Estimating the Number of Components of a
Mixture Autoregressive Model

M. Olteanu and J. Rynkiewicz

SAMOS-MATISSE, CES, Universite Pantheon-Sorbonne
90 Rue de Tolbiac, 75013 Paris, France

Abstract. In this paper we are interested in estimating the number
of components of a mixture autoregressive (MAR) model. Usually, when
estimating the parameters of such a model, a fixed number of components
is considered ”a priori”, although the general case of an unknown num-
ber should be more interesting to study. However, not fixing the number
of components leads to non-identifiability problems which complicate the
task. Recently, the consistence of a penalized marginal-likelihood crite-
rion for mixture models and hidden Markov models was proven by Keribin
(2000) and, respectively, Gassiat (2002). We extend their method to mix-
tures of autoregressive models for which a penalized-likelihood criterion is
proposed. We prove the consistency of the estimate under some hypoth-
esis which involve essentially the bracketing entropy of the generalized
score-functions class and we verify these hypothesis in the Gaussian case
by reparameterizing the model in order to avoid non-identifiability prob-
lems. Some numerical examples illustrate the result and its convergence
properties.

1 Introduction

Although linear models have been the standard tool for time series analysis for a
long time, their limitations have been underlined during the past twenty years.
Real data often exhibit characteristics that are not taken into account by lin-
ear models. Financial series, for instance, alternate strong and weak volatility
periods, economic series are often related to the business cycle and thus switch
from recession to normal periods, while the series of river flows usually have
heavy tails. Several solutions were proposed to overcome these problems. With-
out looking for exhaustivity, let us remind some of the most popular at the
moment : conditional heteroscedatic models like ARCH, GARCH (Engle, 1982,
Bollerslev, 1986) and their generalizations, threshold and piecewise linear mod-
els (Tong, 1983), multilayer perceptrons and autoregressive switching Markov
models (Hamilton, 1989).

In this paper, we study a particular class of regime switching models which
are mixture autoregressive (MAR) models. Although they can be regarded as
autoregressive switching Markov models with transition probabilities indepen-
dent of the previous states of the hidden Markov chain, their formal definition
was introduced by Wong and Li (2000). Their main justification for this class
of models was the necessity of introducing a time series model which accounts
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for multimodal conditional distributions and also captures the conditional het-
eroscedasticity. In their paper, they gave sufficient conditions for weak station-
arity and proposed an EM algorithm to estimate the parameters. However,
the problem of model selection via some information criterion like AIC or BIC is
studied only empirically by simulations results, while the theoretical justification
of the consistence was left as an open problem.

Indeed, estimating the number of components for a mixture model or, more
generally, for an autoregressive switching Markov model is a complex problem
which arises from the non-identifiability of the parameters. In these cases, the
Fisher information matrix is degenerate, the usual regularity conditions do not
hold and the classical theory for the convergence of the likelihood ratio test
statistic does not apply.

However, several ideas and methods were proposed to estimate the number of
components in the particular case of mixture models (constant regression func-
tions) : various non-parametric techniques in Henna (1985), Roeder (1994) or
Izenman and Sommer (1998), moment techniques in Lindsay (1983) or Dacunha-
Castelle and Gassiat (1997) and penalized maximum-likelihood in Leroux(1992),
Keribin (2000) and Gassiat (2002). In this paper, we extend the result of Gas-
siat (2002) to MAR models and prove the consistence of the BIC criterion using
some empirical processes techniques.

The rest of the paper is organized as follows : in Section 2 we recall the
definition of MAR models and state sufficient conditions for strict stationarity
and ergodicity. Afterwards, we introduce the penalized likelihood estimate for
the number of components and state the result of consistence. Section 3 is
concerned with verifying the hypothesis of the main result in the Gaussian case,
while Section 4 provides some simulation results which illustrate the stability
and the speed of convergence of the BIC criterion. Some open questions, as well
as some possible extensions are discussed in the conclusion.

2 Penalized likelihood estimate for the number of compo-
nents of a MAR model

Throughout the paper, we shall consider that the number of lags is known and,
for ease of writing, we shall set the number of lags at one, the extension to [
time-lags being immediate.

2.1 The model - stationarity and ergodicity conditions

Let us consider the real-valued time series Y; which verifies the true model
(1) Yy =F%, (Yi1) +ex, (t)

where

- X is a sequence of i.i.d. variables with values in a finite space {1,...,po}
and probability distribution 7°

- for every i € {1,...,po}, F? (y) = aly +b?, y € R is a linear function
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- for every i € {1,...,po}, € (t) is an i.i.d. noise with density f strictly
positive with respect to the Lebesgue measure and depending on the parameter

9. The global parameter of the model is then (po, (79, a2, 89, 0?)1.:1,.“,1)0 .

The main convergence result will be proven for a stationary and ergodic pro-
cess. Sufficient conditions for strict stationarity and ergodicity were given by Yao
and Attali (2000) in the general case of autoregressive switching Markov models.
Their result may be adapted easily to MAR models by replacing the invariant
distribution of the hidden Markov chain with the probability distribution of X;.

Thus, under the hypothesis

(HS)  (3) s > 1 such that Ee1|” < co and 32, 79 [af]” < 1

the model (1) has a unique strictly-stationary solution Y;, geometrically-
ergodic and with invariant probability measure admiting s-order moments. Let
us remark that hypothesis (HS) does not request every component to be sta-
tionary and that it allows non-stationary “regimes” as long as they do not apper
too often. On the other hand, let us also note that (HS) is immediately verified
if every component is stationary, that is |a?| <1 for every i € {1,...,po}.

2.2 Construction of the penalized likelihood estimate

Let us consider an observed sample {y1,...,yn} of the time series Y). Then, for
every observation yj, the conditional density with respect to the previous yg_1
and marginally in X}, is

e | yr—1) =300, 72 £ (ye — FY (yk—1))

As the goal is to estimate pg, the number of components of the model, let
us consider all possible conditional densities up to a maximal number of regimes
P, a fixed positive integer. We shall consider the class of functions

gP = U;::l gp;

p p
Gp = {9 lgW92) =D mifi(ya = Fi(y1)), m >0, > mi = 1}
i=1 i=1

where, for all i = 1,...,p, F; (y) = a;y +b; and f; is a strictly positive density
with respect to the Lebesgue measure depending on 6;.

(HC) We shall assume throughout the following that the parameters

{(mi,ai,bi,0;),i =1,...,p} belong to a compact set.

For every g € Gp we define the number of components as

p(g) =min{p€ {17"'7P}: gegp}
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and let pp = p (f) be the true number of regimes.
We can now define the estimate p as the argument p € {1, ..., P} maximizing
the penalized criterion

(2) T, (p) = SUPgegG, In (9) — an (p)

where I, (9) = Y15 10g g (yk—1,yx) is the log-likelihood marginal in X} and
an, (p) is a penalty term.

2.3 Convergence of the penalized likelihood estimate

The convergence result is based on the following inequality, which is the imme-

diate multivariate case generalization of the inequality in Gassiat (2002) :
Proposition 1 : Let G C Gp be a parametric family of conditional densities

containing the true model f and let us define the generalized score function

?gyuyz; _1
sq (y1,92) = gyl’y:
H? h | L2(n)

where p is the stationary measure of (Yy—1,Y%). Then,

(ZZ:2 sg (Y1, yk))2
EZ:z (Sg)% (Yr—1,Yr)

with (sg) (Yr—1,yx) = min (0, sy (Yr—1,Yx))-
Now we can state the following convergence theorem which generalizes the
result in Gassiat (2002) :
Theorem 1 : Consider the model (Yy, Xy,) defined by (1) and the penalized-
likelihood criterion introduced in (2). Let us introduce the next assumptions :
(A1) ay (-) is an increasing function of p, an (p1) — an (p2) — 0o when

n — oo for every p1 > p2 and @B 5 0 when n — 0o for every p
(A2) the model (Yy,, X) verifies the weak identifiability assumption (HI)

supycg (In (9) = bn () < gsupycg

P po 14 Po
Yomifi(a—Fi(p) =Y w0 f (g — FY (1)) & D mido, = Y w550,
=1 3 =1

=1 =1

where g, is the Dirac measure.

(A3) the parameterization 0; — f; (y2 — F; (y1)) is continuous for every
(y1,y2) and there exists m (y1,y2) an integrable map with respect to the stationary
measure of (Yi,Yr—1) such that |log (g)] < m

(A4) Yy satisfies the hypothesis (HS) and the family of generalized score
functions associated to Gp
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a(yy2) _ g
S =< 8g, 8¢ (y1,92) (e R ,9€Gp, g# fp CLa(p)

-1,

L2(p)

and for every e >0
Hy (6,8, [1-ll2) = O (logel)

where Hyj (¢,8S, ||||,) s the bracketing entropy of S with respect to the L-
norm. Then, under the hypothesis (A1)-(A4) and (HC), p — po in probability.

For parcimony purposes, the proof is omitted here. The complete proof, as
well as some definitions of emipirical processes for dependent data, bracketing
entropy and Donsker classes are available in Olteanu and Rynkiewicz (2006).

3 Application for Gaussian noise

This section is devoted to verifying the hypothesis (A1)-(A4) of Theorem 1
in the case of a normally distributed noise. Let us then consider the model

defined in (1) such that, for every i € {1,....po}, f? ~ N(O, (00)2). The

K3
parameter corresponding to one component of the true model, i, will be denoted
by 69 = (a?, 89, 02).

Sufficient condltions for strict stationarity and ergodicity are given by the
next proposition.

Proposition 2 : If |a?| < 1 for every i € {1,....,po}, then (X,Y;) is
strictly stationary, geometrically ergodic and, in particular, geometrically (-

mixing. Moreover, there exists § > 0 such that E (e‘sYtQ) < 00.

The estimate of the number of components py is then constructed as follows :
let us consider a maximum number of regimes P > 0 and the class of all possible
conditional densities of ¥; marginal in Xj :

Gp = ng, Gp = {gIg (y1,72) Zﬂ'zfz y2 = F, ))}

p=1
where
. E _;m = 1 and, with no loss of generality, we suppose that for every
ie{l,..,p}, m>n>0
o forevery i€ {1,...,p}, F; (y) = aiy+bi, fi ~ N (0,0}) and 6; = (ai, bs, 0;)

belongs to a compact set

Then, the estimate p is defined as the maximizer of (2) and it converges in
probability to the true number of regimes if the assumptions of Theorem 1 hold.
The key hypothesis is that the class of generalized score functions
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g _
Jc1

-1
g_1|

£0

L2(u)

;QGGP;

9
f

S= sg,sg:H

L2(p)
is Donsker. First, we shall verify that this class is well defined, that is
H% — 1| 20 < oo, for all g € Gp. The next statement gives sufficient conditions
L2(p
for the existence of the generalized score functions .

Proposition 3 : H% - IHLZ( ) < oo if for every i € {1,...,p}, there exists
u

k€ {l,...po} such that o? < 2(02)2 and |a,~ —a2| < 5(2 ((7,(3)2 —Uf) for

i
d > 0 verifying E (e‘syf) < 0.

According to Teicher (1963), the weak identifiability hypothesis (A2) is ver-
ified for mixtures of Gaussian densities. Moreover, since, by assumption, for
every i € {1,....p}, m > n > 0, the estimates 6, = (él,n,...,ép,n) are consis-
tent and the sufficient conditions in Proposition 3 are verified immediately for
n sufficiently large.

Next, let us prove that S is Donsker and that Hp (¢, S, |-|l,) = O (|loge|)
for all e > 0. For g € Gp, let us denote § = (61, ...,6p) and 7 = (71, ..., 7p),
so that the global parameter will be ® = (6, 7) and the associated generalized
score function

21
8¢ 1= 8§y = L
® g ||%_1||L2(;‘)

Proving that a parametric family like S is a Donsker class is usually immedi-
ate under good regularity conditions (see, for instance, Van der Vaart, 2000). In
this particular case, the problems arise when g — f and the limits in L? (u) of s,
have to be computed. To achieve checking the hypothesis (A4), let us then split
S into two classes of functions. We shall consider Fy C Gp a neighbourhood of

f such that it exists § > 0 verifying Fy = {g € Gy, | % -1 o) <4, 9# f}
o
and let So = {s,, g € Fo}.
On S\ Sy, it can be easily seen that
' N <2 | 9 _ g
||gT171||L2(#) ||gT271||L2(”) L2(I~L) =9 ‘f f LZ([J)

On the other hand, under the assumptions in Proposition 3, % has square
integrable partial derivatives of order one and, using the result on parametric
classes of functions in Van der Vaart (2000), we get that

4P
-A/[] (678 \ 807 “”2) =0 (61_5)

7
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where NV} (€,8 \ So, ||||,) is the number of e-brackets necessary to cover S\ So
and the bracketing entropy is computed as H[j (€, S \ So, [|'[l,) = log N (e, S\ S, |I||,)-

It remains to prove that Sy is Donsker. The guiding idea is to reparameterize
the model in a convenient manner which will allow a Taylor expansion around
the identifiable part of the true value. For that, we shall use a slight modification
of the method proposed by Liu and Shao (2003).

In the following we will make the additional assumption py < p. Let us
remark that when % — 1 =0, the weak identifiability hypothesis (A2) and the
fact that for every i € {1,...,p}, m; > n > 0, implies that there exists a vector
t = (t; )0<Z<p such that 0 =ty < t; < ... < t,, = p and, modulo a permutation,
® can be rewritten as follows :

t; .
eti_1+1 = ...= 0,51. = 0?, Zj:ti_l-l—l T = W?, 1€ {1, ...,po}
With this remark, one can define in the general case s = (si);<;<,, and
q= (qJ)ISJ'Sp so that, for every i € {1,....po} , j € {tic1 + 1, ..., t;},
. 9 g =
Si = Ej:ti—1+1 Ty — Ty, 45 = E:i:ii_]1+17”

and the new parameterization will be

O = (¢t,%1) , Pt = ((ej)lgjgp ; (Si)1§igpo—1) s ¥ = (9)1<5<p

with ¢; containing all the identifiable parameters of the model and 9, the
non-identifiable ones. Then, for g = f, we will have that

¢g = (0?7"',0? 3 020’ ’0207 07"'30 )T
N—— —_ =
t tpo —tpo—1 Po—1

This reparameterization allows to write a second-order Taylor expansion of
:% — 1 at ¢?. For ease of writing, we shall first denote

95 (Y1,92) = 96, (¥1,92) = =75 . (61/20 (52 (y;‘)o)(’yl))

i=1 7 J;

Then, the density ratio becomes :
1 t; t
£-1= Zpo (Sz' + 7"?) Ej:ti_1+1 q;9; + ( Zp01 Sz) Ejpzotpo_1+1 q;9;5
By remarking that when ¢; = ¢?, % does not vary with v, we will study the

variation of this ratio in a neighbourhood of ¢? and for fixed ;. First, let us
introduce the following notations of the ¢-derivatives of g; computed at ¢}:

) 0g;
g‘;_ = gJ (¢t ¢t) ! = 602 (¢t ¢t) I” = ng (¢g7¢t)
J

With these notations we can state the following result :
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Proposition 4 : Let us denote D (¢¢,1;) = Hg(‘“f—"“) - 1|

. For any
L2 (p)
fized 1y, there exists the second-order Taylor expansion at ¢9 :

T p

—1=(¢¢ - ¢?)T92¢9,¢t) + % (¢ — ¢7) 9(69 r) (¢¢ — 87) + o (D (¢, 91))

LS

t;

T
Po

(¢ = ¢7) g(¢>t ) ZW Z a0 — 65 | 9i+ Z 8i999
i—1

j=ti—1+1

Po ti

(6= 80) glopoy (0 =) =3 |25 | Y 46— 62 git

=1 Jj=ti_1+1

ti

+nd D q (- 6)" g (6, - 6F)

j=ti—1+1

Moreover,

T p

(¢ — ¢?)Tg'¢o’¢t + 1 (60 — ¢7) 9(69 1) (pr — ¢7) =0 & ¢ = oY
( i ) 2

Using the Taylor expansion above, we can now show that Sz, = {sy, g € Fo, g # f}
is a Donsker class. The result is stated in the following :
Proposition 5 : The number of e-brackets Njj (e, So,||-||,) covering So is

0 ()",

1>

With this last assertion, it is proven that Theorem 1 applies in the Gaussian
case and that the only constraints are the stationarity of each autoregressive
model in the mixture and the choice of a penalty term according to hypothesis
(A1).

4 Numerical examples

Once the theoretical result is verified in the Gaussian case, let us give some
numerical examples to illustrate it. Three things will be interesting to study:
the speed of convergence, since we do not have it theoretically, the stability and
the influence of the penalty term. For parcimony purposes and because of the
important computation time, only the BIC penalty term was considered here
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an (p) = 3k (p) In(n),

where k (p) is the number of parameters of a model with p components and
n is the size of the sample.

The examples are mixtures of two autoregressive models in which we vary
the leading coefficients and the weights of the discrete mixing distribution. For
each of them, we simulate 20 samples of lenghts n = 200, 500, 1000, 1500, 2000
and we fix P = 3 the upper bound for the number of regimes.

We look for p € {1,2,3} which maximizes the criterion T, (p) = sup,cg, In (9)—
ar, (p). We suppose in the following that the number of time lags is known and
that the regression functions are linear. At p fixed, the likelihood is maximized
via an EM algorithm (see, for instance, Dempster, Laird and Rubin, 1977 or Red-
ner and Walker, 1984). As our goal is to estimate the number of components,
we shall not insist on the other parameters estimated by the EM algorithm. Its
detailed version for a fixed number of components is available in Wong and Li
(2000).

To avoid local maxima, the procedure is initialized several times with dif-
ferent starting values : in our case, ten different initializations provided good
results. The stopping criteria applies when either there is no improvement in the
likelihood value, either a maximum number of iterations, fixed at 200 here for
reasonable computation time, is reached. The results are summarized in Tables
1 and 2 at the end of this paper. The true conditional density is

F,y2) = 7T1f1 (312 Flo (y1) ) ( )f2 (y2 yl))

with F? (y1) = alys + b and f? ~ (0,( )2) for i € {1,2}. For every

example, we pick equal standard errors o) = ¢ = 0.5 and let vary the rest of

the coefficients: 79 € {0.5,0.7,0.9}, af,ad € {0.1,0.5,0.9}, b} € {1,0.5} and
by € {—1,-0.5}. In Table 1, the convergence is reached rapidly for a small
number of observations, while in Table 2 this is less obvious, since the two
components are chosen closer. However, in most of the examples, 2000 sample
points are enough to obtain a good estimate of the number of regimes.

5 Conclusion and future work

We proved the convergence of penalized likelihood criteria for estimating the
number of components in a mixture autoregressive model. The hypothesis of the
main result were shown to be verified in the Gaussian case and some numerical
examples illustrated the convergence properties. Using the BIC criterion for
selecting the number of components is thus theoretically justified. However,
several questions arise at this state and represent future research directions. In
our opinion, there are two important generalizations to be studied : on one hand,
consider the case where the number of time lags is also unknown and build an
estimate for both the number of components and the number of lags and, on the
other hand, consider the more general frame of autoregressive Markov switching
models and estimate the number of hidden states.
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Incorporating Seasonal Information on Direct
and Recursive Predictors Using LS-SVM
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Abstract. In many time series prediction problems, the only data availa-
ble is a single series of data. However, in the case of time series that present
a certain seasonality, the long term prediction capabilities of a predictor
can be improved by considering that seasonality as an additional series of
input data. This paper deals with the new benchmark proposed in the
ESTSP’2007 conference, and presents a solution based on Least Squares
Support Vector Machines (LS-SVMs), which specially bring very good per-
formance on time series prediction and function approximation problems.
The seasonality of the time series will be covered in the LS-SVM model
by adding an additional input variable that identifies the time step in-
side a season. Both direct and recursive predictors will be evaluated with
this technique, using also a simple wrapper approach to perform variable
selection.

1 Introduction

Time series forecasting is a challenge in many fields [1]. It is a complex pro-
blem, that in general has several points in common with function approximation
problems. The analysis of time series is based on the assumption that succes-
sive values in the data file represent consecutive measurements taken at equally
spaced time intervals. There are two main goals of time series analysis: (a)
identifying the nature of the phenomenon represented by the sequence of obser-
vations, and (b) forecasting (predicting future values of the time series variable).
Those goals are normally joined by approaching the problem as a modeling 1/0O
data task, which on the one hand, builds up a model that tries to identify the
internal structure of the observed data, in order to, on the other hand, predict
novel values of the series using that predictive model.

Long term predictions require a more careful study, since long term data
dependencies are more difficult to model. Two approaches can be taken to tackle
this problem: direct prediction and recursive prediction [2]. Variable selection
is a very important sub-task in any modeling problem. Specially in time series
prediction problems, in which the input space is a priori unknown, and any
number of previous time steps (z(t — 0), z(t — 1), ..., x(t — 7)) are candidate
input variables to predict the value of the series at the time step ¢ + h [9] in the
general model

Ft+h)=F(x({t—-0), z(t—1),... 2(t—1)) (1)



A good analysis of the time series is necessary to properly tackle the modeling
and prediction problems. For example, when it is detected that the series pre-
sents a certain seasonality, this seasonality has to be included in the prediction
model [10, 11].

This work proposes a solution to the new time series prediction problem pro-
vided in the ESTSP’2007 conference. The solution uses Least Squares-Support
Vector Machines (LS-SVM) [6], and includes the seasonal information present
in the time series by adding the time step within the season, of the value to
be predicted, as an additional input variable to the general prediction model
in equation 1. This modified general prediction model using LS-SVM will be
evaluated using both recursive prediction and direct prediction. Furthermore,
variable selection will be performed using a simple wrapper approach.

The rest of the work is structured as follows. Section 2 briefly reviews the
LS-SVM learning methodology. Section 3 reviews the concepts of recursive pre-
diction and direct prediction for long term time series forecasting. Section 4
discusses problem of variable selection, discussing the variable selection strategy
performed in the work. Section 5 analyzes the ESTST 2007 benchmark, and ad-
dresses the seasonality present in the series of data samples. Section 6 presents
the results obtained in he prediction, and section 7 concludes the paper.

2 Least Squares Support Vector Machines

LS-SVMs are reformulations to standard SVMs that lead to solving linear Karush-
Kuhn-Tucker (KKT) systems [5]. LS-SVMs are regularized supervised approxi-
mators, closely related to regularization networks and Gaussian processes, but
that additionally emphasize and exploit primal-dual interpretations from opti-
mization theory [6].

The LS-SVM model [6] is defined in its primal weight space by

j=aT¢(Z) +b (2)

where &7 and b are the parameters of the model, ¢(%) is a function that maps the
input space into a higher dimensional feature space, and ¥ is the n-dimensional
vector of inputs z;. In Least Squares Support Vector Machines for function
approximation, the following optimization problem is formulated,

N
1 1
min J(w, e) = -1 @ - e? 3
q',b,e ( ) 2 + 72 ; 2 ( )
subject to the equality constraints (inequality constraints in the case of SVMs)

ei =y —y(@),i=1...N (4)

Solving this optimization problem in dual space, leads to finding the A; and
b coeflicients in the following solution
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I

Q:ZMK(IE, i)+ b (5)

where the function K (7,7;) is the kernel function defined as the dot product
between the ¢(Z) and ¢(Z;) mappings.
In case we consider Gaussian kernels, the kernel function K(Z,Z;) takes the

form
K(#,%;) = exp l— (W)Z] (©)

where o; is the width of the kernel, that together with the regularization parame-
ter -y, are the hyper-parameters of the problem. Note that in the case in which
Gaussian kernels are used, the models obtained resemble Radial Basis Function
Networks (RBFN); with the particularities that there is an RBF node per data
point, and that overfitting is controlled by a regularization parameter instead of
by reducing the number of kernels [6]. In LS-SVM, the hyper-parameters of the
model can be optimized by cross-validation. Nevertheless, in order to speed-up
the optimization, a more efficient methodology by Lendasse et al. can be found
in [3]. A Matlab toolbox for LS-SVMs can be found in [4].

LS-SVMs present a very good performance for function approximation and
time series prediction problems [12]. From the computational complexity point
of view, LS-SVMs don’t suffer from the curse of dimensionality in the number
of input dimensions, but in the number of training data points. This makes
LS-SVMs to be easier to apply to complex problems in which the input space is
high-dimensional.

3 Recursive and Direct Prediction

In general, long term time series prediction is a more complex task since the
uncertainty increases with the horizon of prediction. In this case, two trends can
be taken to tackle the modeling and prediction problem: direct prediction and
recursive prediction [2]. Direct prediction implies the construction of different
models, one for each different prediction horizon needed. On the other side,
recursive prediction only uses one model to predict all the horizons needed. Due
to the characteristics of each approach, it can be expected that direct prediction
provides a better performance in prediction accuracy, since it uses one specific
model for each desired horizon, and in recursive prediction the error committed
in nearest horizons can be transmitted to further horizons. Nevertheless direct
prediction has the drawback that too many models might be needed to obtain
the long term prediction [7, 8], and the time series behaviour understandability
vanishes as several different models are needed.

This work considers both opposite approaches in order to verify their limi-
tations, advantages and performance.
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4 Wrapper Variable Selection

The goal of feature selection and dimension reduction in general is twofold. First,
reducing the number of input variables fights the curse of dimensionality, and
gives the possibility of increasing the generalization performance of the model.
Second, the interpretation of the relationship between features and outputs in
the designed model also improves [6].

Several approaches exist in the literature to perform variable selection. Filter
methods try to select the variables in a preprocess step with the only information
that the I/O values provide. Wrapper methods employ the learning methodo-
logy that is going to be used, in order to select the subset of variables that brings
the best performance. Filter methods have the advantage that the learning met-
hodology used is not considered, and the selection procedure is faster. However,
wrapper methods have the advantage that they guarantee the performance of
the learning methodology with the subset of variables considered.

In this work, the variable selection method performed is a wrapper method,
that selects the number 7 of previous time steps z(t —0), z(t —1), ..., z(t — 7),
considered as input variables in the general model 1. The presence of the addi-
tional variable s(t + h), indicating the time step within the season of the horizon
to be predicted h, is also evaluated together with the selection of 7. The different
values of 7 and the consideration of s(t + h) is evaluated by optimizing diffe-
rent LS-SVMs, using part of the training data set (4/5) and testing it with the
remaining data samples (1/5). In order to decrease the computational demand
of the wrapper procedure, the LS-SVM were optimized using a simple 4x4 grid
search 4-fold cross-validation optimization. This simple but effective procedure
assures that a suboptimal subset of variables is used in the learned model.

5 ESTSP’2007 Benchmark. Data Analysis

The data set provided is shown in fig. 1. The number of samples in the time
series is 875. The goal of the competition is the prediction of the 50 next values
of the time series. The evaluation of the performance will be done using the
MSE obtained from the prediction of both the 15 and the 50 next values.

In order to properly work with the time series using LS-SVM, te data series
was normalized to have zero mean and unit variance. From the 875 data samples
of the series, the first 800 data samples were used as training data, leaving the
remaining 75 data samples as test data.

5.1 Seasonality in time series

Seasonality in time series occurs when there is a certain pattern that is repeated
each k elements. The data series in fig. 1 shows to have a certain seasonality, as
can be seen from the autocorrelation function of the time series in fig. 2.

The period of the seasonality can be obtained by a number of techniques.
In this work, the period has been obtained by evaluating the distances between
the supposed-seasons data. The specific period for which the sum of squared
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distances among the different seasons data was lowest, was taken as a solution.
The specific period found in this case was 52; fig. 3 shows the superposition of
the different seasons of 52 data samples of the time series. This value reminds
a weekly registered phenomena along different years (seasons). In the LS-SVM
model, as it was explained in the previous section, a variable s(t+ h) (indicating
the time step within the season of the horizon to be predicted h) is added as a
new input variable to improve the prediction accuracy. Therefore this variable
will take values from 1..52 in this application.
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6 Simulations

6.1 Recursive prediction

In recursive long term prediction, as was discussed, the outputs of the model are
subsequently used as inputs in the form

B(t+1) = F(s(t+h),2(t—0), &(t—1),... &(t—1)) (7)

where the first input values & (¢t — 0), £ (t — 1), ..., & (t — 7) are known.

The construction of a recursive predictor in this case takes h = 1, and is trai-
ned similarly as is done for a direct predictor with the same horizon. However
the performance of the recursive model has to be evaluated, by recursively appl-
ying the model to predict all the horizons needed. In this problem the evaluation
is done for 50 consecutive values using the same model (see section 5).

6.1.1 Variable Selection

The variable selection procedure is performed for different values of 7, evaluating
too the inclusion of s(t + h) as an additional variable. The training of the
LS-SVMs is performed using grid-search cross-validation (see section 4). The
training and validation data sets are distributed as mentioned in section 4.

Table 1 shows the training and test MSE when performing the variable selec-
tion procedure for different values of 7, when taking and not taking into account
the step in the season s(t+1). The MSE error values were obtained by averaging
the evaluation all possible recursive predictions of 50 values both in the training
and validation data sets.
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with s(t + 1) with s(t+1) | without s(t + 1) | without s(t+ 1)

T training MSE | validation MSE | training MSE validation MSE
T=0 1.2940 0.5702 10.1460 9.2555
T=1 1.2690 0.4761 9.1123 8.4664
T=2 1.2894 0.5263 7.9205 7.4484
T=3 1.2596 0.5100 6.4598 5.6268
T=4 1.2520 0.5028 5.1546 3.2159
T=5 1.2371 0.5454 3.7612 1.8921
T=26 1.2941 0.4807 3.5651 1.5770
T=T7 1.2332 0.4965 2.8299 1.1174
T=38 1.2944 0.4672 3.3044 1.3012
T=9 1.3170 0.4321 2.9248 0.8771
T =10 1.3634 0.4173 3.0952 1.3501
T=11 1.2963 0.4804 2.8087 0.8381
T=12 1.3269 0.4277 2.5917 0.7967
T=13 1.2850 0.4395 2.6607 0.7399
T=14 1.2558 0.4573 2.6657 0.7263

Table 1: MSE for different values of 7 and in recursive prediction.

As it can be seen from the results, the optimal subset of variables selected
is given by 7 = 10 with s(t + 1) as an additional 11th variable. The results
show also a strong improvement by considering the time step within the season
s(t 4+ h) when performing the recursive long term prediction.

The final test MSE obtained for 50 values using the test dataset is 0.4305
(for the best model without s(t + 1) the test MSE was 0.7301).

6.2 Direct prediction

When performing direct long term prediction, the learning methodology is much
more complex, since several models have to be trained separately. The models
will have the shape

Tt+h)=F(s(t+h),z(t—0), x(t—1),... x(t—71)) (8)

where h takes the value corresponding to each of the needed prediction horizon.

0.2.1 Variable Selection

Again, the variable selection procedure is performed for different values of T,
evaluating too the inclusion of s(t + h) as an additional variable. The training
of the LS-SVMs is performed using grid-search cross-validation (see section 4).
The training and test data sets are distributed as mentioned in section 5.
Table 2 shows the training and validation MSE when performing the variable
selection procedure for different values of 7, when taking and not taking into
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account the time step within the season s(t + 1), for the model Z(t + 1) (see
equation 8).

with s(t + 1) with s(t 4+ 1) | without s(t + 1) | without s(t + 1)

T training MSE | validation MSE | training MSE validation MSE
T=1 0.1288 0.1374 0.2054 0.1942
T=2 0.1178 0.1323 0.1858 0.1786
T=3 0.1143 0.1410 0.1638 0.1811
T=4 0.1144 0.1418 0.1471 0.1648
T=5 0.1147 0.1412 0.1380 0.1599
T=6 0.1228 0.1429 0.1349 0.1565
T= 0.1185 0.1448 0.1209 0.1615
T=28 0.1093 0.1546 0.1365 0.1545
T=9 0.1036 0.1430 0.1236 0.1451
T=10 0.1063 0.1444 0.1208 0.1512
T=11 0.1163 0.1382 0.1244 0.1442
T=12 0.1147 0.1383 0.1352 0.1538
T=13 0.1188 0.1431 0.1159 0.1412
T=14 0.0981 0.1401 0.1249 0.1495
T=15 0.1095 0.1384 0.1196 0.1453

Table 2: MSE for different values of 7 for the model .

As it can be seen from the results, the optimal subset of variables selected is
given by 7 = 10 and including s(¢ + 1) as an additional variable.

The process should be similar for each of the model to be trained, &(t+h) for
h = 1..50. However, we consider that the number of simulations needed would
be excessive for the given problem. Thus, the same variables selected for Z(t+1)
are used for the rest of the 49 direct models.

The MSE for the 50 direct models in training is 0.63, nevertheless, the test
MSE for the 50 direct models is 1.14. This shows the increasing difficulty when
modeling long term data dependencies.

6.3 Prediction of the next 50 values of the time series

In this section we present the prediction of the next 50 values of the time series
using both approaches. fig. 4 shows the recursive prediction and fig. 5 shows
the direct prediction of the next 50 values of the series. The number of samples
in the time series is 875. The goal of the competition is the prediction of the 50
next values of the time series. The evaluation of the performance will be done
using the MSE obtained from the prediction of both the 15 and the 50 next
values.

In this example, due to the better behaviour of the recursive model in the
test dataset, the recursive prediction was selected for the competition.

162



30

28

sl
A
20 u v

0 200 400 600 800 1000

o

—

Fig. 4: Recursive prediction of the next 50 values of the time series

30

28

A
20 uv

0 200 400 600 800 1000

o —

g —

Fig. 5: Direct prediction of the next 50 values of the time series

7 Conclusions

LS-SVMs have been shown to bring excellent performance on time series and
function approximation problems in several previous works. However it is im-
portant to properly analyze the specific series being dealt with in order to obtain
optimal results. When dealing with a time series problem that presents seaso-
nality is is necessary to include the seasonality information in the model. In
this paper, a simple approach has be used to include seasonality information on
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the LS-SVM model. Both recursive and direct long term time series prediction
have been evaluated in the work, using also a simple wrapper variable selection
method. The results obtained have shown that when the information of the
time step within the season is included in the model, the performance of the
predictors increases considerably. The problem considered in this work is the
time series forecasting proposed in the ESTSP’2007.
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Antti Sorjamaa and Amaury Lendasse *
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Abstract. In this paper, time series prediction is considered as a prob-
lem of missing values. A new method for the determination of the missing
time series values is presented. The new method is based on two projection
methods: a nonlinear one (Self-Organized Maps) and a linear one (Empir-
ical Orthogonal Functions). The presented global methodology combines
the advantages of both methods to get accurate candidates for prediction
values. The methods are applied to a time series competition dataset.

1 Introduction

The presence of missing values in the underlying time series is a recurrent prob-
lem when dealing with databases. Number of methods have been developed to
solve the problem and fill the missing values. The methods can be classified into
two distinct categories: deterministic methods and stochastic methods.

Self-Organizing Maps [1] (SOM) aim to ideally group homogeneous individ-
uals, highlighting a neighborhood structure between classes in a chosen lattice.
The SOM algorithm is based on unsupervised learning principle where the train-
ing is entirely stochastic, data-driven. No information about the input data is
required. Recent approaches propose to take advantage of the homogeneity of
the underlying classes for data completion purposes [2]. Furthermore, the SOM
algorithm allows projection of high-dimensional data to a low-dimensional grid.
Through this projection and focusing on its property of topology preservation,
SOM allows nonlinear interpolation for missing values.

Empirical Orthogonal Function (EOF) [3] models are deterministic enabling
linear projection to high-dimensional space. They have also been used to develop
models for finding missing data [4]. Moreover, EOF models allow continuous
interpolation of missing values, but are sensitive to the initialization.

This paper describes a new method, which combines the advantages of both
the SOM and the EOF. The nonlinearity property of the SOM is used as a
denoising tool and then continuity property of the EOF method is used to recover
missing data efficiently.

The SOM is presented in the Section 3, the EOF in Section 4 and the global
methodology SOM+EOF in Section 5. Section 6 presents the experimental
results using a new competition dataset.

*Part the work of A. Sorjamaa and A. Lendasse is supported by the project of New
Information Processing Principles, 44886, of the Academy of Finland. The work of A. Lendasse
is supported in part by the IST Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778. This publication only reflects the authors’ views.

165



2 Time Series Prediction

2.1 Data with Missing Values

In time series prediction problem, the samples are generated by sliding a fixed
window over the time series and taking each window full of values as a sample.
The size of the window and thus the length of the samples is T'. All samples are
collected to a regressor matrix

X=| . |,j=12..N, (1)

where NV is the number of samples and each x; is a T-dimensional sample vector.

When predicting the future of the time series, the missing values are added
to the end of the known values of the time series. Then, logically the regressor
matrix is missing some values in the lower right corner. The shape and the size
of the area of the missing values depend on the used method and the horizon of
prediction.

2.2 Prediction Strategy

There are three prediction strategies for the long-term prediction of time series
that are mainly used. The first and the least calculation intensive is the Recursive
prediction strategy, where the model selected in the learning phase for the first
time step is used repeatedly, or recursively, as far as necessary. The predicted
values are used as known values and the prediction is done always only one step
at a time.

The next alternative is to use different model to predict each time step.
This Direct prediction strategy needs different model for each time step and is
therefore many times more calculation intensive. In many cases the Direct is still
appealing choice, because of the increased accuracy compared to the Recursive
strategy. Where the Recursive strategy suffers from accumulation of prediction
errors, the Direct does not.

Third alternative is to use a mix of the two, called DirRec prediction strategy
[5]. With this prediction strategy different model is trained for each time step
and all predicted values are used as known values in the process. It means that
the regressor is increased by one in every time step when the previous prediction
is included in the learning data. This increases the calculation time in the
learning process but in many cases, the accuracy is also better.

In this case, when the time series prediction is considered as a missing value
problem, the whole set of values to be predicted is estimated at once. Strictly
speaking the strategy used here is none of the above, but instead all-at-once
strategy.
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3 Self-Organizing Map

The SOM algorithm is based on an unsupervised learning principle, where train-
ing is entirely data-driven and no information about the input data is required
[1]. Here we use a 2-dimensional network, compound in ¢ units (or code vectors)
shaped as a square lattice. Each unit of a network has as many weights as the
length T' of the learning data samples, x,,, n = 1,2, ..., N. All units of a network
can be collected to a weight matrix m (¢t) = [m; (¢) ,ms (¢), ..., m. (¢)] where
m,; (t) is the T-dimensional weight vector of the unit ¢ at time ¢ and ¢ represents
the steps of the learning process. Each unit is connected to its neighboring units
through neighborhood function A(m;, mj,t), which defines the shape and the
size of the neighborhood at time t. Neighborhood can be constant through the
entire learning process or it can change in the course of learning.

Learning starts by initializing the network node weights randomly. Then,
for randomly selected sample x;11, we calculate a Best Matching Unit (BMU),
which is the neuron whose weights are closest to the sample. BMU calculation
is defined as

mBMU(xt+1) = arg mmirell {||Xt+1 — m; (t>||} ) (2)

where I = [1,2, ..., c] is the set of network node indices, BMU denotes the index
of the best matching node and ||| is standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be
solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and
Letrémy [6], is used. The randomly drawn sample x¢ 1 having missing value(s)
is split into two subsets x/\; = NMy,,, U My, ,,, where NMy,, is the subset
where the values of x¢;1 are not missing and My, , is the subset where the
values of x¢ 1 are missing. We define a norm on the subset NMy, , as

een =mi Ollar,,,, = D0 Coenn —mik()’, ®)

kENMy, ,

where x;.1 for k = [1,...,T] denotes the k" value of the chosen vector and
m; (t) for k = [1,...,T] and for i = [1,...,c] is the k" value of the i*" code
vector.

Then the BMU is calculated with

} . (4)

When the BMU is found the network weights are updated as

MBMU(x¢41) — T8 mfflirell {||Xt+1 — my (t)HNMxt+1

m; (t + ].) =1m; (t) — S(t))\ (mBMU(le), mi,t) [ml (t) — Xt+1] ,VZ € I, (5)

where ¢(t) is the adaptation gain parameter, which is 0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the
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weight update depends on the neighborhood function A(m;, mj, t). The number
of neurons, which need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure started again by finding the BMU of the sample. The
recursive learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing
our data. Cottrell and Letrémy proposed to fill the missing values of the dataset
by the coordinates of the code vectors of each BMU as natural first candidates
for missing value completion:

TU( M) (x) = TU M) (mBMU(x)) ) (6)

where 71y, ) (.) replaces the missing values M, of sample x with the correspond-
ing values of the BMU of the sample. The replacement is done for every data
sample and then the SOM has finished filling the missing values in the data.

The procedure is summarized in Table 1. There is a toolbox available for
performing the SOM algorithm in [7].

Table 1: Summary of the SOM algorithm for finding the missing values.

1. SOM node weights are initialized randomly

2. SOM learning process begins

(a) Input x is drawn from the learning data set X
i. If x does not contain missing values, BMU is found according to
Equation 2
ii. If x contains missing values, BMU is found according to Equation
4

(b) Neuron weights are updated according to Equation 6
3. Once the learning process is done, for each observation containing missing

values, the weights of the BMU of the observation are substituted for
missing values

4 Empirical Orthogonal Functions

This section presents Empirical Orthogonal Functions (EOF) [3]. In this paper,
EOF are used as a denoising tool and for finding the missing values at the same
time [4].

The EOF are calculated using standard and well-known Singular Value De-
composition (SVD)
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K
X =UDV* =) pyupvi, (7)
k=1

where X is 2-dimensional data matrix, U and V are collections of singular
vectors u and v in each dimension respectively, D is a diagonal matrix with the
singular values p in its diagonal and K is the smaller dimension of X (or the
number of nonzero singular values if X is not full rank). The singular values
and the respective vectors are sorted to decreasing order.

When EOF are used to denoise the data, not all singular values and vectors
are used to reconstruct the data matrix. Instead, it is assumed that the vectors
corresponding to larger singular values contain more data with respect to the
noise than the ones corresponding to smaller values [3]. Therefore, it is logical
to select ¢ largest singular values and the corresponding vectors and reconstruct
the denoised data matrix using only them.

In the case where ¢ < K, the reconstructed data matrix is obviously not the
same than the original one. The larger ¢ is selected, the more original data,
which also includes more noise, is preserved. The optimal ¢ is selected using
validation methods, for example [8].

EOF (or SVD) cannot be directly used with databases including missing
values. The missing values must be replaced by some initial values in order
to use the EOF. This replacement can be for example the mean value of the
whole data matrix X or the mean in one direction, row wise or column wise.
The latter approach is more logical when the data matrix has some temporal or
spatial structure in its columns or rows.

After the initial value replacement the EOF process begins by performing
the SVD and the selected ¢ singular values and vectors are used to build the
reconstruction. In order not to lose any information, only the missing values of
X are replaced with the values from the reconstruction. After the replacement,
the new data matrix is again broken down to singular values and vectors with
the SVD and reconstructed again. The procedure is repeated until convergence
criterion is fulfilled.

The procedure is summarized in Table 2.

5 Global Methodology

The two methodologies presented in the previous two sections are combined and
the global methodology is presented. The SOM algorithm for missing values
is first ran through performing a nonlinear projection for finding the missing
values. Then, the result of the SOM estimation is used as initialization for the
EOF method. The global methodology is summarized in Table 1

For the SOM we must select the optimal grid size ¢ and for the EOF the
optimal number of singular values and vectors ¢ to be used. This is done using
validation, using the same validation set for all combinations of the parameters
¢ and ¢. Finally, the combination of SOM and EOF that gives the smallest
validation error is used to perform the final filling of the data.
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Table 2: Summary of the EOF method for finding missing values.

1. Initial values are substituted into missing values of the original data matrix
X

2. For each ¢ from 1 to K

(a) SVD algorithm calculates ¢ singular values and eigenvectors
(b) A number of values and vectors are used to make the reconstruction

(¢) The missing values from the original data are filled with the values
from the reconstruction

(d) If the convergence criterion is fulfilled, the validation error is calcu-
lated and saved and the next ¢ value is taken under inspection. If
not, then we continue from step a) with the same ¢ value

3. The g with the smallest validation error is selected and used to reconstruct
the final filling of the missing values in X

SOM EOF
Dataset with Nonlinear, Linear,

.. . . Completed
Missing —— discrete, — continuous, Data Sample
Values low-dimensional high-dimensional ' p

projection projection

Fig. 1: Global methodology summarized.

Even the SOM as well as the EOF are able to fill the missing values alone, the
experimental results demonstrate that together the accuracy is better. The fact
that these two algorithms suit well together is not surprising. Two approaches
can be considered to understand the complementarity of the algorithms.

Firstly, the SOM algorithm allows nonlinear projection. In this sense, even
for dataset with complex and nonlinear structure, the SOM code vectors will
succeed to capture the nonlinear characteristics of the inputs. However, the
projection is done on a low-dimensional grid (in our case two-dimensional) with
the possibility of losing the intrinsic information of the data.

The EOF method is based on a linear transformation using the Singular
Value Decomposition. Because of the linearity of the EOF approach, it will fail
to reflect the nonlinear structures of the dataset, but the projection space can
be as high as the dimension of the input data and remain continuous.

There is a toolbox for performing the SOM+EOQOF in [9].
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6 Experimental Results

In this paper, the ESTSP2007 competition dataset is used as an example. It
includes a total of 875 values. The dataset is shown in Figure 2.

Competition Data

| | | | | | | |
100 200 300 400 500 600 700 800
Time

Fig. 2: Competition dataset.

For the SOM algorithm, the dataset is divided into two sets, learning and
validation set. The learning set consists of 465 first values and the rest belongs
to the validation set. The optimal regressor size is set to 11 after many trial and
error experiments.

The optimal SOM size is selected using a simple validation procedure, where
the SOM learning is performed using only the learning set and the validation
set is used to tune the SOM size for one step ahead prediction. The validation
errors are shown in Figure 3.

—

Validation MSE

c
i

5 10 15 20 25
SOM size

=)

Fig. 3: Validation errors with respect to the SOM grid size.

From Figure 3 the optimal SOM size is selected to 13x13 with validation
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error of 0,297. There is only very small difference in the validation error with
larger SOM sizes.

The only parameter of the EOF method is tuned using the same learning and
validation sets than with the SOM to get comparable results. Also the regressor
size is kept the same than with the SOM and the optimization is done for one
step ahead prediction. The validation errors are shown in Figure 4.

A~ W

Validation MSE
oW

0 1 1 1 1 1 1 1 1 1

5 6 7
Number of EOF

Fig. 4: Validation errors with respect to the number of EOF.

From Figure 4 the optimal number of EOF is selected to 2 with validation
error of 0,451. The result suggests relatively strong noise influence in the singular
values after the third one, where the validation error is increasing rapidly.

For the SOM+EOF method the two separate methods are combined and the
validation is performed for each combination of the SOM sizes and the number
of EOF. The validation errors are shown in Figure 5 and 6.

Validation MSE

| |
4 6 8 10 12 14 16 18 20
SOM size

Fig. 5: Minimum validation errors with respect to the SOM size using the
SOM+EOQF method.
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Validation MSE

5 6 7
Number of EOF

Fig. 6: Validation errors with respect to the number of EOF using SOM size
15x15.

From Figure 5 the optimal SOM is selected to be 15x15 and from Figure 6
the optimal number of EOF to 4 with the validation error of 0,233.

For one step ahead prediction the regressor size is selected to 11, but for the
50 steps ahead the regressor size is increased to 60 in order to fit the missing
values to the regressor.

Our experiments with several other datasets have shown that the EOF method
uses larger number of EOF when the regressor size is increased. Therefore, the
final prediction is done using the number of EOF fixed to 8. The prediction of
the 50 timesteps is shown in Figure 7.

[N}
0
T

[N}
[*))

Competition Data
N
(ST

3%}
(=]

l 8 | | | | | | | | | |
720 740 760 780 800 820 840 860 880 900 920
Time

Fig. 7: Prediction of 50 next values of the competition dataset. The real values
are presented by the solid line and the dashed one presents the prediction.

From the Figure 7 it seems that that the prediction has removed the noise
and is predicting the next peak of the time series quite well.
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7 Conclusion

In this paper, we have presented 3 methods for finding missing values in temporal
database. The methods are Self-Organizing Maps (SOM), Empirical Orthogonal
Function (EOF) and the combination of the two SOM+EOF. The methods are
used to find the future values of a time series.

The advantages of the SOM include the ability to perform nonlinear pro-
jection of high-dimensional data to lower dimension with interpolation between
discrete data points.

For the EOF, the advantages include high-dimensional linear projection of
high-dimensional data and the speed and the simplicity of the method.

The SOM+EOF includes the advantages of both individual methods, leading
to a new accurate approximation methodology for the missing future values of
a time series. The performance obtained show the accuracy of the new method-
ology.

It is also evident that the EOF is greatly dependent from good initialization
in order to produce accurate results. The SOM gives good initialization even
the method alone is not so accurate. The two methods complete each other and
work well together.

For further work, the modifications and performance upgrades for the global
methodology are investigated and applied to other types of datasets from other
fields of science, for example climatology and finance.
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Abstract.

In this paper a feedforward neural network model is described to tackle
with the problem proposed by the First European Symposium on Time
Series Prediction. The goal of the competition is to predict, at least, the 50
next values of the given series. The evaluation of the entries’ performance
will be done using the MSE obtained from the prediction of both the 15
and the 50 next values. In order to obtain our proposed predictive model,
different neural networks were trained with the Sensitivity Based Linear
Learning method, varying the number of hidden units and using input time
windows of 50 or 100 samples. The error rate of every trained network
was estimated using a 10-fold cross validation and the obtained results
were averaged over 5 different simulations, in order to obtain an almost
unbiased estimator of the performance. Finally, the best model was a
neural network using 100 inputs, 5 hidden neurons with logistic sigmoid
activation functions and 1 linear output neuron. This network obtained a
mean MSE test error of 0.774 when predicting 15 samples, and 1.351 when
predicting 50 samples.

1 Introduction

This paper presents the application of a neural network model to a time se-
ries prediction problem. The work has been carried out in the context of the
World-wide competition within the first European Symposium on Time Series
Prediction. The competition is announced as an event in the fields of Statistics,
Neural Networks, Machine Learning, Control and Econometrics.

This analysis is motivated by the significant advantages that are expected to
bring when using more accurate prediction technology than the actual available
in fields like finance, sociology, etc. At this respect, a new challenge in the field
of time series prediction is the Long-Term Prediction. In this case, from a given
past of the time series not only one but several steps ahead have to be predicted.

Given a data set, the aim of the competition is to develop a model capable
of predicting the 50 next values (or more) of the time series. Figure 1 shows the
875 samples of the provided time series. No other knowledge about the problem
was given. To evaluate the quality of the results two measures will be used: the
MSE obtained from the prediction of the 15 and the 50 future values.

In next sections we describe the steps followed to develop the particular
proposed model for this competition, as well as the results obtained.

*This work has been partially funded by the project PGIDT05TIC10502PR of the Xunta
de Galicia.
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Fig. 1: Time series provided for the competition.

2 Development of the prediction model

The problem of time series prediction can be viewed as a function approximation
problem, because a system tries to find the mapping that generates the next
instances of the time series based on previous data and desired responses. The
aim of function approximation is to estimate a complex function f(x) by means
of another function f (z) composed of basis functions,

flx) = Zai¢i(m) (1)

where «; are the coefficients, and ¢;(x);i = 1,2,--- ,m are the basis functions.
Many methods have been proposed to select the number and type of these func-
tions and to obtain the corresponding coefficients. In this case, the problem has
been approached from the point of view of artificial neural networks (ANN).
These are powerful models that have been employed to solve several practical
problems, including regression problems, showing an excellent performance [1].

2.1 The Sensitivity-Based Linear Learning algorithm

The learning methods for feedforward neural networks find the network’s optimal
parameters through a gradient descent mechanism starting from an initial state
of these parameters. The first successful algorithm was the classical backpropa-
gation [2]. Although this approach is very useful it has two main drawbacks [3]:
the convergence to local minima and a slow learning speed.

In order to solve these problems, several variations of this initial algorithm
and also new methods have been proposed (see, for example, [3, 4, 5]). In this
work a new sensitivity analysis based learning method (SBLLM) proposed by
the authors for two-layer feedforward neural networks has been used [6]. This
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method used a linear procedure to obtain the weights of each layer. First, random
values are assigned to the outputs of the first layer; later, these initial values are
updated based on sensitivity formulas, and finally the weights are calculated
using a linear system of equations. This method presents the advantage of
achieving a good solution in very few epochs using few computational time.

Consider the two-layer feedforward neural network in Figure 2 where S the
number of data samples, I is the number of inputs z;5, J the number of outputs
Yjs, KK the number of hidden units with outputs zxs, Tos = 1, z0s = 1, w are the
weights and f the activation functions.

Fig. 2: Two-layer feedforward neural network.

The superscripts (1) and (2) are used to refer to the first and second layer.
This network can be considered to be composed of two one-layer neural networks.
Usually, weights are updated using the mean squared error (MSE) as cost or error
function. This function estimates the error of the system comparing the real and
the desired output. In this work, assuming that the intermediate layer outputs
z are known, a new cost function for this network is defined as:

Qz) = QW(z)+Q®(z) =
S K T » 2
- S| (S )
s=1 | k=1 1=0
J K ) 2
Z(Zwﬁ)zks_fﬁ() (ﬁ%s))
j=1 \k=0

This cost function is based on the sum of squared errors obtained, independently,
by the hidden and output layers.
In the proposed algorithm, after initializing the zxs to small random values,
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the sensitivities of the cost function with respect to zps are calculated as:

oQ QW Q@
0Zks - O0Zks 0Zks o
I 1
2(2{)“’1&?% e (st)>
_ 1= . +
£ ()
4 us 2 2)~1 2
2 (Z Wiz = £ <yjs>> wy.
7j=1 \r=0

with k=1,...,K,as 20 =1,Vs =1,...,85.
Next, the values of the intermediate outputs z are modified using the Taylor
series approximation:

Qz+A2)=Q) +>. > 0Q@) £, ~o,

which leads to the following increment

QM
VQIP

which is used to update the zps values. Thus, using the outputs of the interme-
diate layer zps we can learn, for each layer independently, the optimal weights
w,(i) and w(i) by solving a linear system of equations, as proposed in [7]. As
stated in [6], this algorithm offers an interesting combination of speed, reliability
and simplicity.

vaQ,

2.2 Preprocessing stage

Dynamic modeling implies a two step procedure [8]. The first step is to transform
the observed time series into a trajectory in a reconstruction space by using an
embedding technique [9]. The most common is a time delay embedding, which
can be implemented with a delay line with a size specified by Takens’ embedding
theorem. The second step is to build the predictive model from the trajectory
in the reconstruction space.

Takens [10] proved that an observable sample z(n) of a dynamic system and
its delayed versions x(n) = [z(n),z(n — 7),...,z(n — (N — 1)7)], where 7 is a
specific time delay, can be used to create a trajectory in a Euclidean space of size
N, which preserves the dynamical invariants of the original dynamical system.
The dimension IV of the space must be larger than 2D, where D is the dimension
of the attractor.

Therefore, in order to feed the signal to the ANN, an embedding layer, im-
plemented by a time delay line, was used to transform the original space of the
provided time series x(n) into a reconstruction space whose output is a sequence
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of N-dimensional state vectors, ¢(n) = [z(n),z(n — 1), ,z(n — (N = 1)7)]7.
Specifically, in this case a value of 7 = 1 was employed. Moreover, from a visual
analysis of the original signal (see Figure 1) it can be observed that it presents
a sinusoidal shape with a period composed of around 50 samples. Taking into
account the periodic characteristics of the signal, values corresponding to one
period (N = 50) and two periods (N = 100) were evaluated for the embedding
dimension N.

Although the objective of the competition was long-term prediction the ANN
was initially trained to predict the x(n+1) sample. Later on, the trained network
was used to predict up to 50 future values by, recursively, presenting its own
outputs as new inputs. So, using N = 50, and taking into account the two
problems proposed for the competition, 811 different time windows or training
patterns were available in order to predict the next 15 samples, while 776 training
patterns were available for the prediction of the next 50 samples. These sizes
were reduced to 761 and 726, respectively when N = 100 was used. Finally, in
order to train the network, the signal was previously normalized to have zero
mean and a standard deviation of 1.

2.3 Procedure to evaluate the performance of the network

To check the error rate of the proposed artificial neural network and due to the
small size of the training set, a resampling technique known as 10-fold crossvali-
dation was employed [11], as this technique allows to obtain an almost unbiased
estimator of the true error rate of a model. Thus, the training set was split
into 10 mutually exclusive data sets. Following this method, the network was
trained 10 times, selecting each time a different test set with the remaining sets
being used for training. Also, this process was repeated 5 times to consider
the variability of the results due to the different network’s initial zxs. Finally,
performance measures were calculated using all these results. Therefore we got
5 % 10 measures both for training and testing.

These measures are the Mean Squared Error (MSE) obtained from the pre-
diction of both the 15 next values and the 50 next values, as required from the
competition announcement, i.e.,

15
1 ~\2
MSEy = — ;@i — )
and
1 50
N C_ 5.2
MSFE; = 50 ;(yz yz> .

where ¢; is the neural network’s output and y; is the expected output.
Also, we used a second performance magnitude, the Mazimal Error (Max-
Err), which is defined as:
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MaacErrl = maa‘;(|yl — Qz|)7z = 17. . 715

and

MazErry = maz(|ly; — 9i|),i = 1,-- -, 50.

3 Results

Following the previous steps, several neural networks were trained. In every case,
the employed activation functions were the logistic sigmoid for hidden neurons
and the linear function for the output neuron. Therefore the initial values of the
zs were assigned to an uniformly distributed random variable on the interval
[0.05,0.95]. As already mentioned, two dimensions were tried for the input layer:
50 and 100 inputs. The size of the hidden layer were varied between 5 and 30
hidden neurons.

For every 5 simulations, and every test example of the k-fold the measures
MSEy, MSE>, MaxErr; and MaxFErrs were calculated and averaged. The
best results were obtained using 100 inputs and 5 hidden neurons. In this case,
the mean of these measures were M SFE; = 0.774, MSFE, = 1.351, MaxFErr; =
3.90 and MaxErres = 5.439. Also, in Figure 3 is shown the evolution of the MSE,
as a function of the index i of the sample y; to be predicted. As can expected,
the MSE degrades as the predicted sample leaves the last real available sample.

3

251

051

. . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
prediction

Fig. 3: Evolution of the MSE as a function of the prediction interval.

Figures 4, 5 and 6 show, for the test data, a plot of the real and the desired
output for the prediction of the 1st, 15th and 50th future samples, respectively.
As can be seen, the highest errors occurs around the interval from the 200th to
the 300th samples, which corresponds to the more atypical part of the signal.

Also, Figure 7 plots the real time series versus the generated time series.
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Fig. 4: Observed (solid line) and predicted time series (dashed line) when pre-
dicting the z(n + 1) sample.
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Fig. 5: Observed (solid line) and predicted time series (dashed line) when pre-
dicting the z(n 4+ 15) sample.

Finally, Table 1 contains the 50 samples predicted by our model from the
given time series.
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Fig. 6: Observed (solid line) and predicted time series (dashed line) when pre-
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Fig. 7: Observed versus predicted time series.
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Meta-learning of Recurrent Neural Networks for
Time Series Prediction
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Abstract. This article describes a meta-learning procedure to solve the
vanishing gradient problem in the training of recurrent neural networks.
The main idea is to make a global search with an heuristic procedure in
order to locate the best areas in the solution space. Then, a non-linear pro-
gramming algorithm is used to improve the best networks with local train-
ing. In the experimental section, we apply the method to solve the Time
Series prediction problem proposed in the Competition of ESTSP2007.

1 Introduction

1.1 Motivation

Neural Networks [1] are bio-inspired mathematical tools that have been widely
used to solve complex engineering problems, including time series prediction.
Many network models have been applied to solve time series tasks, for example
feedforward networks, recurrent networks [2][3], autoassociative maps [4], etc.
Dynamical Recurrent Neural Networks (DRNNs) [5] are models that may be
obtained from a feedforward one, by adding recurrent connections to the net-
work topology. This provides the network with long and short term memory,
and makes it suitable to learn data sequences with temporal properties. These
network models are also able to learn automatically the data dependencies (sup-
posed to be unknown previously) during the training. Due to these properties,
in this work we use DRNNs to solve the time series prediction problem proposed.

However, the main limitations of DRNNs are related to the classic training
algorithms. These methods may suffer of the vanishing gradient problems [6],
therefore providing unsuitable or local solutions. In the last decade, several so-
lutions have been proposed to avoid this problem, and most of them include
heuristic procedures (tabu search, simulated annealing, evolutionary optimiza-
tion, hybrid algorithms, etc.), for example in [7][8][9]. The main idea of the
heuristic approaches is to make a global search in the solution space of the net-
works, to avoid the local learning provided by the traditional gradient-based
training methods. On the other hand, the hybrid methods combine the global
search of the heuristic procedures with the local learning of the classic training
methods, in order to improve the network performance in a local area of the
solution space.

In this work, the meta-learning Scatter-Search procedure [10][7] is used to
train DRNNs. This document is structured as follows: Section 2 introduces
the DRNN models used for the experiments. Section 3 explains the algorithm
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Scatter Search. After that, Section 4 describes how to use the Meta-Learning
algorithm to train and optimize the topology of a DRNN. Section 5 shows the
experimental results and finally, Section 6 concludes.

2 Dynamical Recurrent Neural Networks

Dynamical Recurrent Neural Networks are input/output mapping models that
may be obtained from a feedforward network by adding recurrent connections to
the network topology. The DRNN models most known are the Fully Connected
Recurrent Neural Network, the Jordan Network [5], and the Elman Network [11].
In this work we use the Elman network, since it has obtained the best results in
a previous experimental study. It contains three neuron layers: input data layer,
hidden (or processing) layer and output data layer. The recurrent connections
are in the hidden layer, so that the output value of a hidden neuron at time ¢ is
also input for all hidden neurons at time ¢+1. This provides the Elman network
with long and short term memory in time, codified in the network structure by
mean of recurrent neurons.

\Y Si(t)
el 1 04(t)
. S,(1)

X n (t) .
O 0 (t)
S h(t) 1

Fig. 1: Example of an Elman Network with n inputs, h hidden neurons, and o
outputs.

The diagram in Figure 1 illustrates an example of an Elman recurrent neural
network where:

e n, h,o are the number of input, hidden and output neurons, respectively;
e X;(t) is the input data to neuron ¢ at time ¢ (1 <=i <=n);

e S;(t) is the output of hidden neuron j at time ¢ (1 <= j <= h);

e O (t) is the k-th network output at time ¢ (1 <=k <= o0);

e the values U, V, W are matrices that encode the network weights, so that
Vji is the weight for the connection from input neuron 7 to hidden neuron
J; Ujr is the weight for the recurrent connection from hidden neuron r to
hidden neuron j; and Wj; is the weight for the connection from hidden
neuron j to output neuron k.
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The equations for the network dynamics are:

h n
Si(t) = FQ_UprSe(t —1) + Y Vi Xi(t)) (1)
r=1 i=1

h

Ok(t) = g(>_ Wi;Su(t — 1)) (2)

j=1

In equations 1 and 2, f(z) is the sigmoid function and g(z) is the identity
function.

3 The algorithm Scatter Search

The algorithm Scatter Search [7] is a meta-heuristic procedure that combines an
heuristic global search with a solution improvement method for a local search in
the best areas of the solution space. The algorithm 1 describes the method in
depth, where:

N is the number of initial solutions.
P is a set of IV solutions.

R is the reference set of solutions. The size of R is b. R(i) denotes the i-th
solution in the set R.

K is the number of subsets of solutions to be generated from the set R.
R} is a subset generated from R.

H; is a set of solutions generated by the recombination operator over the
set R.. The size of H; is |H;|. H;(j) denotes the j-th solution in the set
H;.

The function f(s) is the objective function, to be minimized.
The procedure Initialize(N) generates a set of N solutions randomly.

The procedure BuildReferenceSet(P,b) generates the reference set from
P, with size b.

The procedure sort(R) sorts R in increasing order, where the first solution
R(1) is the best one (f(R(1)) < f(R(7)),Vi e N: 1< i <b).

The procedure GenerateSubSet(R) returns a subset of solutions in R.

The procedure Combine(R;) returns a subset of solutions generated by
combining the solutions in R;.

The procedure I'mproveSolution(S) returns the solution S improved by
mean of local optimization.
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e The procedure ReplaceSolution(R(i),S) replaces the solution R(i) in R
with the solution S.

The relevant procedures of above are explained in depth in section 4. How-
ever, the reader may obtain further information about the method Scatter Search
and the main basis of Meta-learning in [7][10].

Algorithm 1 Scatter Search main procedure

1. set P= Initialize(NV)

2: R= BuildReferenceSet(P, b)

3: Evaluate(R)

4: Sort(R) (the first solution is the best one)
5. while stopping condition is not satisfied do
6: fori=1to K do

7: R} = GenerateSubSet(R);

8 end for

90 fori=1to K do

10: H; = Combine(R));

11: for j =1 to |H;| do

12: S = H;(j)

13: S’ = ImproveSolution(.S);

14: if f(S') < f(R(b)) then

15: ReplaceSolution(R(b), S’)

16: Sort(R) (the first solution is the best one)
17: end if

18: end for

19: end for
20: end while
21: return R

4 Meta-Learning for dynamical recurrent neural networks
with Scatter Search

This section explains the use of Scatter Search to train DRNNs. Firstly, Sub-
section 4.1 defines the codification of the Elman network into a solution. After
that, subsection 4.2 exposes the objective function. Finally, Subsections 4.3-4.6
explain the relevant procedures of Scatter Search in Section 3.

4.1 The codification

A solution vector in the Scatter Search procedure encodes an Elman network in
the following way: Each network connection is assigned to a component in the
vector. The value of such component is the value of the network weight for that
connection. Thus, the size of a vector solution S encoding an Elman network
with n inputs, A hidden neurons and o outputs is:
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|S| = h(n+h+o) (3)

Figure 2 prints and example of the codification of an Elman network with
one input, two hidden neurons and one output.

Vit Va1 |Un|Unp|Ugi|Up [Wii|Wiy

Fig. 2: Example of the codification of an Elman network.

4.2 The objective function

The objective function address the search in the solution space, to find the best
network weights for the problem to solve. In this work, the objective is to
minimize the error between the network outputs and the desired outputs in the
training data set. Equation 4 shows this idea:

T o
* . 1
F(87) = min{f(5)} = min{7 > (Ok(t) = Di(1)*} (4)
t=1 k=1
In equation 4, S is a solution vector encoding and Elman network, T is the
number of training input/output patterns for the network, and Dy(t) is the
desired value for output neuron k at pattern t.

4.3 The Reference Set generation procedure

The reference set R in the Scatter Search algorithm has a fixed size b, where b
is a parameter for the algorithm. R is built from a larger set P by selecting the
b/2 best solutions and the /2 most diverse solutions in P. This procedure is
explained in depth in algorithm 2

Algorithm 2 Scatter Search Reference Set generation procedure
set R=10
sort(P) (the first solution is the best one)
fori=1tob/2 do
set R=RU{P(i)}
end for
while |R| < b do
set R=RU{s € P/-3s" € P:||s — R(k)|| > ||s — R(k)||,Vk € N,1 <
k< |R|}
end while
9: return R

o
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4.4 The SubSet generation procedure

The subset generation procedure select two or more solutions from the reference
set R to be combined. In this work, the subset generation procedure returns a
set with two solutions obtained with the binary tournament selection operator.
The algorithm 3 shows this idea in depth.

Algorithm 3 Scatter Search SubSet generation procedure

1: set R =)

2: for i =1to 2 do

3:  set S; = choose a solution in R randomly
4 set S = choose a solution (different of S1) in R randomly
5. if f(S1) < f(S2) then
6: set R = R'U{S1}
7.
8

else
set R = R'U{S2}
9: end if
10: end for

11: return R’

4.5 The Combination procedure

The procedure Combine(R’) combine the solutions in R’ to generate a set of new
solutions H. In this work, the size of set |R/| = 2, because of the subset gen-
eration method studied in section 4.4. Both solutions are combined to generate
two new solutions with the BLX — «a combination operator. The algorithm 4
explains the combination procedure, where rand(z,y) is a method that provides
a random real number in [z, y].

Algorithm 4 Scatter Search Combination procedure
set H =1
: fori=1to 2 do
set h(i)= generate new solution vector
for j =1to |R'(1)| do
set M = Maz{R(1), R}(2)}, m = Min{R}(1), R}(2)}
set h;(i) = rand(m — (M — m)a, M + (M — m)a)
end for
set H = HU{h(i)}
end for
return H

—
=

4.6 The Improvement procedure

The improvement procedure makes a local search in the environment of a solu-
tion to improve its performance. In this work we use a Quasi-Newton method
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based on the BFGS formula [12], since it has provided the best results in the
experiments about the time series competition data. A solution S is improved
iteratively with the BFGS algorithm, depending on a search address dj, at iter-
ation k, and a step length ay:

Sk+1 = Sk + diag (5)
di = Hi.Gy, (6)

(Sk+1 = Sk) (Sk+1 — Sk)*

(Sk+1 — k) (Grs1 — Gi)

 Hy(Grs1 — Gi)(Gr1 — Gi) Hy,
(Grg1 — Gi)tHi(Gry1 — Gi)

Hyp1 = Hi +

0 0 0
Gi = (an(sk),---, thnf(Sk), 8U11f(5k)""’
0 0 0
Unn (Sk), an(sk)a v mf(sk)) (8)
ag = argmingso{f(Sk + ax—1dr)} 9)

The reader may find further information about the BFGS algorithm and its
application to train recurrent neural networks in [13][9][14][15].

5 The experiments

This section shows the experiments to train an Elman network with the Scatter
Search meta-learning procedure. Subsection 5.1 introduces the data set: The
time series prediction problem of the competition in ESTSP-2007. After that,
Subsection 5.2 exposes the parameters. Finally, Subsection 5.3 shows the exper-
imental results and the predicted data.

5.1 The data set: ESTSP-2007 time series competition

The data set is the time series proposed for the competition in ESTSP-2007. It
is a set of 875 real values, for which the following 50 ones must be predicted.
Figure 3 shows the data of the time series.

5.2 The parameters

Let’s assume the following structure for an Elman Network to be trained in the
time series prediction data of the competition in ESTSP-2007:

e Input neurons: 1, corresponding to the value Y (t) of the time series.

e Qutput neurons: 1, corresponding to the value Y (t + 1) to be predicted.
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Fig. 3: Data provided for the competition in ESTSP-2007.

e Hidden neurons: 12.
e Training data set: first 800 values of the time series.

o Test data set: last 75 values of the time series.

For the prediction, the network output at time ¢, which is an approximation
of Y(t+1), is used as network input at time ¢ + 1. This procedure is looped for
K times until we obtain the value Y (¢ + K) to be predicted.

The parameters for the Scatter Search procedure are:

e Stopping criterion: 50000 solutions evaluated.

Size of beginning population P: 500.

Size of reference set R: 50.

Iterations for the improvement procedure: 30.

e Value «a (for the combination method): 0.5.

The meta-learning proposal has been run for 50 times with the parameters
of above. The following subsection shows the results of the experiments.

5.3 The experimental results

The table 1 shows the Mean Square Error (MSE) of the best, worst and average
solutions in the training and test data sets (Columns 1 and 2). It also prints
the standard deviation of the MSE (Columns 3 and 4) and the average time of
a running of the algorithm (Column 5).

Table 2 prints the 50 values to be predicted in the competition with the best
solution, and Figure 4 plots the data learned and predicted.
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Type | MSE (tr.) | MSE (test) | s.d. (tr.) | s.d. (test) | Time (secs.)
Average 0.169 1.226 0.015 0.526 651.1

Best 0.160 0.534 - - 658
Worst 0.176 2.867 - - 677

Table 1: MSE, s.d. and computational time of the average, best and worst
experiments.

876-885 | 886-805 | 896-905 | 906-915 | 916-925
21,23 | 22,79 | 25,98 | 24,05 | 20,93
21,02 | 23,03 | 2589 | 2385 | 20,61
21,04 | 2342 | 25,77 | 2348 | 20,47
21,24 | 2382 | 25,63 | 23,02 | 20,25
21,38 | 24,50 | 2547 | 22,83 | 19,92
21,50 | 24,66 | 2527 | 22,59 | 19,76
21,62 | 24,85 | 25,02 | 22,11 | 19,79
21,79 | 2521 | 24,72 | 21,60 | 19,85
22,09 | 2572 | 2443 | 21,39 | 19,92
2252 | 2594 | 2421 | 21,21 | 20,00

Table 2: Values of the prediction for the next 50 values.

a

]
=

Fig. 4: Real data and prediction by the best solution.

We attempt to check the robustness of the algorithm statistically. The
Kolmogorov-Smirnoff normality test has been applied over the MSE in the train-
ing and test sets, with 0.05 of confidence level. The p-value obtained in the
training MSE is 0.2784, while in the test MSE is 0.4435. Neither the traning
nor the test results follow a normal distribution. Thus, in an only running of
the algorithm we cannot ensure that the solution provided will be suitable. We
need to make several runnings of the algorithm to obtain a competitive result.
However, this situation may be because of the complexity of the problem to be
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solved, if the solution space has a large number of local optimal solutions.

6 Conclusions

In this work, we have developed a meta-learning procedure for dynamical recur-
rent neural networks, based on the Scatter Search technique. It has been applied
to the time series prediction data of the competition in ESTSP-2007. The re-
sults in the test experiments have provided a suitable prediction for the last 75
values of the known data. However, a large number of local optimal solutions in
the problem have not allowed the algorithm to find the best solutions in all the
cases, therefore decreasing the robustness of the algorithm to solve this problem.
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Abstract. The identification and selection of adequate input variables and lag
structures without domain knowledge represents one the core challenges in
modeling neural networks for time series prediction. Although a number of linear
methods have been established in statistics and engineering, they provide limited
insights for nonlinear patterns and time series without equidistant observations and
shifting seasonal patterns of varying length, leading to model misspecification.
This paper describes a heuristic process and stepwise refinement of competing
approaches for model identification for multilayer perceptrons in predicting the
ESTSP’07 forecasting competition time series.

1. Introduction

Artificial neural networks (NN) have found increasing consideration in forecasting
theory, leading to successful applications in time series prediction and explanatory
forecasting [1]. Despite their theoretical capabilities, NN have not been able to
confirm their potential in forecasting competitions against established statistical
methods, such as ARIMA or Exponential Smoothing [2]. As NN offer many degrees
of freedom in the modelling process, from the selection of activation functions,
adequate network topologies of input, hidden and output nodes, learning algorithms
etc. their valid and reliable use is often considered as much an art as science. Previous
research indicates, that the parsimonious identification of input variables and lags to
forecast an unknown data generating process without domain knowledge poses a key
problem in model specification [1, 3]. This becomes particularly important, as
complex time series components may include deterministic or stochastic trends,
cycles and seasonality, interacting in a linear or nonlinear model with pulses, level
shifts, structural breaks and different distributions of noise. Although a number of
statistical methods have been developed to support the identification of linear
dependencies, their use in nonlinear prediction has not been investigated in detail.
Therefore a structured evaluation of different methodologies to specify the input
vector of NN in time series forecasting is required. This paper contributes to the
discussion, presenting an analysis of different methodologies of input variable
identification through an empirical simulation on the ESTSP forecasting competition
time series. This paper is organized as follows. First, we briefly introduce NN in the
context of time series forecasting and various methodologies for input variable



identification. Section III presents the experimental design and the results obtained.
Finally, we provide conclusions and future work in section IV.

2. Methods

2.1  Forecasting with Multilayer Perceptrons

Forecasting with NNs provides many degrees of freedom in determining the model
form and input variables to predict a dependent variable y . Through specification of
the input vector of n lagged realisations of only the dependent variable y a
feedforward NN can be configured for time series forecasting as
$iu=F(9Y 45 Y, )+ O by including i explanatory variables x, of metric or
nominal scale for causal forecasting, estimating a functional relationship of the form
y=f (xl,xz,...,x:) . By extending the model form through lagged realisations of the
independent variables x,,_, and dependent variable y,_, more general dynamic
regression and autoregressive (AR) transfer function models may be estimated. To
further extend the autoregressive model forms of feedforward architectures, recurrent
architectures allow incorporation of moving average components (MA) of past model
errors in analogy to the ARIMA-Methodology of Box and Jenkins [4]. Due to the
large degrees of freedom in modelling NN for forecasting, we present a brief
introduction to specifying feedforward NN for time series modelling; a general
discussion is given in [5, 6]. Forecasting time series with NN is generally based on
modelling a network in analogy to an non-linear autoregressive AR(p) model using a
feed-forward Multilayer Perceptron (MLP) [1]. The architecture of a MLP of arbitrary
topology is displayed in figure 1.

Fig. 1: Autoregressive MLP for time series forecasting.

In time series prediction, at a point in time f, a one-step ahead forecast y,,, is
computed using p=n observations y,,y, ;,...,Y¥,_,, irom n preceding points in time
t,t-1, t-2, ..., t-n+1, with n denoting the number of input units of the ANN. Data is
presented to the MLP as a sliding window over the time series observations. The task
of the MLP is to model the underlying generator of the data during training, so that a
valid forecast is made when the trained ANN network is subsequently presented with
a new input vector value [5].
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The network paradigm of MLP offers extensive degrees of freedom in modeling
for prediction tasks. Structuring the degrees of freedom, each expert must decide upon
the selection and sampling of datasets, the degrees of data preprocessing, the static
architectural properties, the signal processing within nodes and the learning algorithm
in order to achieve the design goal, characterized through the objective function or
error function. For a detailed discussion of these issues and the ability of NN to
forecast univariate time series, the reader is referred to [1]. The specification of the
input vector has been identified as being particularly crucial to achieving valid and
reliable results, and will be examined in the next section.

2.2 Input Variable Selection for Multilayer Perceptron predictions

The identification of relevant input variables and variable lags aims at capturing the
relevant components of the data generating process in a parsimonious form. In time
series modeling, it is closely related with identifying the underlying time series
components of trend and seasonality and capturing their deterministic behavior in lags
of the dependent variable. A simple visual analysis of the time series components
frequently fails to reveal the complex interactions of autoregressive and moving
average components, multiple overlying and interacting seasonalities and nonlinear
patterns. Several methodologies have been developed for input variables selection of
the significant lags in forecasting, originating from linear statistics and engineering.
However, currently no uniformly accepted approach exists to identify linear or
nonlinear input variables [1].

Seasonality is frequently identified following the Box-Jenkins methodology of
linear statistics [4] as a mixture of autoregressive and moving average components.
The specification of a parsimonious input vector requires a stepwise analysis of the
patterns in the plotted autocorrelation function (ACF) and partial autocorrelation
function (PACF) to identify statistically significant autoregressive lags of the
dependent variable and of moving average lags of the errors of past predictions. The
iterative methodology is frequently employed in identifying significant lags for NN
forecasting, following Lachtermacher and Fuller [7]. As in detrending, no consensus
exits on whether a time series with identified sesonality should be deseasonalised first
to enhance the accuracy of NN predictions [3, 8, 9] or seasonality be incorporated as
AR- and MA-components in the NN structure [10-13]. Earlier studies in MLP
modeling claim that an analysis of the AR-terms purely from PACF-analysis is
sufficient to identify the relevant lags of the time series [14]. However, an AR-
analysis can only reveal linear correlations within the time series structure, but not of
linear moving average components that require the use of recurrent NN architectures.
In addition, ACF and PACF analysis allow no identification of nonlinear
interdependencies [1]

In addition, spectral analysis (SA) may provide additional information on the
linear autoregressive structure of multiple seasonalities with overlaying periodicities
in comparison to an ACF - & PACF-analysis [15], albeit losing information on the
potential moving average structure. SA expresses a time series as a number of
overlaid sine and the cosine functions of different length or frequency. It identifies the
correlation in a periodigram using Fast Fourier Transforms (FFT), which plot the
power spectral density versus the frequency of the signal to identify frequencies of
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high power as an indication of a strong periodicity. To recode the power spectrum as
lags instead of frequencies, we plot the horizontal axis of the periodogram as n/2 lags
of the time series. This allows a direct association of the power and lags, since the
power is expressed in non-continuous terms and directly associated with a specified
lag. Significant spikes in the periodigram identify interrelations as input lags for the
NN model, which will allow the network to learn and extrapolate the overlaying
periodicities. Consequently, SA can be employed in analogy to the ARIMA-
methodology to identify periodicities and lags in the time series.

3. Experimental Design

3.1 Exploratory Data Analysis

A single time series of 875 observations, displayed in fig. 1, was provided for the
forecasting competition of the 2007 European Time Series Symposium (ESTSP).
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ESTP2007: Competition time series

Fig. 2:

The ESTSP competition evaluates the forecasting accuracy on a single time
series from a single time origin using the mean squared error (MSE) on the next 15
and the next 50 observations. No domain knowledge was provided to aid the
identification of a suitable input vector or network architecture, making the selection
of input variables one of the core problems in the competition task. Several different
modelling approaches were evaluated, including visual analysis, Autocorrelation
analysis and Spectral analysis using FFT.

A visual analysis of the time series reveals a non-trended, seasonal structure of
approximately 52 observations with a high signal to noise ratio and a single seasonal
outlier that promises easy approximation and extrapolation with a deterministic sine
function and exogenous outlier correction. A further visual analysis of the repeating
sine pattern displays the repetitive structure in a seasonal diagram, overlying each
season containing 52 observations as separate time series displayed in fig. 2. The
seasonal diagram confirms a general seasonal structure and two outliers. Although the
series seems to obey a 52 observation seasonal length, the peaks of multiple series do
not correlate adequately as visualised by the horizontal shift of the series. In contrast
to a vertical variation caused by the inherent randomness of the series this indicates an
inconsistent or shifting seasonal pattern. The length of 16.8 seasons in the complete
series also suggests a seasonality of varying length, rather then an incomplete time
series with 9 missing observations. To evaluate this a simple benchmark using a 52
period seasonality in a #-52 lag structure is modelled and evaluated in MLPyarve -
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Fig. 3: Seasonal diagram of a 52 observations length

Furthermore, the time series was annotated in a descriptive analysis, to analyse
the properties of the seasonal structure of the time series in further detail. Fig. 3 shows
the time series plot overlayed with a sine of 52 observations period length.
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Fig. 4: Time series overlaid by a 52 observations period sine.

Two anomalous seasonal patterns are evident from observation 350 to 450 and
in the last season from 825 to 875. Before each anomalous pattern 7 normal seasons
are identifiable, with a further pattern of 2 seasonal peaks with increased magnitude
every 2 and 3 seasonal patterns apart, indicated as shaded seasons in fig. 3. Although
this may suggest a structural pattern in the data generating process, and that an
important deviation from the more general model form may be expected for the final
ex ante forecasted seasonality, too limited evidence of 1 full cycle is provided. Hence
we must consider leaving the anomalies as part of the general model structure or
modelling them as outliers using binary dummy variables for NN predictions.

Additionally, a comparison of the time series in fig.3 and a sine function with
constant seasonality of 52 observations reveals a varying length of the seasonal
patterns. To quantify the pattern of varying seasonal length we estimate the number of
observations between each seasonal maxima and minima, applying a 9 period moving
average to smooth out randomness. The variation of seasonal lengths in Table 1
shows an average length of 52.06 observations between minima with a standard
deviation of 2.59 observations and a significant range of up to 10 observations.

Season 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Length 52 52 51 51 53 51 55 53 50 51 56 49 50 53 58 48

Table 1: Varying seasonal lengths of the time series.

The average length of the seasonality of 52.06 is supported by the visual
analysis of the seasonal pattern. However, it biases the identification through ACF
and PACEF analysis as well as the SA periodigrams, as the temporal interdependencies
vary along the time series. Also, the varying seasonal length provides problems as
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conventional MLP models assume an AR(p)-process with a deterministic seasonality
in an input vector of fixed length. However, the varying seasonality appears to be not
entirely stochastic, as a plot of the seasonal lengths in Fig. 4 suggests a regular pattern
that may allow exploitation to predict the seasonal length of the forecasted period
through the model form or an explanatory variable.
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Fig. 5: Length of the time series “sine blocks”

In contrast, the autocorrelation analysis following the Box-Jenkins methodology
reveals contradicting information on the more complex structure of the time series.
The analysis of the ACF and PACF patterns provided in figure 5a and 5b allow an
iterative identification of the significant seasonal or shorter lags using single or
seasonal differencing.

, “lllnf..,q”m“"“mmll,,_,,mllllll“lllllll s

Fig. 6: ACF plot (a.) and PACEF plot (b.) of the ESTSP competition time series
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The information on the seasonal structure derived from fig. 5 is ambiguous. The
ACEF plot in fig. 5a reveals a significant seasonal autoregressive process in a decaying,
sinusoid pattern of the ACF of a length shorten then 52 periods. In contrast, in the
PACEF of figure 3b only the first lag is found to be statistically significant at a 0.95
level, and no significant lags are identified around the 26" or 52" lag. Hence we can
not conclude a statistically significant linear seasonal autoregressive process of length
52 from the ACF analysis, despite the series visual appearance. In addition, no
moving average process is identified either. An augmented Dickey-Fuller unit root
test confirms the stationary form of the time series; hence further differencing
provides to no additional information. Consequently, the Box-Jenkins methodology
does not allow valid and reliable identification of the model form of this time series,
which will later be reflected in the poor performance of the MLPacr candidate models
created using the input vector identified by the ACF-Analysis.

To further analyse the periodicity of the time series a spectral analysis was
conducted to reveal information that the autocorrelation analysis may have missed. A
variation of a periodogram shows the first 60 lags instead of the frequency along the
horizontal axis in fig. 6, as the remaining lags were found to be insignificant.
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Fig. 7: Periodogram expressed in lags for the first 60 lags.

The periodigram in fig. 6. identifies the 1% and the 18" lag as highly significant,
plus a set of additional lags {2, 3,4, 6,7, 8,9, 14, 17, 19, 20, 22, 34, 35, 51} to be of
lesser significance. Interestingly, the 52™ lag is again insignificant despite the visual
appearance of a 52-observation seasonality. In contrast, lag 51 and preceding lags are
found to be significant, which contradicts the analysis in the seasonal diagram in fig.
2 and the ACF and PACF cycles of 26 observations in figure 3a. As different
approaches of data exploration lead to different input vectors we consider both lag-
groups as candidate models MLPggr in the later evaluation to build MLP forecasts.

3.2  Artificial Neural Network Models

We create a NN model for each of the three candidate methods of data exploration.
First, based upon the visual analysis of the seasonal diagram an input vector
containing only the last seasonal lag of the dependent variable y,s; is created, named
MLPyarve according to the seasonal Naive forecasting method [16] which serves as a
benchmark. In addition, two NN candidate architectures using the input vector
identified by the Box-Jenkins methodology of autocorrelation analysis are created,
using lags of {y,, y..1, y.»} named MLPg;_; and using {y;, y.1, y.-2, Y51} named MLPg;j.,
including the plausible ACF information found statistically insignificant in the PACF
function. Using the spectral analysis and FFT to determine input lags, three distinct
candidate models were created, using additional information on the time variation of
the seasonality and the outlier seasons. First, a basic MLPger was created using an
input vector of the significant lags as identified by the SA {y, y.1, .-+, Yi.8 Y135 YVi165
wees V19 Y215 Yi-33 Y345 Yiso}. In addition, a MLP using only the highly significant
lags of {y,, y.;7} is evaluated but discarded due to significantly inferior results.

In order explicitly model the varying length of he seasonal cycles in the time
series an explanatory variable is created to encode the seasonal length. Using the
number of observations between consecutive minima in table 1 the relative position of
each observation in each season was calculated. We divided an arbitraty number of
100 by the number of observations per season, creating a time series of {2, 4, 6, ...,
100} for a season with 50 observations, {1.851, 3.703, 5.555, ..., 100} for a season
with 54 observations etc. Essentially, this created a temporal mapping that translated
the relative position of each observation in a season of varying length onto a
stationary level. A MLPrgyp using the temporal encoding as an explanatory time
series x, was created, using only the explanatory variable {x,,;} in 7+ as an input. In
addition, a topology using the lags identified from the FFT was created utilising the
lags only for the dependent time series {Y;, Vi1, ---» V-8 Yi-13> Vi-16s ««-» Vi-19 Yi-215 Y1335 Vi
34 Yiso} and {x,,;} for MLPrgmp.per. , using the FFT lags only on the explanatory
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time series of the temporal encoding {x;, X, 7, «.., X8, X1.13s X165 «-+s X1-195 X121> X1.335 X1-345
x50} for MLPrgyvp pero, and using the FFT lags on both the time series y, and the
temporal encoding x, for MLPrgpp_ger3.

In order to eliminate the impact of the two abnormal seasonal profiles in the mid
section of the time series a binary dummy variable z,€{0, 1} was created with the
value ‘1’ for the two abnormal seasons and ‘0’ otherwise. An input vector using only
contemporaneous realizations of the explanatory variables for temporal encoding x,
and the time series of the binary dummies z, was created {x,;, z,4;} for MLPgn.TEMP-
In addition, corresponding topologies using the identified lags from FFT analysis
were created for only the dependent variable y, as MLPgn temp prr-1, Using the FFT
lags for both time series of the dependent variable y, and time mapping x, as MLPgn_
temp-rrr2 and a topology using the FFT lags only for the explanatory series for time
mapping as MLPgn temprrr 3. Finally, we created a topology using the FFT lags on
all three time series y,, x, and z, as MLPgn.TEMP-FFT-4-

For the comparative analysis of alternative input vectors prior to the final
predictions the time series was sequentially split into 60% observations for training,
20% for validation and 20% for out of sample testing. All data was linearly scaled
into the interval of -0.6 to 0.6 to avoid saturation effects of the activation functions.
As no indication for a MA-process that would require recurrent topologies could be
determined from the ACF & PACF data analysis, we limited our evaluation to
feedforward architectures of MLP. All MLPs architecture contained a single output
node for iterative one-sep ahead forecasts up to 50 steps into the future,
Vs Viysees V,.s - For each MLP candidate, we evaluate topologies with 1 ... 20
hidden nodes in steps of 4 for a single and two hidden layers. Each network was
initialised 20 times with randomised starting weights to account for local minima. It
was then trained for 1000 epochs on minimising the final evaluation criteria MSE
using the backpropagation algorithm with an initial learning rate of n=0.5 that was
decreased by 1% every epoch. Training was terminated using early stopping if the
MLP did not decrease the MSE over 0.1% in 100 epochs. A composite error of 30%
training MSE and 70% validation MSE was used to avoid overfitting effects on the
validation set in early stopping. We select the network topology and initialisation with
the lowest composite early stopping error and evaluate its accuracy. All MLP models
were calculated using the software BISlab Intelligent Forecaster (IF).

4. Experimental Results

The experimental results provided in table 2 give an overview of the criteria used to
specify the input vector for the dependent variable y, the explanatory variable
mapping temporal seasonal lengths x, and the binary variable for outlier mapping z,.
Although the simple approach of a seasonal naive model MLPyave
demonstrated adequate accuracy on validation and test data, a visual inspection of the
predictions showed unsatisfactory results of extrapolating only a simple sine pattern,
without replication of the outliers or the shifting seasonality. However, in accordance
with established practice in forecasting a naive approach may serve as a parsimonious
benchmark to compare potential improvements of more complex model forms.
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Vi X Z MSE MSE MSE MSE
Predictor Time Outlier Train Valid Train Test

Variable Mapping Coding &Valid
MLPxawve t-51 - - 3.95 0.86 1.79 0.75
MLPg;, BJ-1 - - 6.24 6.20 6.21 4.75
MLPg;, BJ-2 - - 5.12 4.39 4.61 2.92
ML Py FFT - - 1.70 0.81 1.08 2.12
MLPrrmp - t+1 - 2.23 0.46 0.99 0.55
MLPpyvprrr-1 FFT t+1 - 1.38 0.68 0.89 0.86
MLPpyvprrr2 - FFT - 1.53 0.64 0.97 0.72
MLPypmppir3 FFT FFT - 1.60 0.70 0.91 3.92
MLPgiN rimp - t+1 t+1 1.32 0.43 0.70 0.52
MLPRIN-TEMP-FFT-1 FFT t+1 t+1 0.60 0.60 0.60 0.33
MLPgiN rimprrr2 FFT FFT t+1 0.44 0.55 0.51 0.68
MLPgiN rimprr 3 - FFT t+1 1.21 0.45 0.68 0.61
MLPgN tEMprrT 4 FFT FFT FFT 0.41 0.70 0.55 0.59

Table 2: MLP candidate inputs and MSE on training, validation and test set

Both MLPg;; and MLPg;j., using the Box-Jenkins methodology for input vector
specification failed to approximate the shifting seasonality or the anomalies in the
training set. As a consequence, the provided only a smooth sine curve with
dampening magnitude on the validation and test set, leading to higher MSE then the
MLPyave benchmark on all data subsets. Due to the nature of the varying seasonality,
the specification of alternative lag structures did not increase accuracy either.

Similarly the MLPggr using SA and FFT to identify potential multiple overlying
seasonalities failed to generalize on the test set, although providing significantly
better results in approximating the pattern in sample. as indicated by the lower in
sample errors on training and validation set. Again, the MLP were unable to capture
the anomalous observations and the shifting seasonal length across different
initializations and topologies, justifying a different modeling approach in providing
additional information on seasonal length through explanatory variables.

The MLPg\p topologies using the temporal encoding x, as a causal variable in
t+1 reduced MSE in sample and out of sample, supporting the importance of external
coding of shifting seasonal lengths. The forecasts showed a repeating sine-pattern of
varying seasonality, closely resembling the observed time series frequencies.
However, the MLPrgyp failed to capture some subtle repetitive patterns that previous
models using FFT lags had been able to approximate. In contrast, the MLPrgyp.per-1
utilizing the lags identified from SA on the time series of the dependent variables {y,,
Vids +es Yi-8s Viel3s Yied6s «+» Vio195 Ye-21s Vi3> Vi34 Yeso} plus a temporal coding showed
little error improvement in comparison to MLPrgyp. However, providing the FFT lags
only on the temporal variable {x,, X, ..., X.8, Xi.13, Xi-165 - > X119, X1:215 X1.33, X1.34» X150}
for MLPrgwvp.rrr2 allowed a closer approximation of different periodicities and a
significant increase in accuracy on the hold out data of the test set.

Despite reduced errors the seasonal anomaly observed in the time series could
not be explained and negatively affected the accuracy of the approximation in sample.
As only a single anomaly could be observed and no MLP model had shown the
capability of approximating it as part of the data generating process, the lack of
further evidence suggested an exclusion of these outliers from model building using a
binary variable in addition to the previous models of temporal encoding and FFT lags.
The the binary outlier variable in MLPgn.temp €nhanced the in sample approximation
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and reduced the training MSE significantly. In addition, it further reduced the errors
on the validation and test set in comparison to the previous topology of MLPrgyp. A
use of the dynamic FFT lags on the three variables y, x and z resulted in the selection
of MLPgn.temp-rrr2 With the lowest composite error of in sample approximation and
out of sample generalization for the final forecasts. Fig. 7 illustrates the models
iterative #+1, ... 450 step ahead prediction of multiple overlaying 50 period ahead
forecasts originating from each point of the time series. The graph shows that the
MLP has adequately learned the pattern on training and validation set, including the
abnormal seasonality coded as outliers, except the last seasonal pattern also possibly
containing an outlier.

b

&

=, Fiy
i Fi i

[
o

oo
o
N\.
|
v
e

cofrainie 150 200 2500 300 350 400 450 Son SevAlidabion o oo Gemenalisstion Aon
Fig. 8: 50 periods forecasts originating from each point of the time series

The selected MLPgin.TEMp.FFT-2 Utilises the 16 lags identified by the FFT for the
dependent variable y,, the explanatory variable of temporal coding x, and a single
explanatory dummy variable to encode the outlier z,,;, constructing an input vector of
37 variables. The MLP uses two hidden layers of 20 nodes each with a logistic
activation function and a single output node with the identify function. The model is
used to compute the final forecasts 50 steps ahead, as shown in fig. 8.
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Fig. 9: The time series is plotted with the forecasts

The final ex ante forecasts required the prediction of the temporal explanatory
variable beyond the provided dataset. A decision upon the position of the minimum of
the last observable season and the expected length of the next seasonal cycle outside
the provided data was based upon the regularity in seasonal cycle length observed in
fig. 4 and the ESTSP competition objectives. Hence the next seasonal cycle was
expected to be 50 observations for the final ex ante forecasts.

5. Conclusions

We evaluate a number of conventional methodologies of visual inspection,
autocorrelation analysis and spectral analysis to specify significant input variables for
NN prediction on the ESTSP competition time series. Due to the particular nature of
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the series, containing a seasonal pattern with varying length and anomalous
observations, the conventional approaches fail to specify adequate input variable lags.

To compensate for this we propose a dynamic causal modelling approach,
coding the shifting seasonal cycle length and the outliers in explanatory variables,
utilising the same temporal lag structure as identified in the original time series using
spectral analysis. Although ACF & PACEF analysis as well as SA fail to identify the
input lags, they are frequently applied in NN modelling where they have a proven
track record in identifying seasonal patterns of constant cycle length. Hence the
results provided here should not be generalised beyond the single time series. In
comparison, SA based upon FFT periodigrams demonstrate a better performance in
extracting more information regarding periodic effects from this time series.
However, this may again prove misleading for moving average processes which
require identification in ACF-plots and subsequent modelling with recurrent NN.

Fur future research, a systematic evaluation of methodologies for input lag
identification is required, extending the analysis to multiple time series, multiple time
origins to increase generalisation and to unbiased error metrics, avoiding over
penalisation of high deviations and outliers from squared error measures.
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Abstract. A nonlinear dynamical system behavior near the supercritical pitchfork
bifurcation point is considered. The time series statistical characteristics
dependency on the bifurcation parameter is given. The bifurcation forecasting
using the time rows statistical characteristics analysis is discussed.

Introduction

Nowadays, the nonlinear mathematical models are widely used for researching the
complicated systems behaviour in the various areas of exploration, including the ones
related to the sciences still not considered as exact sciences: medicine (cardiology,
psychology), sociology, economics, history, and so on. A bifurcation of a nonlinear
system in a model like that can have an important practical meaning. For instance, the
following fact is known: if a system is in a stable state, then a considerable effort is
needed to transfer this system to another stable state. Practically, this means the
following: if a controlled object is in a stable state, and this state is not appropriate for
us, then in many cases we are not able tho change the state of the object.

A fundamentally different case is observed, when the system goes through a
bifurcation point. In this case there is a possibility to choose the way of further
evolution, by making comparably small effort. Here, the two classes of the practical
problems are arised. First, a retrospective analysis of the system behaviour: detecting
the critical moments in the past, and researching the possible alternative ways of
evolution (the analysis problem). Second, forecasting the bifurcations, and applying
the controlling efforts in the appropriate direction (the synthesis problem).

The following question emerges naturally: which universal and stable signs
accompany a bifurcation, and do these signs become apparent before? Now it is
known, that these questions can be answered studying the behaviour of the system
undergoing a weak noise. Let the studied system be modelled by a system of
nonlinear ordinary differential equations (or nonlinear maps) disturbed by a weak
noise. Nowadays, it is shown for some different cases, that in the neighborhood of a
bifurcation point, noise in the system tends do grow [1,2,3]. Probably, this
phenomenon is universal.

Thus, the problem can be stated the following way. First, according to the
specific of the studied system, determine, what can be considered as noise, and which
way it can be measured (for instance, in the case of studying a society, the minor
crimes, or the dynamics of the printed periodicals replication, or the career dynamics
in the political structures, can be considered as a weak noise). Then, retrospectively
research the system behaviour, and observe the anomalous growth of the noise, to



check, whether the right choice of the noise was made, and to receive some additional
information about the system and its parameters. Next, the information received can
be used for prognosis. The prognosis accuracy will depend on the amount of the
information.

Time series statistical characteristics near the bifurcation point

The present work discusses the noise rise phenomenon in the case of the bifurcation
in the simple ordinary differential equation

i=x(A-x"), (D
where A is a parameter. Increasing the parameter, at the critical point 4 =0 the
supercritical pitchfork bifurcation occures: the x =0 stable state loses its stability,

and the two new stable states appear, x = i\/z .

Let the system (1) undergo a brownian noise: at the moments f; some random
number ¢ is added to the x variable. Also, let the noise be uniformly distributed and
periodic:

174, |¢<a/2
“o. g > 4/2

—
¢ 2\/5

t, -t =T, i=0,1,2, ..

+

Thus, x(¢) will be a kind of random process, which will form some input time

series x(t/_) (let the discretization be periodic with the period of Ty). To derive its

statistical characteristics, it is useful to replace a single system (1) by a set of
independent systems each undergoing independent noise. This way, the problem can
be reduced to considering the diffusion in a potential well. So, the main integral
characteristic of the noise is the coefficient of diffusion

K= J K(f)fzdf,
0
where K (&) is the space-time noise distribution:

1
K(éf):Ef;-

B

By equating the brownian flow caused by the concentration gradient with the
flow caused by the potential gradient and taking into account the ergodicity

assumption, one can get the expression for x(tj ) distribution
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can be evaluated numerically (fig. 1).
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Fig. 1: x(tj) time series variance growth in the neighbourhood of the bifurcation

point. Dots mark the experimental data, dash and dash-dot lines show the
asymptotes. Solid line denotes the numerical evaluation of (3).

The numerical simulation results showed, that the x(t) signal distribution

changes in the neighborhood of the bifurcation point according to the equation (2). It
is worth mentioning, that the qualitative character of the system behavior is similar
for the case of another kind of noise (for example, the normally distributed one) or
different discretization frequency.
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Conclusion

Thus, when it is known, that the supercritical pitchfork bifurcation can emerge in the
system, then its moment can be forecast using formulas (2) and (3) applied to the time
series statistical characteristics.
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Abstract. The goal of data analysis in a business organization is simple: facilitate
effective decision-making in terms of resource allocation and marketing strategies.
In this paper, the usage characteristics of the customers of a content provider are
analyzed and modeled. Such analysis and model may be used to forecast the
network requirements and strategically schedule marketing campaigns. Initial
results suggest that demand for content services exhibit time-of-day and day-of-
month sensitivities, and seasonality.

1 Introduction

The Philippines has earned the distinction of being the text capital of the world. In a
country where there are 10 times more mobile lines than fixed telephone lines and an
estimated 250 million text messages exchanged daily [1], this distinction is not at all
surprising. To the Filipino, sending text messages is a very economical and
convenient form of communication.

The Filipino’s fascination with the mobile device did not escape the attention of
enterprising businessmen. It was an opportunity to earn big revenues while providing
new forms of entertainment, information-on-demand and social interaction. A new
business form called content provision was introduced to the market. Content
providers or CPs create applications called value-added services (VAS) which are
accessible to cellular phone users via subscription. The value-added services easily
became a craze making the CP business a competitive arena. As of the moment, there
are over a hundred CPs operating locally with the top ones having about 80,000
subscribers.

Being in such a competitive market, content providers need to understand the traffic
patterns of usage of their subscribers. Knowledge of traffic patterns is useful for
network design and planning. For example, information about the bandwidth usage
patterns for the different services of telecommunications companies helped determine
the future network architectures and resources based on current demands [2, 3, 4].

This paper aims to model the behavior of usage for the services of a content
provider. Using time-series data, it will examine this behavior to see whether it is
subject to trend, seasonality, and sensitivities to the time-of-day, the day-of-week and
the day-of-month. Finally, a model will be constructed to fit the time-series data. This
model can later be used to forecast the future usage of the services.



1.1 Statement of the Problem

This paper aims to model the traffic patterns for content services. In particular, the
following questions are to be answered:

1. What trends are exhibited by the usage? By examining the trends exhibited,
the business manager can predict whether the demand for value-added
services follows an upward or downward trend.

2. Do the time series exhibit time-of-day/day-of-week/day-of-month sensitivity
in usage that is similar to sensitivities found in other related industries [3]?
Knowing these sensitivities is helpful for three reasons:

e By knowing the time-of-day sensitivities, the service provider can
dimension the network load to accommodate peak times since
quality of service declines when the network is overloaded;

e By knowing the day-of-week sensitivities, maintenance operations
can be scheduled so that they do not hamper the overall
quality/delivery of service;

e By knowing the day-of-month sensitivity, marketers can schedule
their product promotions appropriately.

3. Are there any seasonal patterns in the usage of the services offered by the
content provider similar to those found in studies for wireless
communication services? Discovery of seasonality will again help marketers
in scheduling promotions efficiently.

1.2 Definition of Terms

Forecasting is defined as the prediction of future events by examining the past. For
example, stock analysts use various forecasting methods to determine future stock
price movements and earnings. Economists too use forecasting techniques in order to
determine future economic trends.

There are two general types of forecasting methods: qualitative and quantitative.
Qualitative methods make use of human experts’ opinions to predict the future values
of the object being observed. These methods are limited by the absence of accurate
measurement as well as the experts’ bias. On the other hand, quantitative methods
use statistical analysis of past data at various points in time and thus reliable measures
of accuracy exist. This paper uses only quantitative methods to come up with more
objective forecasting models.

Quantitative methods are further classified into time-series models and causal
models. Time-series models are based on the analysis of a chronological sequence of
observations on a particular variable while causal models assume the variable to be
forecasted is explained by the behavior of one or more variables.

The operations of a content provider naturally lead to an accumulation of time series
data. When a subscriber sends a text message to the content provider to pull the
current content of the service he is subscribed to, this is recorded as an incoming text
message record. However, only the aggregated count per hour has been used.
Aggregation has been used for two reasons: first, to reduce the size of the data and
second, to examine attributes of data that are often more stable than that of individual
records [5].
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There are two aspects in the study of time series — analysis and modeling. In
analysis, the objective is to identify the properties of the series. Particular properties
focused on are trends and seasonality. Trend is defined as the persistent upward or
downward movement while seasonality refers to a pattern of change in the data that
completes itself within a calendar year and then is repeated on a yearly basis. Figures
1 and 2 show time-series data with trend and seasonality, respectively.
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Figure 1. Time-Series with Trend
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Figure 2. Time-Series with Seasonality

After these properties have been identified, a model will be constructed to represent
the behavior of the time-series data. This model may be used to forecast future values.

In finding the best model for a time-series, different measures of accuracy may be
employed: mean absolute error (MAE), mean absolute percentage error (MAPE),
mean square error (MSE), and root mean square error (RMSE). As a general rule, the
smaller the values of these measures, the more accurate is the fit of the model.
Another statistical measure of forecast accuracy is the Theill’s U which compares the
accuracy of a forecast to that of a naive model. A Theill’s U greater than 1 indicates
that the forecast is worse than the naive model; a value less than 1 means the model is
better. The closer the Theill’s U is to 0, the better the model. In practice, values of
0.55 or less are very good [6].

The problems stated above are time-series problems: the objectives are to look at
the characteristics of the time-series data: trend, temporal sensitivity, and seasonality.

2 Review of Related Literature

There are two aspects in the study of time series — analysis and modeling [7]. In
analyzing the time series, the objective is to identify the properties of the series; on

213



the other hand, in modeling, the objective is to be able to use the model to enable
forecasting of future values.

Time series modeling consists of the following activities:

1. Plotting the series to examine the main features of the graph. Observation
should be focused on the presence of a trend, a seasonal component, and
apparent change in behavior, e.g., temporal sensitivity.

2. Usage of decomposition techniques to identify the components of the time-
series data: trend, seasonal variations, cycle, and irregular or error
fluctuations [6, 8].

3. Once these components are identified, forecasting methods are applied to
each component.

4. The combined forecast components provide the time series forecast.

In finding the model for the time-series data or any of its components, several
simple forecasting techniques have been used in past researches. One technique,
called naive forecasting, uses the last observed value to predict the future value. The
use of moving average model has been shown to be efficient [9]. This model makes
prediction based on the mean computed from the most recent data. For example, to
construct a three-period moving average, one would use the current observation and
the two previous time period observations. A variation of moving average is the
centered moving average (CMA). A CMA model centers its average on the current
period using both the previous time period observations and the forward time period
observations. Another simple forecasting method is the exponential smoothing which
is based on the exponentially weighted average of all past observations [10].

3 Hypotheses

So far, no in-depth research has been done on the usage patterns of consumers
availing of value-added services in the local setting. Knowledge of this may be useful
to content providers in terms of resource allocation and marketing strategies.

This paper attempts to test the following hypotheses:

1. The usage (as exhibited by the number of requests for a VAS) exhibits an upward
trend. The lower costs of handsets enable more people to own mobile devices.
Hence the potential customer base of content providers is increasing, increasing
the demand for value-added services as well.

2. The usage of value-added services exhibits time-of-day and day-of-month
sensitivities. Pemmaraju [3] discovered uniform usage pattern on a daily basis
among Internet users but varying usage on a per-hour basis. The CP manager
observed similar patterns in the demand for value-added services:

a. The usage attains its peak early in the morning and toward lunch, while
the usage for the rest of the day is very low.

b. The usage on a monthly basis attains its peak during the first and third
weeks of the months. It may be speculated that this is due to the fact
these periods coincide with the payroll periods of most employees in the
country, during which time the people have money to spare in availing
of the services.

c. The CP manager has not expressed any observation of variation in the
demand on a weekly basis. However, this paper would like to test
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whether such day-of-week sensitivity similar to that found in stock
market studies is also present in the demand for content services.

3. The usage of value-added service exhibits seasonality. Kohandani et al [11]
observed seasonality in the wireless traffic data. In the case of the content
provider, the usage is high during the periods that school is out since young
people (who are more likely to be interested to subscribe) will have more time to
use the services.

4 Methodology

Data analysis and modeling in time series is accomplished in several stages. Data
acquisition for this paper has been done by queries to the CP's database.

For the time series analysis, the counts of the transactions have been aggregated
according to the following relevant time dimensions: per hour and per day. Tables 1
and 2 show the data structures returned by the database queries.

Month of Text | Day of Text | Time of Text | Number of Text Messages
June 4 1 5
June 4 2 7
June 4 3 8
Table 1. Structure of Hourly Aggregates Query
Month of Text Day of Text Time of Text
June 4 500
June 5 720
June 6 238

Table 2. Structure of Daily Aggregates Query

For example, in Table 1, the first line means that on June 14 at 1 AM, there was a
total of five text messages received from the subscribers. On the other hand, in Table
2, the first line means that on June 4, there was a total of 500 text messages received
from the subscribers.

Then, a variable transformation (i.e., averaging) has been performed to compress
the range of values [5]. The following transaction averages were computed: hourly,
daily, monthly, and day-of-week (where 1 is Sunday, 2 is Monday, etc.). These time
series data were then plotted on separate graphs, in preparation for analysis and
eventual modeling.

A number of possible models will be examined and evaluated for fitness to the time
series data as well as in modeling its components. The modeling techniques (naive
forecasting, simple moving average, centered moving average, and exponential
smoothing) listed in the literature review will be considered in the analysis. These
techniques were chosen because of their strengths as proven in previous researches.

Then the decomposition method will be used to find the trend, seasonal, cyclical,
and error components of the time series data in an attempt to find the most suitable
model for the data at hand. Since the CP business is a relatively young industry,
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cycles in the time series cannot yet be established. Hence the general form of
decomposition technique used is expressed as

Y,=[(T,.5,.¢)
where Y, is the time series (or observation) at time ¢
T, is the trend component at time ¢
S, is the seasonal component at time ¢
e is the error (or residual) at time ¢
The most common forms of decomposition are the additive decomposition
Y =T +85, +e,
and the multiplicative decomposition
Y =T xS, Xe,.

5 Results and Discussion

The time series data are plotted in Figures 3, 4, 5, and 6. Error bars (using the
standard error) were added to graphically show the possible error amounts relative to
each data point.

Figure 3 shows that the number of transactions attains its peak at mid-morning,
retaining the volume until around 12 PM then slowly tapering off the rest of the day.
The graph reveals that from one hour to another in the early morning, the number of
transactions is almost uniform, and the same behavior can be observed late in the day,
starting at 6 PM. The standard errors show that the neighboring points (e.g., from
time 1AM all the way to time 8 AM) are not significantly different from each other,
with the behavior significantly different starting at 9 AM. This suggests that the
demand for content services exhibits time-of-day sensitivity, confirming part (a) of
the second hypothesis.
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Figure 3. Graph of Hourly Average Transactions.

Figure 4 shows an almost uniform average number of transactions from day to day,
except for the 3, 4™ 22" and 30" days of the month. The standard errors show that
the neighboring points differ very slightly from each other for most of the days of the
month, with the behavior during the aforementioned exceptions changing
significantly. This suggests that the demand for content services exhibits day-of-the-
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month sensitivity, confirming part (b) of the second hypothesis. However, the
sensitivity does not exactly agree with what the CP manager has speculated:

1. Instead of an increased demand during the first week (right after payroll),
there was even a decrease!

2. No unusual behavior can be observed during the days of the third week
(again, right after the payroll).

3. Instead the change in behavior (a decrease) can be seen during the fourth
week. This is probably due to the fact that during the fourth week, people
have less money to spare in availing of the services.

4. Finally, an increased demand is observed on the exact date when wages are
paid.

For the first two observations, a closer examination of the dynamics of demand will
have to be performed to arrive at a more definite conclusion.
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Figure 4. Graph of Daily Average Transactions.

The graph in Figure 5 somehow tells a different story. While the time-of-day and
day-of-month sensitivities hypothesized were confirmed by Figures 3 and 4, Figure 5
does not seem to show that there is anything unusual happening on certain days of the
week. While the standard errors indicate that the values from one point to another are
not always within the range of the possible error in the averages (e.g., days 3, 5, and 7
are significantly higher than their neighboring points), all averages still fall within a
small range of values (i.e., from 3,000 to 3,500 transactions). This suggests that there
is no day-of-the-week sensitivity, in contrast to that observed for stock markets.
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Figure 5. Graph of Day-of-Week Average Transactions.

The graph in Figure 6 shows an increasing demand from the start of the observation
period (May 2005) up to March 2006. However, there was a significant drop in the
summer months, while the demand picked up again in June up to the end of the
observation period (August 2006). The standard errors show that the drops during the
summer months, especially in May, were significant. This could suggest that there is
seasonality in the demand for content services, i.e., that demand changes significantly
during a certain period confirming the seasonality statement in the third hypothesis.

217



However, again, the direction of the demand is opposite to what has been
hypothesized. Could it be that the fact that school is out decreases demand because
during this time, the young subscribers do not get allowance? Also, a longer
observation period may have to be used to get a firmer basis for the seasonality
hypothesis.
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Figure 6. Graph of Monthly Average Transactions.

As has been noted, the behavior from the start of the observation up to the month of
March 2006 exhibited an upward linear trend. A sudden change of direction happened
during the summer months, after which an increase in demand was again exhibited.
To confirm whether the upward linear trend can be concluded, trend analysis using
least squares method was employed. Using the R Statistical package, the following
results were obtained:

i R Console = =l |
Call:
Im(formula = y ~ 1 + Tm)
Residuals:
Min 1Q Median 3Q Max

—=30609 —3429 =1780 B350 13366

Coefficients:
Estimate Std. Error t value r(>|tl)
{Intercept) 27381.3 5762.5 4.752 0.000309 *#¥¥
Tm 5491.9 585.9 G215 2.54e-07 Wk
Signif. codes: 0 tewwt G001 tewrt go01 et @09 At O v v

Residual standard error: 10590 on 14 degrees of freedom
Multiple R-Squared: 0.8585, Adjusted R-squared: 0.8484
F-statistic: 84.93 on 1 and 14 DF, p-value: 2.545e-07

Figure 7. Results for linear trend analysis.

The results in Figure 7 show that there is a statistically significant dependence (at
the 1% level, t, 14 = 2.624) of usage demand with respect to time. The R” value also
indicates that 86% of the variation in the values of the monthly averages can be
explained by the independent variable. Hence there is an upward linear trend
confirming the first hypothesis.

A comparison of the different modeling techniques to predict the monthly usage
was performed. Monthly usage was the appropriate time period to consider since the
dynamics of the CP business changes on a monthly basis. Table 3 shows the results of
such comparison:
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Forecast Techniques
Measure  Naive 3-period Simple 3-period Centered Exponential
of Moving Moving Average Smoothing
Accuracy Average a=03
MAE 11,284 15,928 4,702 7,798
MAPE 0.14 0.21 0.06 0.12
MSE 229,196,109 292,206,894 56,284,583 152,495,043
RMSE 15, 139 17,094 7,502 12,349
Theil’'sU 1.0 1.13 0.50 0.82

Table 3. Comparison of the four forecasting techniques.

As shown in Table 3, of the simple techniques employed, the 3-period centered
moving average gives the best forecast since it has the lowest absolute errors and
has a Theill’s U value less than 0.55.

Applying both additive and multiplicative decompositions to the time series
yielded the following results. For the additive model:

A

Y, =Tr +Sn,
where

Tr,=72,995 + 38,624 x t

with seasonal estimates S; = 25,095, S, = - 8,624, S; = 46,139, and S, = 29,308.
The value of Theill’s U for this model is 0.29.

For the multiplicative model:
I;, =Tr XSn,
where

Tr, = 50,254 + 34,636 x t

with seasonal estimates S; = 1.2978, S, =1.1384, S; =0.9730, and S; = 1.3904. The
value of Theill’s U for this model is 0.36. Both forms of decomposition yield better
Theill’s U. Since the additive decomposition yields the best accuracy measure, this
model can be used in forecasting the monthly future values for the usage for
content services.

6 Research Directions

As more and more people get access to mobile devices, research on network traffic
management experiences a steady increase in importance. Several different
approaches for network usage modeling have been proposed. Kohandani et al [11]
introduced a new forecasting technique called the extended structural which is based
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on the basic structural model and to which new parameters have been added. Ikoma
et al [12] used non-stationary Bayesian modeling to model network traffic of dial-up
access in a university. This paper used traditional methods for modeling the usage
characteristics of content providers. Future research on this area can attempt newer
approaches to modeling. As the CP business matures and more data are gathered, the
components of the time series may be updated to reflect the change in the
environment. Hence, another direction that can be taken is to update the parameters of
the estimation.
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Abstract. This work is concerned to criminality forecast methods based on uni-
versal behavior rules of complex nonlinear hierarchical systems. In the work we
apply an approach used in earthquake prediction methods, namely, a special re-
occurrence graph slopping behavior prior to a flash-up. Using a weekly crimi-
nality militia data from Yaroslavl we study dynamics of criminality and pro-
pose forecast algorithms for serious crime flash-up, which forecasting about
70% of flash-ups. All alarms occupy about 30% of whole time, and false alarms
covered 8% of the alarm time. The meantime of alarm makes up about 3 weeks.

1 Introduction

In this work we apply methodology using in earthquake prediction theory where one
should predict a system state flash-up. This way is based on results of synergetics —
the science investigating universal rules of complex dynamic systems’ behavior,
which are poorly amenable to routine modeling. It is convenient to consider this kind
of systems in frames of a hierarchical nonlinear model. The one of these systems’
main characteristic is capability to selforganization that sometimes results in abrupt
system behavior changes, as changes of external conditions are small.

Nonlinear hierarchical systems aren’t reduced to a simple sum of its compo-
nents. An interconnection of these parts plays the most important role there, which
results in changing in properties of the system in whole. It is suggested that processes
on any system’s hierarchical level have an identical structure with each other (dimen-
sioned invariance, self-similarity).

If a model of the system is correct, has a set of necessary prognosis properties
(correctly selected phase space) and enables to make a well-quality stable prediction
then one may make the prediction more accurate by considering the system process
on lower hierarchical levels at time and space points where present alarm has place.

* This work was supported by the EC Project “Extreme events: Causes and conse-
quences (E2-C2), Contract No 12975 (NEST)", Russian for Basic Research (project
#04-01-00510), Russian Humanitarian Scientific Foundation (project #05-03-03188).



It is this way [1-6] that enabled to create algorithms predicting heavy earth-
quakes [7,8], senate and president election results in USA [9,10], economic recessions
and unemployment in USA and Europe and economic crisis in Russia [11-12].

An investigating of Yaroslavl crime time series as one of important society state
characteristics resulted in developing of serious crime flash-up forecast algorithms
that we present in this article.

2 Data

In this work we use weekly crime data from Yaroslavl town, the administrative center
of Yaroslavskaya oblast (region) in Russia, for time period from 9.02.1993 till
19.06.2001, we defined a beginning of a week as Tuesday. The monitoring time is
437 weeks, i.e. there are 437 cases or observations in initial time series. There are 35
types of crime in militia list for the period (see Tabl.2).

3 Algorithm descriptions
3.1 Heart of the methods

In general, posing of the problem is following.

We want to construct a predictor function F that for every time moment ¢ must
indicate in dependence on preceding data if the next time interval from 1+ 1 to 1+ d
contains (¥ = 1) or doesn’t contain (¥ = 0) a serious crime flash-up.

The following modeling is based on our supposition that arising and preparation
of serious crime flash-up are similar to progress of powerful events in hierarchical
systems, which, as a rule, is prepared by preliminary activation on previous hierarchi-
cal levels of such systems. This scheme takes place in processes of powerful earth-
quakes’ preparation and crack formation by external strain acting in model destruction
experiments. In such processes we may define a power of event (earthquake, crack,
crack arising etc.) in a system. Power for earthquake is its energy, for crack is its di-
mension. Values of power arrange events of the systems by hierarchical levels of such
system. The larger power value of an event the higher a hierarchical level for this
event.

It is known earthquake number N distributions by its energy (power) P or cracks
by its dimension have power-mode nature for a long enough time interval. Such dis-
tributions represented in log-log scale have linear type characterized by its slopping b:

IgN=a—-blgP. (1

In seismology this is named as the Gutenberg-Richter reoccurrence law [13], graphi-
cally it is represented by reoccurrence graph. Logarithm of earthquake energy is
named a magnitude of this earthquake.

We construct an algorithm of serious crime flash-up prediction by behavior of
b’s analogue for crime statistic. Applying this scheme for crimes we expect an in-
crease of less hazardous crimes prior to a flash-up of more hazardous crimes.
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Adaptation of methods developed to predict physical phenomena for social ones
is complicated by absence of event power metering scale. Therefore the next main
step in the model creation is to produce a power scale for crimes.

3.2 Ranking manner

Rank Classification
G3 | Ol-homicide (895).

02-aggravated assault with serious body injuries (1976), 04-forcible rape

G2 | (761), 05-dangerous armed robbery (1058), 06-robberies (10044),

18-burning (348).

03- assault with body injuries (24457), 07-other assault and hooliganism

(4504), 08-burglaries (60909), 09-embezzlement (86), 10-bribery (25),

Gl 11-coinage offence (1525), 12-escape (19), 13-motor vehicle theft (2593),

14-resistance to militia (534), 15-extortion (902), 16-dissolute actions

(126), 17-frauds (2621), 30-other crimes (7851), 39-finding of a body

(5756), 41-unknown disappearance of people (5078).

Tabl.1. The first ranking manner of crime types; “01”, “02” and so on are numeric marking of
crime types, in parentheses — number of crimes for the monitoring period.

Rank Classification
01-homicide (895), 02-aggravated assault with serious body injuries
G5 | (1976), 04-forcible rape (761), 05-dangerous armed robbery (1058),
41-unknown disappearance of people (5078).
G4 | 06-robberies (10044), 38-suicide (1929), 39-finding of a body (5756).
03-assault with body injuries (24457), 09-embezzlement (86), 10-bribery
(25), 14-resistance to militia (534), 15-extortion (902), 17-frauds (2621),
G3 18-burning (348), 32-air crash (0), 33-railway accident, 42-lost-the-way,
thrown children (10), 44-mass poisoning of people (0), 45-application and
use of the organic weapon (9).
07-other assault and hooliganism (4504 ), 08-burglaries (60909),
G2 | 11-coinage offence (1525), 16-dissolute actions (126), 40-infection with
poisonous and chemical substances (1), 43-mass disorders.
12-escape (19), 13-motor vehicle thefts (2593), 30-other crimes (7851), 34-
Gl road accident (4571), 35-sudden death (6903), 36-fire (2345),
37-accident (2264), 60-other incident (20755), 61-accomplished earlier
crime solving (26).
Tabl.2. The second ranking manner of crime types (consists all types we obtained);

“017, “02” and so on are numeric marking of crime types, in parentheses — number of crimes

for the monitoring period (absence of parentheses means there wasn’t data).

As our algorithm is based on behavior of b calculated by using logarithm of event
power it is more convenient to characterize a crime by quantity that is analogue to IgP
in (1). Value of this quantity indicates number of group in crime type hazard hierar-
chy. We name this quantity as crime power. Consequently crime power values are
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discrete and limited by number of groups. Totality of the groups and its interconnec-
tions are the system describing crime dynamics.

Here we use an expert estimation to measure power of a crime type. Further-
more, to obtain stable and statistically representative results it is advisable to rank all
crime types to small number of groups. In the work we use two ranking manner: the
first ranking manner — for 3 groups (see Tabl.1), the second ranking — for 5 groups
(see Tabl.2). Events of a crime type having the highest group number (3 for the first
ranking and 5 for the second one) are named as serious crimes.

In addition there are two ways to produce reoccurrence graph for one ranking
manner: non-cumulative (original), as represented in the tables, and cumulative. For
instance, the 1st cumulative group K/ for the first ranking consists on original groups
Gl1, G2, G3, the 2nd group K2 consists on non-cumulative groups G2 and G3, and the
3d one K3 coincides with G3. Reoccurrence graphs and corresponding data by groups
for the monitoring period, which are approximated by the graphs, are shown in Fig.1
(for the first ranking b’s equal 1,0429 and 1,0710 for original and cumulative way
correspondingly, for the second ranking b’s equal 0,1944 and 0,3136 for original and
cumulative way correspondingly).

IgN IgN

55 55

5.0 o 5.0

45 4.5

4.0 4.0

3-5 T T T T T 3-5 T T T T T

1 2 3 4 5 1 2 3 4 5

group group
a b

Fig. 1: The reoccurrence graphs and corresponding them data (circles)
for the second grouping for the monitoring period:
a) non-cumulative, b = 0,1944; b) cumulative, b = 0,3136.

3.3 Object-to-predict

Object or object-to-predict is a time moment where a flash-up of the serious crimes
arises plus a special condition. We believe it is advisable to determine a flash-up as an
overshoot of present crimes’ number comparatively to mean number of crimes for a
previous time interval. We say that there is a flash-up at the time moment i, if satis-

fied (method S)

R,'=]Vi—l’li20 (Za)
or (method D)

R,'=N,'/}’l,'20, (2b)

where N; is number of present serious crime events for the time moment i, the mean
number of serious crime events for the previous time interval from i-5 to i-1 is equal to
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n;=(Ni;+ Nz + Nis+ Ny + Nis) /5, o is an intercepting threshold, we name set of
R/’s as a residue series.

It is possible when two or more flash-up are close to each other. In earthquake
prediction theory such flash-ups following the first one is named aftershock and
doesn’t considered as object when the first flash-up is in fact the object. We think two
different flash-ups at moments i and j, i <j fix two different objects if j — i > 2, in op-
posite case only moment i is an object. This is the special condition mentioned above.

3.4 Predictor functions

Prior to the objects we wait an increase of b. We believe to observe such increase it is
sufficient to consider time interval consisting about 5 observations.

For the predictor function F/(i) we define increase of b; by analogy with flash-
up defining for objects. F1(i) equals 1 if satisfied

bi— k=B (3a)

where b; is slopping for the time moment i, k;= (b;; + bi; + bi3 + by + bi5s)/5 is
mean slopping for the 5 previous moments, 3 is an intercepting threshold.

To calculate slopping b; we construct reoccurrence graph, the line y; = a; — b; j.
This line approximates for the first grouping the set {(N;, 1), (N>, 2), (N3, 3)}, where
N;, N; and N; are sum of numbers of events for crime groups G1, G2, G3 correspond-
ingly at the time moments i-4, i-3, i-2, i-1, i; and for the second ranking the set
{(N3, 3), (N4, 4), (N5, 5)}, where N3, N; and Ns are sum of numbers of events for crime
groups G3, G4, G5 correspondingly at the time moments i-4, i-3, i-2, i-1, i.

For the predictor function F2(i) we define increase of b; as serial increase of b’s
values over the 5 time moments is5 < iy <i3 < i, <1i;, i; =i in condition that i; - i;,; <3
and b(ij.; ) 2 b, < b(i;) it ij,; <m <, where j = 1, 2, 3, 4, 5. F2(i) equals 1 if satisfied

b(is ) < b(iy) < b(i3) < b(iz ) < b(i) (3b)

where b(i) = b; is slopping calculated as for the F/ but for all groups in given ranking.
We say there is a predictor signal at the time moment i when using one of the
predictor function if this function’s value equals 1.

3.5 Alarm

If a predictor signal presents at time moment #, then one declares an alarm for follow-
ing d serial moments i+1, i+2,..., i+d, i.e. one should wait for an object appearance
over these moments named as alarm interval or alarm. If there is other predictor sig-
nal at the moment j during the alarm interval, then the alarm is prolonged for the next
d moments j+1, j+2,..., j+d. If there is an object s during the alarm, then the final
alarm moment is s after which this alarm is cancelled. If an object s and a predictor
signal i present at the same moment or O < i — s < 2, then an alarm is not declared: two
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serial moments followed an object are considered as relaxation period when system
behavior is special and isn’t applicable for the prediction.

We say that an alarm is successful if the alarm consists an object-to-predict, an
alarm is false (false alarm) if there is no an object over the alarm interval.

We say that the object is predicted if it is in an alarm, an object-to-predict is fail
to predict (a fail-to-predict object) if it is not covered any alarm interval.

3.6 Examples of algorithms prediction
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Fig. 2: Prediction results. Predictor function F/, the first non-cumulative ranking, the method S,
c=14; B =0,008; d =6. Lower graph — original series G3 (left vertical axis); upper graph —
residue series (right vertical axis), the intercepting threshold 3 (horizontal line); grey vertical
lines — fail-to-predict objects, black vertical lines — predicted objects; rectangles — alarms.
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Fig. 3: Prediction results. Predictor function F2, the second cumulative ranking, the method D,
o=1,6; d =3. Lower graph — original series G5 (left vertical axis); upper graph — slopping
series (right vertical axis); grey vertical lines — fail-to-predict objects, black vertical lines —
predicted objects; rectangles — alarms.
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Figure 2 shows graphically results of prediction algorithm using the method S for
object defining and the predictor function F/ for the first non-cumulative ranking as
o= 1,4; f=0,008; d = 6. For this case we predicted 37 of 50 objects (74%) as dura-
tion of all alarms is 125 of 428 weeks that consists 29,2% of the monitoring time as
no one false alarm.

Figure 3 shows graphically results of prediction algorithm using the way D ob-
ject defining and the predictor function F2 for the 2nd cumulative ranking as o= 1,6;
d = 3. For this case we predicted 10 of 12 objects (83%) as time alarm is 22,7% of all
monitoring time, but false alarm time is 58,8% of the monitoring time, that is why we
may not say this result is well.

4 Numerical experiments by prediction algorithm testing

Thus we suggest the following parameters of serious crime flash-up forecast:

e two crime type grouping manner;

e two variants of object-to-predict defining — by residues S and ratio D with intercept-
ing threshold o;

e two variants to produce reoccurrence graph — non-cumulative nK and cumulative K;

o two prediction functions — F'/ with intercepting threshold 8 and F2;

e alarm duration d.

Let’s denote total objects-to-predict number as N, predicted objects as N, then
number of fail-to-predict objects is N = N — N*. Prediction algorithm quality is con-
venient to evaluate by a n-t diagram [8]: n=N /N, and t=7,/ T, where T, is total
alarms duration. As n =1, =0 we have one extreme case when all objects are fail-
to-predict as time alarm equal zero (“strategy of optimist”). Asm =0, T =1 we predict
all objects when time alarm is all monitoring period (“strategy of pessimist”).

An integral quality of prediction when free algorithm parameters are changed
might be evaluated by quantity € = min(n+t). Condition n+t < 1 (¢ < 1) corresponds
to a non-trivial prediction. The € is smaller the prediction is better. For earthquake
prediction ¢ is located in interval 0,32-0,5. For examples above &’s equal 0,427 and
0,516. Tabl.3 represents a few other results of forecast algorithms.

Results of algorithm testing help us to outline algorithm parameter interdepend-
ence. Thus the o is smaller the number of objects is greater, but there is a lower limit
for 6. When o is smaller it the object-to-predict number doesn’t increase: intervals
between objects comes to its minimum — 3 weeks. It is one limitation of suggested
algorithm: it is not able to predict too small flash-ups.

Also there is a lower limit for 3. When f is smaller it then alarm duration be-
comes more 30% of all monitoring time that is not convenient for practically use.

The results we obtained (some of them are represented in Tabl.3 and shown in
Fig.4) are quite well. We can see that we may consider as a predictor an increase of
reoccurrence graph slopping b.
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Fig. 4: Comparison of forecast algorithm for different parameters:
a) predictor function: “+” — FI, “x” — F'2; b) ranking manner: “+” — 1st, “x” — 2nd

S/D nK/K o B d NN nq T g F T,
the first grouping
nK 1,4 0,008 6 37:50 ,260 ,292 552 1 0
nK 1,6 0,008 3 3246 304 304 ,608 1 0,277
nK 1,6 0,008 6 34146 261 ,343 604 1 0,129
nK 1,6 0,010 3 31:46 326 273 599 1 0,274
nK 1,6 0,010 6 32:46 ,304 ,308 ,612 1 0,220
nK 24 0,011 3 27:34 206 257 463 1 0,327
nK 24 0,012 3 26:34 235 229 464 1 0,337
nK 24 0,012 6 2634 235 273 508 1 0,333
K 24 0,011 3 27:34 206 257 463 1 0,336
K 24 0012 3 27:34 206 236 442 1 0,297
K 24 0012 6 27:34 206 278 484 1 0,327
K 24 0013 3 23:34 324 213 537 1 0,396
nK 2,6 - 5 1426 462 201 ,662 2 0,523
3 1426 462 ,168 ,630 2 0,458

the second grouping

CAvEvVEvAvEvAvAvRvEvEvACEN IvEvEGEvEvEG R AR IR
~
»
(@)

nK 1,1 0,005 3 3750 ,260 ,304 564 1 0,246
nK 1,1 0,010 3 3550 ,300 231 531 1 0,232
nK 1,1 0,010 6 37:50 ,260 ,259 519 1 0,126
nK 1,2 0,010 3 3248 333 ,292 ,625 1 0,208
K 1,1 0,010 3 3750 260 224 484 1 0,250
K 1,1 0,010 6 3950 220 .,262 482 1 0,196
K 1,1 0,005 3 41:50 ,180 ,292 472 1 0,240
K 1,2 0,010 3 3348 313 ,290 ,603 1 0,306
nK 1,3 0,015 3 2742 357 306 ,663 1 0,305
K 1,5 - 3 1624 333,196 ,530 2 0,429
K 1,6 - 3 1012 ,200 227 427 2 0,588
K 1,9 - 3 2:2 0 ,266  ,266 2 0,886

Tabl.3. Results of some numeric experiments of prediction algorithm. 7fis false alarm time.
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5 Conclusions

We showed [14] that regime of crime number dynamic is analogous in many respects
to behavior of complex systems with precursor activation effects before serious crime
flash-ups. The phenomenon of activation appears as less hazardous crime “germina-
tion” to more hazardous ones.

By analogy with a model of extreme powerful event progress [15] serious crime
realization might be treated as an assembly of unstable system state creation effects
and some trigger mechanism. This trigger may consist in abrupt nature factors chang-
ing and even additional drink of alcohol.

Represented in the work the serious crime prediction methods could be used in
tactical controlling of emergency town services, for instance, police, ambulance, hos-
pitals etc. Having information about possible serious crime flash-up over the next few
weeks authorities could reinforce such services what allows to guarantee their faster
reaction upon crime events. Decreasing of time reaction upon crime will lead to de-
creasing of deceases and dangerous health hazards as a result of violent acts. Such
information could help to effectively control working regime of emergency services’
staff: vacations, free days, duties etc.

Knowing us works in crime forecasting use other methods. Most part of them
[16-18] aimed to forecast the next number of crime events applying extrapolation
methods. In spite of vast using and detailed developmental work of such methods they
at present have similar forecasting quality [19] and limitations, in particularly, number
of events should be several tens. In addition, extrapolation methods cannot, in princi-
pal, predict flash-ups of forecasting quantity; moreover, flash-up time moments are
excluded for forecast method quality evaluation. This makes impossible to compare
predictability of extrapolation methods and our ones that aimed to predict just flash-
up time moments.

Revealed patterns in crimes regime and developed serious crime flash-up fore-
cast algorithms might be used further as components of social tension level monitor-
ing system for society. This work concerns questions of crime regime “self-progress”
as one of society behavior aspects. To create more comprehensive monitoring system
based on universal complex nonlinear hierarchical system behavior patterns revealed
in frame of synergetics it is necessarily to add components that take into account in-
fluence of social-economics, man-caused and natural factors.
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Abstract. An interval time series is a sequence of intervals observed se-
quentially in time. It allows to describe the behavior of phenomena where
variability must be taken into account. In this paper, exponential smooth-
ing methods are adapted to this kind of series with the help of interval
arithmetic. A comparison of the forecast performance of the interval ex-
ponential smoothing and other methods is carried out. These methods
include interval multilayer perceptron and modelling, in a separate way,
the series of the interval attributes (minimum and maximum, or center
and radius) using classical forecasting methods.

1 Introduction

An interval time series (ITS) is a sequence of intervals observed sequentially in
time. ITS has been previously proposed in [1] and [2] with the aim to extend
symbolic data analysis [3] to the field of time series. In symbolic data analysis,
items are described by symbolic variables: lists of values, intervals, frequency
distributions, etc. These variables allow the characterization of complex real-life
situations and the summarization of large data sets into symbolic ones retaining
the key information but offering a more manageable size. In an ITS, the variable
observed through time is an interval variable.

ITS represent phenomena that classical time series (i.e. series where observa-
tions are single values) cannot accurately describe, such as when variability must
be taken into account. For example, an I'TS is suitable to describe the lower and
upper monthly water levels of a river at a given location; or the range of daily
values of a stock index; or the intervals enclosing the levels of an air-pollutant
recorded in several meteorological stations distributed along a city.

ITS can be obtained in sampling or summarization contexts. In a sampling
context, an ITS arises recording the lower and upper values in each time interval.
In a summarization context, an ITS is obtained summing up a set of values by
means of an interval for each considered instant. In these contexts, intervals
can arise from the minimum and maximum observed values, but also from the
interquartile range or from the middle 90% of the scores (in order to avoid
outliers); it depends on the aims of the analysis.

*This work is funded by the Direccién General de Universidades e Investigacién of Madrid,
by the Universidad Complutense (Research Group 910494), and by Universidad Pontificia
Comillas (PRESIM project).



This paper tackle ITS forecasting from different approaches. Section 2 de-
fines interval variable and ITS. Section 3 summarizes the main ideas of interval
arithmetic, which will be used as the basis in some ITS forecasting methods.
Section 4 briefly shows how to measure errors in ITS. In section 5, exponential
smoothing methods for ITS are proposed and some ideas to deal with trend and
seasonality are introduced. Section 6 shows other approaches to forecast ITS and
special attention is given to the Interval Multilayer Perceptron. In section 7 the
forecasting performance of the proposed approaches is analyzed by an example.
Finally, section 8 concludes.

2 Definitions

An interval variable, [X], is a variable defined for all the elements i of a set E,
where [X]; = {[Xir, Xiv],—00 < X, 1 < X; v < o},Vi € E. The value of
[X] for the ith element can be denoted by the interval lower and upper bounds
[X]: = [Xi.L, Xiv] or, equivalently, by the center and radius [X]; = (X;.c, Xi r),
where X; o = (X; 1 +Xiv)/2 and X; p = (X;,v — Xi,1)/2, respectively.

An ITS can be denoted by {[X];} and the value of the variable in ¢ can be
expressed as [X]; = [Xy,., Xi,v] = (X1,c, X, r). In order to denote a forecasted

value, a hat will be placed above the variable, [X];.

3 Interval arithmetic

Apart from symbolic data analysis, other field related with intervals is interval
analysis [4]. This field assumes that, in the real world, observations and estima-
tions are usually incomplete or uncertain. Thus, it considers that, if precision is
needed, data must be represented as intervals enclosing the real quantities. The
theory of interval analysis is build around this idea.

Interval computations are based in interval arithmetic [4], which can be sum-
marized as follows: Let A and B be two intervals and [J be an arithmetic oper-
ator, then ACIB is the smallest interval which contains a(db Va € A and Vb € B.
According to this definition, interval addition, subtraction, multiplication and
quotient are respectively, defined by:

[A] + [B] = [A + Br, Ay + By]

[A] = [B] = [Ar, — By, Av — Br]
[A]-[B] = [min{AL By, AL - By,Av - Br,Av - By},
max{Ay, - Br, Ay, - By, Av - Br,, Ay - Bu}]

[Al/[B] = [A] - (1/[B]), with 1/[B] = [1/By,1/B]

It is worth noting that interval arithmetic subsumes the classical one, in the
sense that, if the operands of interval arithmetic are intervals with width zero
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(i.e. [a,a],a € R), the result of interval operations will be equal to the result
obtained by the classical operations.

In interval arithmetic, addition and multiplication are associative and com-
mutative. The distributive law does now always hold, but the subdistributive
property is satisfied; it is defined as:

[A]([B] + [C]) < [Al[B] + [4][C]

4 Error Measures for Interval Time Series

According to [2], error measures for ITS cannot be based in the difference be-
tween the observed and the actual interval, because interval subtraction does
not faithfully represent the concept of deviation, as [4] — [A] = [0, 0] if and only
if [A] = [a, a] with a € . Thus, they propose error measures based on distances
for interval data, such as the Hausdorff and the Ichino-Yaguchi distance.

Let {[X];} be the observed ITS, and {[X],} be the forecast of this ITS with
t =1,...,n, the Mean Distance Error based on Hausdorff distance is defined as

n

1 ~ ~
MDEy = — X, 0o— X X;p—X
"= Z[I tC ol +1Xur Rl

t=1

and the Mean Distance Error based on the Ichino-Yaguchi distance is defined as

1 — . .
MDEry ==Y 05Xy — Xo o]+ Xov — X0l
n t=1

5 Exponential Smoothing methods for ITS

Exponential smoothing methods in classical time series obtain forecasts as the
weighted moving average of all past observations where the assigned weights
decrease exponentially (see [5] for an up-to-date review). In this section, expo-
nential smoothing methods are adapted to ITS!. In order to adapt the methods
to ITS, a procedure to average intervals is required. We propose to average
intervals using interval arithmetic.

5.1 Average Interval

The interval that averages a set E of n intervals [X];, i = 1,...,n is defined as

%] = [X]:1 + [X}2n+ ot [X]n’

where the arithmetic operations are interval arithmetic operations.
The average interval holds the following properties:
. Xpa+Xpo+..+ X0 5 Xva+Xug+..+Xyn
Xp = ) Xy = )

n n

IThe notation of the proposed methods will be similar to that in [5]
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Fo Xoa1+ Xoa+ ...+ Xon . Xr1+Xgot ...+ Xgn
c = n 3 R — n .

These properties allow us to consider that the average interval is the barycen-
ter of a system of particles (the set of intervals F) where each particle is defined
by two coordinates: the lower and the upper bounds, or, equivalently, the center
and the radius. Obviously, as the average interval is equivalent to the interval
barycenter, it can also be seen as the interval that minimizes the addition of the
euclidean distances between itself and each interval of the set E.

The definition of moving averages based in the interval average is straight-
forward, and will not be tackled in this article.

5.2 Simple Exponential Smoothing

The formula of simple exponential smoothing (SES) in classical time series is
Xt-H =X+ a(X; — Xt)a

where a € [0, 1]. This equation is written in an error-correction form, while its
equivalent recurrence form is given by:

Xt+1 = CkXt + (]. — Oé)Xt.

If both equations are adapted to ITS using interval arithmetic, they are not
equivalent and

afXi] + (1~ a)[X]e € [X]e + a([X:] — [X4)

due to the subdistributive property. Thus, the SES method for ITS will adapt
equation in recurrence form as it produces tighter intervals. It is defined as:

A

[X]i1 = a[Xy] + (1 — a)[X],

where a € [0,1]. The initializing phase requires the value of [X]; which can be
the first observed value, [X]1, or the average interval of the first three or four ob-
served values. It is clear, that the SES forecast of an I'TS is the weighted moving
average of all past observations, where the weights decrease exponentially.

5.3 Exponential Smoothing with Trend

The Holt exponential smoothing method allows forecasting classical time series
with trend. This method smoothes both the level and the trend of the series.
The adaptation of the Holt method for ITS requires to smooth both components.

In our approach, the level of the HTS in ¢ will be represented by an interval,
[S]:; and the trend of the HTS in t will be represented by a single value, T}, that
represents the location of the interval by its center. Both, level and trend, are
separately smoothed and later added in order to obtain the forecast.

The exponential smoothing method with additive trend (EST) is defined as:

(] = a[X]i + (1 = a)([S)s—1 + Ti-1),
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Ty =v(Scx — Sc—1) + (1 —v)Ti—1,

[X]t+m = [S]t + TTLTt,

where a,vy € [0,1], Sc is the center of the interval [S],, and m is a factor
that multiplies the trend in order to produce forecasts for m periods ahead.
The initialization values can be 77 = X¢ o — X1 and [S]; = [X]1, but more
sophisticated initialization values can be given.

5.4 Exponential Smoothing with Seasonality

In an ITS, it can be considered that there are two different types of seasonality:
first, considering that the seasonal variation only concerns to the location of the
intervals; and second, considering that the seasonality affects the whole interval.
We will propose two different methods in order to deal with both alternatives.

In the first approach, the seasonal component in ¢ is represented as a single
value, Iy, representing the changes in the interval location due to the seasonal
effect and where interval location is represented as the interval center. The level
in t, [S];, is a deseasonalized interval, i.e. an interval without the seasonal effect.
Forecasts are the addition of the level interval and the seasonal component. The
interval exponential smoothing method with additive crisp seasonality (IEScS)
is given next:

[St] = a([X]t — L1—s) + (1 — @)[S]t—1,

I; =6(Xey — Seu) + (1= 0)I—s,

[(X]t+1 = [Sle + Li—s11,

where «,d € [0,1] and s is the length of the seasonality. The initialization
of the model requires a whole season (i.e. the first s periods) and it can be
done as follows: [S]s = M and I1 = X1 — Scsy o = X2 — Scisyens
[s - XC,S - SC’,s-

In the second approach, the level, [S];, and the seasonality, [I];, are repre-
sented as intervals. In this case, the level is no deseasonalized and both com-
ponents are independently smoothed in separate equations. The forecast is ob-
tained as the weighted addition of the level and the seasonality interval, where
the weight controls the importance of each component. The interval exponential
smoothing method with additive interval seasonality (IESiS) is shown next:

[5]; = a[X]; + (1 = @)[S]-1,
[L]e = 6] + (1 = 0) L5,

A

[XTe+1 = &[] + (1 = ) []s—s+1,
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where «,6,¢ € [0,1], and s is the length of the seasonality. As in the previous
approach, the first s periods of the HTS are needed to initialize the model. The
initialization of the seasonal component can be done as follows [I]; = [X],
[I]2 = [X]2, ..., I]s = [X]s; while the initial value of the level component can
be obtained as [S]; = [X]; for t = 1 and applying the smoothing equation to
obtain the level for t = 2, .., s.

6 Other approaches to forecast ITS

The simplest way to forecast an I'TS is the naive model, although its forecasting
ability is limited. Letting aside this model, the most straightforward approach
consists of transforming the ITS in a pair of classical time series (center and ra-
dius, or minimum and maximum) and modelling each of them with an univariate
forecasting model or both of them with a multivariate model. This approach has
the objection that it can produce wrong intervals (e.g. intervals where X, > Xy
or where X < 0) as it does not deal with intervals as a whole. On the other
hand, interval attributes allow to focus in the features that characterizes the
intervals. We consider that the center-radius approach is especially interesting
as the center shows the interval location and the radius shows the interval span.

Classical multilayer perceptrons are commonly applied in time series forecast-
ing prediction [6]. In a similar way, the Interval Multilayer Perceptron (iMLP)
[7] can be applied to forecast ITS. The iMLP adapts the classical Multilayer
Perceptron structure [8] in order to operate on interval-valued input and output
data. Thus, it allows to deal with variability (in interval form) in the data set.

Other perceptrons dealing, in some manner, with intervals have been pro-
posed, for example, in [9] and [10]. The one proposed by Beheshti et al. [10]
is the more similar to the iMLP, as it has inputs and outputs in interval form.
However, in the Behesti perceptron the weights and biases are intervals, whereas,
in the iMLP, they are crisp values. Consequently, the estimation of the optimal
weights and biases in the Behesti perceptron is done by means of interval com-
putational algorithms and is substantially more complex than the calibration
of the iMLP. Thus, the iMLP will be considered to forecast ITS and will be
described below.

6.1 The Interval Multilayer Perceptron

An iMLP with n inputs and m outputs is comprised of an input layer with
n input buffer units, one or more hidden layers with a non-fixed number of
nonlinear hidden units and one output layer with m linear or nonlinear output
units. Henceforth, we will consider just one hidden layer with h hidden units
and one output (m = 1). The operations in the iMLP follow the rules of interval
arithmetic (see section 3).
Considering n interval-valued inputs [X]; = (X;.c, Xi r) = [Xi.c—Xi r, Xic+

X r], with ¢ = 1,..,n, the output of the j-th hidden unit is the weighted lin-
ear combination of the n interval inputs and the bias. It is worth noting that
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the weights of the proposed structure are crisp and not intervals. The linear
combination results in a new interval given by:

n n n
[S]; = wjo + Y wylX]i = (wjo + Y wjiXioy > [wyil Xi.r)-
i=1 i=1 i=1
The activation of the j-th hidden unit is obtained by transforming the in-
terval [S]; using a nonlinear activation function, more precisely, the tanh func-
tion. This function is monotonic, then the interval output is given by f([4]) =
[f(AL), f(Ay)]. Thus, the resulting interval can be calculated as:

[Ab tanh([S]j) = [tal’lh(sj"c - Sj,R)7 tanh(SLc + SjJ{)] =
B <tanh(Sjvc — S;r) + tanh(S;c + S; r)
= 5 ,
tanh(Sjyc + SjJ{) - tanh(Sjyc - Sj7R)>
5 .

The output of the network, [Z], is obtained by transforming the activations
of the hidden units using a second layer of processing units. In the case of a
single output and a linear activation function, the estimated output interval is
a linear combination of the activations of the hidden layer and the bias:

h h h
2] =" aylAlj+ a0 = (Y ajAjc + a0, Y laglAj R)-
j=1 j=1 j=1
The iMLP can be used to approximate an interval-valued function. The
iMLP crisp weights can be adjusted with a supervised learning procedure by
minimizing an error function of the form:

E= % > (2], [2)) + A2 (f),

where d([Z);,[Z];) is a measure of the discrepancy between the actual and the
estimated output intervals for the ¢-th training sample with ¢ = 1,...,p; and
A®(f) is a regularization term [11] of the estimated function f([X];) : [X]; — [Z]
with i = 1,...,n. A weighted Euclidean distance function for a pair of intervals
[A] and [B] can be used as discrepancy measure:

d([A],[B]) = B(Ac — Bc)® + (1 — B)(Ar — Br)*.

The parameter (3 € [0, 1] allows to assign more weight to the error in the centers
or in the radii. This discrepancy function can be minimized applying a low-
memory Quasi Newton method [12] with random initial weights. Second order
methods require the calculation of the gradient of the cost function with respect
to the adaptive weights (w’s and «’s). These derivatives can be calculated in an
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effective way by applying a backpropagation procedure, similar to this proposed
in [8] for the standard MLP. More details are given in [7].

Due to the capability of input-output mapping of the iMLP, it can be used
for causal forecasting of ITS or for extrapolative ITS forecasting. In the second
case, the functional relationship to be estimated by an iMLP can be written as
[(X)ie1 = f([X)e. [X)i—1, [X]i—1), where [X]; is the interval observed at time t.

7 Analysis of the forecasting performance

The original data set consists of records of the monthly mean temperature in
60 weather stations in China from January 1952 to December 1988 (i.e. 444
months). These stations make up a network with a relatively uniform spa-
tial distribution and each one is representative of a particular climate region of
China. Data can be obtained in the archive of the Computational and Informa-
tion Systems Laboratory (http://dss.ucar.edu/datasets/ds578.5/data/). The 60
temperature time series has been aggregated leading to an ITS of 444 monthly
periods, where each period represents the interval of the monthly mean temper-
ature throughout China. Figure 1 shows that the ITS has a seasonal pattern
with s = 12 that concerns not only the interval centers, but also the ranges; it
is clear that summer months have less range than winter months.

301

20r H H
10H ‘ ‘

-ﬁgn 1952 Jan 1963 Jan 1954 Jan 1955 Jan 1956 Jan 1957  Dec 1957

Fig. 1: ITS of the monthly temperature in China (1952-1957).

The training set consists of the first 296 periods, while the test set contains
the last 148 periods. The ITS has been forecasted using different approaches:

1. naive model with seasonality: [X]41 = [X]i—s1

2. IES with crisp seasonality: a =1, § = 0.93
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3. IES with interval seasonality: a =0.17, § = 0.19 and £ = 0.03

4. iMLP with 3 layers (n = 6,h = 6,m = 1) and using as inputs [X]; i1,
where [ = {1,2, 12,13, 24, 25},

5. modelling separately the minimum and maximum series:

(a) exponential smoothing models with additive level and seasonality
e minimum: « = 0.101,4 = 0.1075
e maximum: « = 0.028,§ = 0.16
(b) ARIMA models
e minimum: ARIMA (1,0,1)(2,1,1)12 without constant
e maximum: ARIMA (1,0,0)(0,1,1)12 with constant

6. modelling separately the centers and radii series with:

(a) exponential smoothing models with additive level and seasonality
e centers: a = 0.0865,9 = 0.1274
e radii: @ = 0.0602,5 = 0.1254

(b) ARIMA models

e centers: ARIMA (1,0,1)(2,1,1);2 without constant
e radii: ARIMA (1,0,0)(0,1,1)12 with constant

Table 1 summarizes the forecasting performance of the considered approaches.
The IEScS obtains a forecasting performance worst than the seasonal naive; this
is due to the fact that the I'TS seasonality affects both, interval range and inter-
val center, and not only centers as the IEScS assumes. The iMLP outperforms
the seasonal naive model and the IEScS, but it is less accurate than the rest of
the methods. Modelling the univariate series with ARIMA models is the best
method in this case. The IESiS obtains a good result, especially, if we consider
that it only requires 3 parameters instead of the 8 needed by the ARIMA based
approaches. The performance of the IESiS is quite similar to the performance
of the models that forecast the univariate series with exponential smoothing
methods, but our method is slightly simpler and deals with intervals as a whole.

8 Conclusions

ITS provide a way of modelling the range variation of an observed phenom-
enon through time. The proposal of methods to forecast and to analyze ITS is
an interesting challenge. In this paper, an extension of exponential smoothing
methods to I'TS has been proposed and the iMLP has been applied to I'TS fore-
casting. The forecasting performance of these methods is promising but it must
be improved in the future. We believe that forecasting methods for I'TS must
deal with intervals as a whole. Therefore, more sophisticated ITS forecasting
methods should be proposed. Teles and Brito [1] adapted ARMA models to
ITS, a comparison of the accuracy of exponential smoothing and ARMA models
in ITS must be done in the future.
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model training | test
1- seasonal naive 2.348 | 2.432
2- IEScS 3.675 3.45
3- IESIS 1.88 1.729
4- iMLP 2.08 2.07
5a- min-max (exp. smooth.) | 1.856 | 1.703
5b- min-max (ARIMA) 1.508 | 1.554
6a- cen-rad (exp. smooth.) 1.841 1.669
6b- cen-rad (ARIMA) 1.553 | 1.539

Table 1: Forecasting performance in terms of the M DEy.
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Abstract. The paper consists in an empirical comparison of two automatic
procedures of time series forecasting: the expert system called TSE-AX and the
automatic procedure of the TRAMO-SEATS software package. That comparison is
based on the data of the M3-Competition, the latest of the M-Competitions
launched by Spyros Makridakis and Michele Hibon. TSE-AX was a competitor in
the M3-Competition but an improved version has been used here. TRAMO-
SEATS is a pair of programs initially aimed at seasonal decomposition of quarterly
or monthly time series, using a signal extraction approach based on ARIMA
modelling. We use only the automatic procedure within TRAMO. In this paper, we
briefly describe the principle of each procedure before giving the results of that
comparison. It is interesting that two procedures based on different strategies
provide similar results, on the whole, and that TRAMO, which was not intended as
a forecasting software package, appears as a very satisfactory forecasting solution.

Key words. Time series prediction, M3-Competition, Forecasting methods, TSE-
AX, TRAMO-SEATS

1  Introduction

Forecast errors can have harmful consequences and imply, for example, surplus
production capacity, under-capacity, out of stock items or unsold goods. If it is
impossible to eliminate them completely, reliability of the forecasts can however be
increased by applying good principles resulting from research and practice [1]. These
should indicate which methods to rely on and specify the conditions for their optimal
use.

To forecast data in economics and finance, several statistical and econometric
methods are used such as regression models, multivariate analysis, decision theory or

" This paper has benefited from an IAP-network in Statistics grant, contract P5/24,
Belgian Federal Office for Scientific, Technical and Cultural Affairs.



time series modelling. Among the later, we consider ARIMA processes made popular
by Box and Jenkins who proposed a model building methodology composed of
several stages [2]. ARIMA modelling is more difficult to use than other statistical
forecasting techniques although, when implemented properly, it can be quite powerful
and flexible. On the basis of Eurostat data bases, Fischer and Planas [3] have argued
that the so-called airline model can be used to fit a large number of series. Several
algorithms of automated ARIMA modelling were developed in order to make the
method more applicable and also available to a greater number of users. Most of these
algorithms were implemented using expert systems technology. These systems make
it possible to program the knowledge of an expert and to reproduce the reasoning
carried out by the system. One of these expert systems for building univariate time
series models is TSE-AX. Described by Mélard and Pasteels [4], it is included in
Time Series Expert 2.3. A slightly improved version [5] is used here for which Njimi
et al. [6] gave an early presentation. One of the recent features is the possibility to
handle series other than monthly and quarterly, as illustrated by Azrak et al. [7].
TSE-AX [4] was well ranked in the M3-Competition where the participating experts
were asked to make forecasts beyond the available data [8, 9]. Note that the real data
corresponding to these forecasts were not available to the participants before making
their forecasts and were not, therefore, used in developing their forecasting model.

In this paper we present an empirical comparison between TSE-AX [5] and the
automatic procedure of TSW, the Windows version of TRAMO-SEATS with some
modifications and additions, developed by Caporello et al. [10] at the Banco de
Espana.

Note that TRAMO-SEATS is a pair of programs initially aimed at seasonal
decomposition of monthly or lower frequency time series, using a signal extraction
approach based on ARIMA modelling. We use only the automatic procedure within
TRAMO, which was not intended as a forecasting software package. That comparison
is based on a subset of the series of the M3-Competition.

The contents of the paper are as follows. First, we give a description of TSE-AX.
Second, we describe the automatic procedure of TSW [11]. And finally we give the
principle of the comparison between those two automatic procedures and some
results.

2 Description of TSE-AX

The objective of TSE-AX [5] is to build ARIMA models in an automated way, with
and without an intervention analysis, but so that the user receives the intermediate and
final results, and is informed of the quality of the final model. The system is adapted
to several categories of users from beginners to experts. The later should use such a
tool to save time, being qualified to assess the quality of the final model and possibly
propose an alternative model. Briefly, TSE-AX covers everything from the
specification stage to the forecasting stage, given that the latter is immediate when a
final model has been found. The user can specify his or her model building
preferences: perform an intervention analysis or not, choose a specification strategy,
etc.

The modelling stage of TSE-AX consists of a succession of several phases. At the
beginning, the user gives some information to the system like periodicity of the data
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and the sample to be used. The automated procedure starts with the preliminary stage,
where interventions are selected, transformations are performed, and differences,
regular and/or seasonal, are chosen to make sure that the series becomes stationary.
To select differences, the user can choose between options based on the non-
parametric test of Kruskal and Wallis [12] and presence of autocorrelations or
comparison of variances [4, 5]. Next follows the specification stage, where an
ARIMA model is identified using one of these three strategies: ‘expert’ [13],
‘autoregressive specification’ [14] and ‘mixed’ [5] where a certain number of models
are fitted and a choice among them is made. The remaining stages are the estimation
stage, where the final model is fitted, the model checking stage, were the adequacy of
that model is investigated, and the forecasting stage. In all modelling stages, the
parameters are estimated by exact maximum likelihood.

There are more than twenty input commands that enable the user to customize the
modelling strategy. They are concerned with the treatment of outliers by intervention
analysis (several types are supported like additive outliers (AO) and level shift (LS)),
the seasonal component, the Box-Cox transformation and difference operators. These
commands are typically entered into a file and can act either on a single series or on a
stream of series. Here, default values for all commands were used.

3 Description of TSW and its automatic procedure

TSW is a Windows interface that integrates the two programs TRAMO and SEATS.
The software and its documentation are freely available at the address
http://www.bde.es/. TRAMO, "Time series Regression with ARIMA noise, Missing
values and Outliers" [15, 16] is a program for fitting and forecasting of regression
models with possibly non-stationary ARIMA errors and missing values. The program
interpolates these values, identifies and corrects for several types of outliers, not only
additive outliers (AO) and level shift (LS), but also temporary change (TC) and
innovation outliers (I0), and estimates special effects such as trading day and Easter
effects and, in general, intervention-variable type effects. SEATS, "Signal Extraction
in ARIMA Time Series", is a program for extracting unobserved components in time
series with the purpose to produce a seasonally adjusted series. TRAMO and SEATS
are structured so as to be used together but TRAMO can be used alone. TRAMO
preadjusts the series, and SEATS decomposes the linearized series into its stochastic
components. The complete final component is equal to the stochastic one, plus the
deterministic effect associated with that component, that has been removed in the
preadjustment by TRAMO (for example, an AO outlier will be added to the irregular
component, a LS outlier will be added to the trend-cycle, and so on).

The programs, TRAMO and SEATS, are fundamentally aimed at monthly or lower
frequency time series. Although structured to meet the needs of an expert analyst,
they can be reliably used in an entirely automatic manner on very large sets of time
series. The main applications are seasonal adjustment, trend-cycle estimation,
construction of leading indicators, interpolation, detection and correction of outliers,
estimation of special effects, and quality control of data. It should be insisted that
TRAMO-SEATS is not aimed at forecasting.

The automatic procedure of TSW requires the prior decision of whether or not to test
for the presence of calendar effects and, if so, which specification for the trading day
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effect should be used. The program tests for the log/level specification, interpolates
missing observations (if any), and performs automatic model identification and outlier
detection, see [10]. Three types of outliers are considered: additive outliers, transitory
changes and level shifts; the level of significance is set by the program and depends
on the length of the series. The full model is estimated by exact maximum likelihood,
and forecasts of the series up to a two-year horizon are computed.

Within SEATS, the model obtained by TRAMO is decomposed and optimal
estimators and forecasts of the components are obtained, as well as their mean
squared error. These components are the trend-cycle, and the seasonal, irregular and
(perhaps) transitory components. If the model does not accept an admissible
decomposition, it is replaced by a decomposable one.

4  Modelling methodology

Our analysis of the M3-Competition series is limited to yearly, quarterly and monthly
series, i.e. 2829 series out of 3003. We recall that the 3003 series of the M3-
Competition were selected on a quota basis to include various types of time series
data (micro, industry, macro, etc.) and different time intervals between successive
observations (yearly, quarterly, etc.), see [8]. Usually, yearly series are discarded
because most of them are too short to be modelled by ARIMA models with existing
technology but here we kept them all. Series with an unknown time interval between
successive observations are excluded because both automatic procedures, of TSE-AX
and TSW, require that information.

For the treatment by TSE-AX, we have accepted the treatment of outliers by
intervention analysis to avoid extreme values that would badly influence the various
steps of the analysis: specification, estimation, test for adequacy, and forecasting. We
also used the ‘Mixed strategy’ in the step of specification because that strategy is the
most complete one [6]. For the treatment by TSW, we choose the option for automatic
model identification, as explained above. Even if the computational strategies of
computation of TSE-AX and TSW are not the same, the choice of that option is
justified by the fact that this is the most general without calendar effects. This means
that these two automatic procedures include a treatment of outliers and use exact
maximum likelihood for estimation of the final model, and no pretest is made for the
presence of trading day, leap year and Easter effects.

All fits are done in TSE-AX by exact maximum likelihood estimation whereas the
Hannan-Rissanen estimation method is used in TSW for all fits except the final one
which is performed by exact maximum likelihood estimation. Using the mixed
strategy, TSE-AX fits at most 32 models. The number of models fitted by TSW is
much larger but computations are faster.

5 Results of the comparison

As in the M-Competition, we selected a forecasting horizon (h) of maximum six years
for yearly series, eight quarters for quarterly series, and eighteen months for monthly
series. The symmetric mean absolute percentage error criterion (SMAPE) is used to
analyze the performance of the two procedures. The SMAPE is an average across all
forecasts made for a given horizon i :
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X, F]
z (X,+F)/2

where X; is the real value, F; is the forecast and N is the number of predicted time
series.

For each type of series, for each procedure and for each horizon, the sMAPE is
calculated. The results are summarized in Table 1 for yearly series, Table 2 for
quarterly series and Table 3 for monthly series (see Appendix). Tables 4-6 list the
differences in terms of forecasting performance of TSW with respect to TSE-AX.
They show sMAPE(TSE-AX) — sMAPE(TSW) using the results in Tables 1-3: a
positive sign means that the accuracy of TSW is better than that of TSE-AX. Tables
7-9 give the resulting p-values from the means paired test, using the average results of
the comparison between TSE-AX and TSW based on the sMAPE criterion for,
respectively, yearly, quarterly and monthly data.

x100

5.1 Yearly data

The results of the yearly series are shown in Tables 1, 4 and 7. For these series, the
results suggest that TSW did worse than TSE-AX for macro series and did better in
finance and other series.

Note that the differences in the forecasting performance (as far as the SMAPE is
concerned) between the two automatic procedures are small and the maximum of
these differences across types and horizons is 1.91%. Note also that the results of
these two methods appear better than those of the other competitors in the M3-
Competition, but, of course, our analysis is ex post.

5.2 Quarterly data

The results of the quarterly series are shown in Tables 2, 5 and 8. For these
series, the results suggest that TSW did worse than TSE-AX for finance and
demographic series and did better in micro, macro and industrial series.

The differences in the forecasting performance between the two automatic procedures
are small and the maximum of these differences across types and horizons is 2.52%.

5.3 Monthly data

The results of the monthly series are shown in Tables 3, 6 and 9. For these series,
TSW did worse for finance, demographic and other series, and did better in micro,
macro and industrial series. The differences in terms of forecasting performance are
also small. Those differences did not exceed 1.4%.

5.4 Statistical significance of the results

Instead of just comparing the SMAPE given by the two automatic procedures, we
have performed statistical tests to compare their performance, using more precisely
the paired #-test for every type of series and every horizon, except for the ‘other’
category for yearly series. Indeed the latter contains only 11 series, therefore the p-
values are provided by the Wilcoxon signed rank test instead of the paired 7-test. The
p-value of each case (per type of series and horizon) is displayed in Tables 7-9. Small
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values imply that the null hypothesis of equal performance is rejected and thus the
accuracies of the two automatic procedures are significantly different.

All values are greater than 10% except in microeconomic series and monthly
industrial series. More precisely, the p-values are less than 5% for horizon 5 in yearly
macro data, horizons 1 and 4 in quarterly micro data, for horizon 5 in monthly micro
data and for horizons 3 and 4 in monthly industrial data. The winner is indicated in
bold in Tables 1-3.

In all remainder cases, the p-values are not significant. Given the large number of
tests performed, this suggests that the difference in the forecasting performance of the
two automatic procedures is small. A more formal comparison using a stepwise
multiple testing procedure by Romano and Wolf [17] is given in [18].

6  Closing comments and conclusion

In Section 3, we have provided a rough description of TSW and its module TRAMO
in particular. TRAMO is aimed at building an ARIMA model for the signal extraction
procedure within SEATS in order to obtain a seasonal decomposition of a series.
Although TRAMO is not considered as a forecasting software package, it seemed
interesting to investigate that complex procedure and its forecasting performance.
Having performed a comparison between the expert system TSE-AX and the
automatic procedure of TSW on the yearly, quarterly and monthly series of the M3-
Competition, it can be concluded that there is no statistically significant difference in
the forecasting performance except perhaps for microeconomic data where TSW
performs slightly better.

Even if the computational strategies of TSE-AX and TSW are not the same, they
produce comparable forecasts on the whole. Therefore, given that TSE-AX was well
assessed in the competition, that implies that TSW can produce good forecasts.

Again, this comparison illustrates the fact that the “use of statistically sophisticated or
complex methods does not necessarily produce consistently more accurate forecasts”
[19].
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Appendix

Types of series ~ Methods Horizon

| 2 3 4 5 6

Micro TSE-AX 12,34 16,19 20,89 23,62 26,29 28,77
TSW 11,45 15,66 21,07 23,59 26,74 28,75

Industrial TSE-AX 9,60 11,81 14,05 16,69 18,59 20,45
TSW 10,79 12,68 14,68 1572 17,40 19,31

Macro TSE-AX 240 3,68 492 582 651 17,09
TSW 2,57 393 533 632 7,12 17,79

Finance TSE-AX 17,16 20,59 22,06 24,37 27,00 29,09
TSW 17,02 20,11 21,93 2391 2535 27,18

Demographic TSE-AX 487 6,08 746 9,16 10,75 12,13
TSW 536 633 755 8,66 10,07 11,28

Other TSE-AX 16,57 19,17 21,80 22,71 22,02 2247
TSW 15,48 17,98 21,17 2226 21,75 22,30

Table 1: SMAPE for yearly data. Bold numbers are those significantly best at 5%
in the sense of Section 5. 4.

Types of series ~ Methods ~ Horizon

1 2 3 4 5 6 8
Micro TSE-AX 10,16 10,79 11,63 12,83 13,32 13,98 15,08
TSW 7,64 8,64 944 1056 11,08 11,85 13,25
Industrial TSE-AX 6,63 7,74 8,10 829 885 991 11,22
TSW 576 634 692 738 787 853 9,79
Macro TSE-AX 2,63 3,01 352 396 445 487 589
TSW 248 3,00 3,53 393 436 4,76 5,71
Finance TSE-AX 5,08 8,79 10,14 11,81 1341 15,08 16,84
TSW 5,79 9,05 10,87 12,39 13,89 15,08 17,12
Demographic TSE-AX 509 721 8,45 981 11,40 12,78 15,61
TSW 6,86 8,84 10,02 11,55 13,27 14,52 17,25
Other TSE-AX .
TSW No series

Table 2: SsMAPE for quarterly data. Bold numbers are those significantly best at
5% in the sense of Section 5. 4.
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Types of series ~ Methods  Horizon
1 2 3 4 5 6 8 12 15 18
Micro TSW 24,60 2381 2424 2441 2386 23,68 23,51 2381 2531 2648
TSE-AX 25,19 24,56 24,87 25,51 2528 24,74 2440 2436 2531 26,50
Industrial TSW 7,14 744 7,72 8,18 861 923 1025 11,18 11,95 12,69
TSE-AX 7,61 795 839 889 926 9,65 10,61 1148 1221 12,97
Macro TSW 303 352 3,78 3,77 4,10 438 482 534 592 6,69
TSE-AX 3,09 352 358 4,01 431 453 496 560 6,13 6,83
Finance TSW 590 688 7,07 7,61 849 88 9,79 1092 11,75 12,89
TSE-AX 576 6,559 6,59 727 823 8,69 9,60 1037 11,30 1225
Demographic TSW 255 282 330 4,13 491 535 6,10 698 756 844
TSE-AX 2,62 298 333 409 480 516 571 652 701 7,78
Other TSW 584 704 6,08 634 654 907 963 933 929 10,23
TSE-AX 594 6,75 578 6,10 637 869 992 9,15 897 9,70

Table 3: sMAPE for monthly data. Bold numbers are those significantly best at 5%
in the sense of Section 5. 4.

Types of series ~ Horizon

1 2 3 4 5 6
Micro 0,89 053 -0,18 0,04 -045 0,02
Industrial -1,19 0,87 -063 097 1,18 1,14
Macro -0,17 0,25 -041 -051 -0,62 -0,70
Finance 0,14 048 0,13 047 1,65 191
Demographic -0,50 0,25 0,09 050 0,68 0,86
Other L0 1,19 063 045 027 0,17

Table 4. sSMAPE(TSE-AX) — sMAPE(TSW): yearly data. Bold numbers are those
significantly best at 5% in the sense of Section 5. 4.

Types of series ~ Horizon

1 2 3 4 5 6 8
Micro 2,52 2,14 219 227 224 213 1,83
Industrial 086 141 1,18 091 099 138 143
Macro 0,15 0,01 -001 003 0,10 0,10 0,18
Finance -0,71 026 -073 -0,58 -048 0,00 -0,28
Demographic -1,77 0 -1,62 -1,57  -1,74 -1.87  -1,74  -1,64
Other No series

Table 5. sSMAPE(TSE-AX) — sMAPE(TSW): quarterly data. Bold numbers are
those significantly best at 5% in the sense of Section 5. 4.
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Types of series ~ Horizon
1 2 3 4 5 6 8 12 15 18

Micro 058 074 063 1,10 142 1,06 089 055 0,00 0,02
Industrial 047 051 067 072 065 042 036 031 026 0,29
Macro 0,06 001 -019 024 021 0,5 0,14 026 021 0,14
Finance -0,13 -029 -047 -0.34 -026 -0,19 -0,20 -0,54 -0,45 -0,656
Demographic 0,07 0,15 0,03 -0,05 -0,11 -0,19 -0,39 -0,46 -0,56 -0,66
Other 0,10 -028 -0,31 -024 -0,17 -038 0,29 -0,19 -0,32 -0,53

Table 6. sSMAPE(TSE-AX) — sMAPE(TSW): monthly data. Bold numbers are
those significantly best at 5% in the sense of Section 5. 4.

Types of series ~ Horizon

1 2 3 4 5 6
Micro 041 064 088 098 077 099
Industrial 0,14 029 046 032 025 033
Macro 037 025 0,10 0,06 004 005
Finance 093 078 095 0.82 048 044
Demographic 0,12 047 083 043 034 029
Other 0,08 032 041 041 072 0,61

Table 7: Resulting p-values from means paired test. Results of the comparison
between TSE-AX and TSW based on the SMAPE criterion: yearly data

Types of series ~ Horizon

1 2 3 4 5 6 8
Micro 0,02 006 006 004 005 006 0,11
Industrial 039 0,16 022 034 034 022 021
Macro 026 091 094 082 056 059 043
Finance 023 069 013 015 026 099 0,69
Demographic 0,15 021 0,23 0,21 0,28 035 0,51
Other No series

Table 8: Resulting p-values from means paired test. Results of the comparison
between TSE-AX and TSW based on the SsMAPE criterion: quarterly data

Types of series ~ Horizon
1 2 3 4 5 6 8 12 15 18

Micro 048 026 031 0,08 002 005 009 033 099 0,98
Industrial 0,18 0,12 0,04 0,04 005 020 031 0,73 048 049
Macro 084 098 064 041 053 069 0,72 049 058 0,72
Finance 0,77 052 015 030 045 060 064 031 046 032
Demographic 0,74 040 085 080 055 030 0,0 0,9 0,15 0,13
Other 069 021 023 041 057 028 064 0,75 063 054

Table 9: Resulting p-values from means paired test. Results of the comparison
between TSE-AX and TSW based on the SMAPE criterion: monthly data
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Evaluating prediction models by parametric
bootstrapping

Robert M. Kunst

University of Vienna - Dept of Economics
BWZ, Bruenner Strasse 72, 1210 Wien (Vienna) - Austria

Abstract. The traditional evaluation of competing prediction models
relies on loss criteria for sample portions. The selected best prediction
model class may not match the data-generating class.

Assuming one of the models as correct, simulating trajectories of pseudo-
data (parametric bootstrapping) and forecasting them using each compet-
ing model class yields additional evidence. Comparisons of the original
and the bootstrapped evaluation indicate whether a class describes the
data-generating process (DGP) well. Of special interest are cases where
the best prediction model class and the bootstrap DGP differ.

We apply the procedure to macroeconomic data and several time-series
model specifications.

1 Introduction

Typically, forecasting relies on one of two basic concepts.

The first concept dominates the statistical literature, which often adds the
task of prediction as a third main aspect of statistical work to the classical tasks
of hypothesis testing and estimation. According to this view, a finite sequence of
observations on a scalar or vector variable X is interpreted as a partial realization
X?17(w) of an unknown random process X;—the data-generating process or
DGP. It is used to obtain information on the distribution of a future sequence
of the same random process, for example X, :jf{” with > s+n. This formidable
task can be made more modest by restricting attention to time-homogeneous
processes, to specific classes of distributions, and to specific characteristics of the
(conditional) distribution, such as moments or intervals with given probability
and minimum length. In any case, an aspect of this view is that a potential
knowledge of the DGP would solve the forecaster’s problems.

The second concept is the naive practitioner’s task. Given a sequence of
observations Xﬁj_’{n, on a scalar or a vector variable X, we wish to generate a
sequence of values that is, in some sense, close to the not yet observed sequence
X", Viewing the data as realizations of a stochastic process may help in
determining a strategy for constructing an approximating sequence X:ﬂn but
it can only be a means to an end. Mechanistic forecasting procedures, such as
exponential smoothing, may deserve consideration, and knowing the DGP, even
if such a one exists, does not necessarily solve the forecaster’s problem, as she is
interested in the realizations, not in the generating law.
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An example may serve to highlight the discrepancies among concepts. Con-
sider a fair die that is cast repeatedly. Each of a finite set of players is asked
to bet a fixed amount of money and to predict the next face. If the value is
predicted correctly, each correct forecaster receives an equal share of the total
sum. If no one predicts correctly, the closest value wins and is also shared.
In the statistical concept, the problem is solved by finding the correct uniform
distribution of the experiment, which is conditional and also unconditional, as
the throws are independent. The optimal point forecast would be 3.5. This
information is of limited value to a better who is required to tell an integer
number. In the naive forecaster’s concept, the subtleties of the game play a role
in designing a sequence of forecasts. Alternating values of three and four may
optimize winning odds. If there are few players and the rules are modified, such
that the bank receives all the money if more than one predict correctly, it may
be preferable to alternate sequences between two and five or to randomize.

The dice example may serve as a good metaphor for the actual task of an
economic forecaster who should predict next year’s real economic growth rate.
The correct conditional distribution with a mean of 2.2%, say, and a standard
deviation of 2 percentage points, say, may fail to convince the media. The official
forecast may be affected by the chance of a dramatic success—in case of a risk-
loving institution—or by the prediction of the main competitors’ forecasts—in
case of a risk-averse institution. Even keeping the forecast close to a previous
forecast may be beneficial on the forecasting market. In summary, public interest
concentrates on future realized values, not on distributions, and the forecasts are
assessed by complex loss functions and game-type interaction.

In this paper, we will refrain from these practical subtleties of the second
approach and restrict focus on simple loss functions, such as the quadratic and
the absolute loss. However, we wish to keep an eye on the shortcomings of the
theory-based approach, particularly on the fact that the embedding of the data
in a stochastic process is an auxiliary device rather than an obvious property of
the observations.

The remainder of this paper contains two theory sections and an applica-
tion section. Section 2 introduces parametric bootstrap as a tool that logically
follows from considering ever more stochastic elements and more refinement in
evaluating forecasts. Section 3 assesses the value of parametric bootstrap eval-
uations against the backdrop of model selection. Section 4 reviews the method
in an application to national accounts aggregates. Section 5 concludes.

2 Basic concepts of forecast evaluation

It is easy to distinguish four concepts in empirical applications according to the
technical scheme of the evaluations. For exposition, we base all evaluations on
squared loss.

NN (non-stochastic data in the basic data and in the forecasts) evaluations
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utilize statistics such as:

m

m~! Z (Tr4j — xr+j)2 ) (1)

=1

where 2,4 ; may be ‘rolling’ one-step out-of-sample forecasts, for example. The
statistic depends on the observations only. It is advisable to view it as a descrip-
tive rather than a stochastic measure.

NS (non-stochastic forecasts but stochastic assumptions for the future data)
evaluations rely on statistics such as:

R m
Rm= 37N sy — ey (@) (2)

R=1j=

=

where the ‘future’ is drawn from a random processor. Typically, all R futures
coincide with regard to the starting values z, t < s 4+ n, or, by generalization,
for all x4, t < s+ n + j in rolling experiments for one-step predictions. The
ensuing NS statistic is a random variable.

SN (stochastic forecasts but fixed data) evaluations are based on statistics
such as:

i m
STmTEY TN (e (ws) — mgj)”, (3)
S=1j=1

or, with a slight shift of emphasis, on:

2

5
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In the latter version, the average of the S stochastic replications serves as a
mean predictor for z,4;, while in the former version the distance of forecasting
trajectories to future observations is highlighted. The latter version is more in
line with traditional stochastic forecasting for nonlinear time-series models.

SS (all ingredients stochastic) evaluations are based on statistics such as:

_ 2
S

R'm P N 8D dry (ws) —2rgy (wi) | (5)

R=1j=1 S=1

There are two principal strategies for drawing z, ; (wgr), that is, either by boot-

strapping or by Monte Carlo based on sample estimates for specific model classes.

The latter strategy is also called parametric bootstrapping in the following.
Each of the concept in turn answers different questions, such as:

1. Which forecasting strategy yields the best results for a given data set and
variable?
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2. Which forecasting strategy yields the best results for stochastic process-es
that are similar to a given data set and variable—or: that are given by a
specific Monte Carlo design?

3. Which (generally nonlinear) forecasting model yields the best results for a
given data set and variable?

4. Which (generally nonlinear) forecasting model yields the best results for
stochastic processes that are similar to a given data set and variable?

It may be tempting to conclude that the stochastic concepts NS and SS are
more powerful than assessing prediction against the background of a data set
only—the naive forecaster’s view of section 1. The stochastic-data concepts,
however, presuppose a certain degree of knowledge on the true DGP, which
may also be viewed as a drawback. The pure data-driven evaluations SN and
NN successfully isolate the task of prediction from the usual time-series analytic
task of identifying the DGP. Presumably, their apparent lack of generality can be
and should be overcome by considering parallel data sets, for example economic
variables from various countries.

3 True and approximate processes

Figure 1 depicts the prototypical situation of empirical analysis. The plane
represents the space of all possible models, not necessarily parametric with a two-
dimensional parameter. Distance between points describes predictive accuracy,
with longer distances corresponding to decreasing accuracy. This distance is
not symmetric, as a model X may be better in predicting a true process Y
than the other way around. Therefore, the representation is for illustration only,
and distances of interest are marked by arrows heading to the process being
predicted.

The point X represents the unknown true DGP, which is approximated
within the model classes M0 and M1. In this diagram, MO is a subset of
M1, such that M0 can be viewed as a restricted version of M1. For example,
M1 may be ARMA processes and M0 may be autoregressive processes. X0 and
X1 represent pseudo-true parameter values within the classes. Typically, these
pseudo-true values constitute optimal models for prediction. The points X0 and
X1 are unknown, however, and are approximated by ML or other consistent es-
timates Y0 and Y'1. The infeasible optimal predictors X0 and X1 are connected
with the DGP at X by dotted arrows.

There is no guarantee that ML estimates optimize finite-sample predictive
properties, such that points closer to X may be achievable by feasible methods.
It may be, for example, that grid-search minimization of prediction loss over a
test sample will result in such estimates. Even when ML estimates do optimize
predictive accuracy represented by Euclidian distance in the graph within a
class of estimators with reasonable properties, the ML estimate Y1 in M1 may
be a worse approximation to X than YO0 in M0. Asn — oo, Y1 and Y0 will
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Fig. 1: Metaphorical representation of the forecaster’s problem.

converge to the pseudo-true values under certain conditions (see, for example,
WHITE, 1994).

A less plausible backdrop for theoretical analysis would be the case where
X actually is contained in M 1. Even then, the outlined problem may persist in
finite samples of empirical relevance.

Traditional SN methods are tools for determining the distance between X
and the points Y0 and Y'1. Unfortunately, the information on X is restricted by
the sample size, which is expressed by dashing the arrows in Figure 1. Bootstrap
SS methods measure the distance of Y1 and its approximation within MO0, or
of Y0 within M1. Due to sampling variation, even Y1 is not estimated by Y1
within M1 but via a feasible approximation. This approximation can be so poor
that it is outperformed by a member of MO.

This is what appears to be happening in some experiments to be reported
in the following. The evidence points to poor reliability of approximations of
X within M1 and suggests using MO0 instead. It is worth remarking that this
ranking is typically affected by the position of X. A different X that is close
to M1 but distant from the restricted set MO0 can, of course, lead to its M1
approximation outperforming the M0 approximation. Within the metaphor of
Figure 1, one may draw such an X in the northeast of the diagram, slightly
outside the M1 boundary.

In this sense, SS bootstrapping is a convenient device for measuring the
(asymmetric) distance of Y1 and Y0, in order to improve on the exactness of
measuring the distance of X and its approximations, which is bounded by the
available data of length n. In contrast, the (asymmetric) distance of Y1 and Y0
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can be measured to an arbitrary degree of precision. This is expressed by the
solid double arrow in Figure 1.

4 Empirical application: investment subaggregates

Juman AND KUNST (forthcoming) consider a system that consists of logarith-
mic transformations of three variables: gross domestic product (GDP) and two
components of gross fixed capital formation and. They evaluate forecasts based
on five competing time-series models and on UK data. We focus on four of those
five models.

The first model is the simplest and is used as a backdrop. The three vari-
ables are differenced, and a vector autoregression is estimated for the differenced
variables. The second model refines the first one by imposing a restriction on
the deterministic constants such that mean growth rates of all three variables
are identical.

The third model assumes co-integration between the individual investment
components and GDP. Thus, it reflects the equilibrium concept that shares of
the components in output remain constant in the long run. The observation
that construction investment has shown a continuous decline over the recent
decades, while equipment investment has increased its share remarkably, puts
severe doubts on this hypothesis. Like the first two models, also the third one
is linear. It is a standard error-correction VAR with two co-integrating vectors.

The fourth model assumes that the total share of investment in GDP remains
constant while the two components may shift around. In order to impose such an
equilibrium condition, JUMAH AND KUNST (forthcoming) utilize the nonlinear
co-integration models that were introduced by ESCRIBANO AND MIRA (2002)
and ESCRIBANO (2004).

While JuMAH AND KUNST (forthcoming) report that the nonlinear co-integration
model clearly dominates the SN evaluation, Figures 2-5 show the results of an
SS experiment for these four models and the UK data set. The criterion func-
tion was formed from the trace of an estimated Edy (h) i, (k) matrix, where
@y (h) denotes the h—step prediction error. The scales of the three variables
are sufficiently similar, such that the simple trace weighting hardly entails any
distortion.

The data and also the bootstrapped pseudo-data have a sample size of 164
observations. 50 rolling out-of-sample forecasts are evaluated for horizons of
1 to 40. Original data are quarterly, thus the longest horizon of 40 quarters
correspond to ten years. 100 replications are used for the bootstrap, and 100
replications are used for stochastic prediction and averaging. Pseudo-data were
constructed according to estimates from the full original observations and start-
ing conditions that were obtained from an early part of the data.

The MSE was evaluated on the basis of three ratios: total investment to
GDP and each component to GDP. We note that the total investment quota is
stationary in all models excepting the VAR in differences, while the component
ratios are non-stationary in the non-linear co-integration model.
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Fig. 2: Trace of the MSE matrix depending on prediction horizon. Generating
model is linear VAR in differences.

Figure 2 relies on a parametric bootstrap of the simple VAR model in first
differences without any additional constraints. Contrary to expectations, fore-
casts based on estimated structures of the generating class yield the largest
prediction errors at all horizons. If the so-called growth homogeneity (GH) re-
striction is imposed in estimating the VAR, prediction errors are optimized. This
outcome indicates that the data satisfy the GH constraint, such that even the
unconstrained bootstrapped processes can be predicted efficiently by imposing
GH. The linear co-integration model, which assumes stationary subcomponent
quotas, performs almost as poorly as the unrestricted VAR in differences. The
extrapolated bootstrapped trajectories do not satisfy the stationarity condition.
The nonlinear model, which imposes co-integration on the total quota only,
ranks in between the other methods. Freely bootstrapped VAR processes in
differences do not satisfy any long-run restrictions, therefore the result is not
entirely at odds with intuition.

Figure 3 shows that the linear VAR with GH wins its own experiment with
flying colors. This graph is extremely similar to Figure 2, which indicates that
growth homogeneity definitely holds within the observed data. It pays to impose
this restriction in forecasting, as trajectories without the restriction tend to
move apart. The nonlinear co-integration model also restrains deterministic
growth effects, which implies an acceptable forecasting performance, while the
unrestricted version of the DGP fails. The poor performance of the linear co-
integration model is remarkable and confirms statistical evidence on the non-
stationarity of subcomponent ratios in the data and thus also in the bootstrapped
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Fig. 3: Trace of the MSE matrix depending on prediction horizon. Generating
model is linear VAR model in differences with growth homogeneity.

VAR structure.

Figure 4 shows that also the nonlinear co-integration model wins its own con-
test. The bootstrapped trajectories have time-constant total investment quotas
but time-changing subcomponent quotas. The linear VAR with GH obeys nei-
ther of these conditions but the GH constraints guarantee that all quotas do
not deviate too wildly from their in-sample values. It therefore outperforms
the unconstrained linear model in differences. It also outperforms the linear
co-integration model. This indicates that subcomponent ratios vary sufficiently,
and not only in the data but also in bootstrapped trajectories that pick up some
of the data properties, to violate the co-integrating condition. The criterion
values are much smaller than in the other experiments, which confirms that the
nonlinear model attains the closest fit to the data.

Figure 5 relies on simulated trajectories with time-constant subcomponent
quotas. Nevertheless, the prediction performance of this model class itself is
not satisfactory. The potentially misspecified model class—tentatively assumed
as the correct specification—has small loading constants for the invalid co-
integration vectors. Estimating these parameters constants results in large sam-
pling variation, such that the co-integrating conditions do not help in prediction.
Models that fail to impose co-integration, even though it is valid in the boot-
strapped trajectories, dominate beyond h = 30.
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5 Summary and conclusion

The double-stochastic bootstrap evaluation is a logical extension of traditional
forecast comparisons that either rely on viewing the observed data as non-
stochastic or on non-stochastic prediction. The technique has merits beyond
traditional comparisons, as it allows to determine the most ‘robust’ method
among various competing model-based forecasts.

In our application example, such robustness in the sense of the best average
performance, no matter which of the considered model actually generated the
data, can be attributed to a non-linear co-integration model for the national
accounts aggregates.

Another interesting field of application, which we could not study in detail
within this paper’s limits, was suggested by JuMAH AND KUNST (forthcoming).
The outcomes of the bootstrap and the original SN evaluations can be compared.
Differences in behavior point to features in the data that cannot be captured by
the entertained models. Sometimes, it may make sense to re-consider the original
set of prediction models and to attempt to cover these features by creating
new prediction structures. In this paper’s example, the match of SN and SS
evaluations was acceptable but SN graphs tend to be far less regular, with many
changes of ranking as the horizon grows.

An additional informal test, which emanates from such a comparison between
SN and SS evaluations, concerns the ranking of the various prediction models.
Comparable ranking may tend to confirm the generating model class as a good
approximation to the DGP. Thus, the experiments of section 4 point to the
nonlinear cointegration model as an appropriate choice.
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Abstract: We decompose a time series into three components — trend, seasonality
and an irregular component. We apply multiple forecasting methods on each
component separately and recombine the forecasts to obtain one for the original
series. This results in a very large number of forecasters — its cardinality is
multiplicative in the number of forecasters for each component. We study the
effect of combining forecasts and compare this approach with model selection. We
also experiment with different decomposition methods. We compare our strategy
of using decomposition + combining with monthly adaptive Holt-Winter
forecasting.

Index Terms: Time series forecasting, Decomposition, Combining Techniques,
ARIMA.

1 Introduction

Sales forecasting plays a crucial role in proactive supply chain management — both at
the retailer end and further upstream at the distributors, manufacturers and suppliers.
Timely and accurate sales forecasts are the key to bridging the gap between supply
and demand, thereby decreasing inventory holding costs while maintaining a
negligible probability of stock-out. Much work in sales forecasting has centered
around the comparison of linear statistical models such as ARIMA [4][5], the Holt-
Winter approach (exponential smoothing of level, trend and seasonality) [12] and the
use of artificial neural networks [1] [13].

One of the goals of this study is to investigate the effect of a specific form of pre-
processing - series decomposition. Recent work in this area [11] confirms our findings
[11] that de-trending and de-seasonalization of the data greatly help in improving
forecasts. Our work differs from theirs in several ways. In particular, we choose and
combine [2][7] a multitude of statistical models to forecast each component series
obtained after decomposition.

We perform forecasts for each component series separately. These are then combined

to derive the forecast for the original series. The forecasters used here are all
statistical - principally ARIMA models of assorted orders. The number of forecasts
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for each point is multiplicative in the number of forecasters used for each component.
We employ tens of forecasters for each component — this results in several hundred
thousand forecasts of each point. We study two approaches to forecasting each point —
use the forecaster with the best record from the past and mean/median combining.

The paper is organized as follows. Section 2 deals with forecasting preliminaries. In
Section 3, we present and compare multiple decomposition methods used. In Section
4, we report the results of combining forecasts. Section 5 contains our conclusions
after a brief comparison with the monthly adaptive Holt-Winter model.

2 Preliminaries

Two of the best known methods of forecasting seasonal data (such as retail sales) are
the Holt-Winter method [9] and seasonal ARIMA.

The Holt-Winter method uses exponential smoothing of level (S,), trend (7;) and
seasonal index (/;) for forecasting the given series X;. For multiplicative seasonality,
the model assumes the form

S, =a(X, /1_)+A=a)S+T,) (1)

T,=B(S, -5 )+1-PT )
I =yX,/S)+(0-nI_, 3)

Here p is the number of observation points in a cycle (p = 4 for quarterly data). o, S
and y are the smoothing constants. The forecast at time ¢ for time t+i is (S, + iT,) I,

pit

The general multiplicative seasonal ARIMA (p, d, q) X (P,D,Q) model is expressible
as

&(B) OB)(1-B) (1-B)°X(t) = Cy + OB)OB)e(t), t=1,2,3,....

Here C is a constant, €(t) is a sequence of independent, zero mean and normally
distributed errors, d and D are the orders of non-seasonal and seasonal differencing
for the time series and @(B), O(B’), 6(B) and O(B’) operators are polynomials in B
(the backward shift operator) with the following general forms

®(B) =1-D,(B) - Ds(B’) - ... - D,(B’) )
O(B’) = 1-0,(B°) - 0:(B”) - ... - Op(B"”) (%)
O(B) = 1-0,(B) - 0:(B°) - ... — 0,(B") (6)
O(B’) = 1 - 0,(B°) — Oy(B”) - ... — Oy(B%) (7
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The polynomials @(B) and 6(B) capture the non-seasonal behavior and @(B°) and
O(B’) capture the seasonal behavior of the series. The differencing orders d and D
typically have a value 0 or /. For non-seasonal ARIMA, P=D=0=0.

Our strategy is to decompose a series into three components. The first two
components extract the underlying trend and seasonality in the time series. What
remains is ideally random white noise (though in practice it may not be so.) We
forecast each component series separately using multiple forecasting models similar
to those described above.

A method used in forecasting a component is referred to as an atomic forecaster.
Since we decompose the original series into three components, a forecaster for the
original series is a triplet made up of the atomic forecasters for each component. The
set of such triplets is the Cartesian product of the sets of forecasters for trend,
seasonality and the irregular component. We refer to each such triplet of atomic
forecasters as an expert. Appendix B includes a list of atomic forecasters used in our
work. While using an atomic forecaster to forecast a component at point t, we
determine the structural parameters of its model by training on the component series
up to time t-1.

To forecast a point, we may select an expert with the best track record to date.
Specifically, at each point in time, t, we identify the model that yields the best average
performance up to time = t-1. We refer to this method as Best.

3 Decomposition Strategies

In this section we present various decomposition methods and study their effect on
forecasting performance using Best.

3.1 Decomposition Methods

There are a number of ways in which the three component series - Trend (7),
Seasonality (S) and the Irregular component (/C) - may be defined and combined. We
assume that the original series, X, can be obtained from its components using the
operators, + and/or X. We thus have eight ways of combining these series (i.e. S+7%/,
S+T+1, etc). The pure multiplicative model (D = TxSxI) seemed to be superior in
modeling sales data and so we use it in the experiments reported here.

Let X, 7, S, and I, denote the /" point of the respective series. We define the
component series below in a manner similar to [10].

T o= Z 11=o X (i

t = 12 (8)

263



X, X._
S, = avg(—,—*%, ,
T:‘ T:‘fp 7’;7219 T’F3p (9)

Where p is the seasonality period
X

- t

T XS, (10)

We refer to this method of decomposition as D1.

In the above definition of S (Equation 9), all previous years are equally weighted. In
many cases, the seasonal component of a series changes with time. It is necessary
then to give more importance to the recent past using exponential weights. The
seasonal component of decomposition methods D2 — D5 is as below.

X X _ X _ X _ X
Clpax @ x P x P gt
t t—p ];721) ]—;73 P t—4p
S, = > 5 2 (11)
(l+o+a +a +a’)
S; and T, are as defined in Equations 8 and 10. The weights a, o, . ..00, 0<o<=1,

are assigned to the de-trended value of X from the past five years (and not to the
entire past as in D1) . D2, D3, D4 and D5 differ only in values assigned to a - these
are respectively 0.3, 0.6, 0.8 and 1.

3.2 Experiments and Results

For all our experiments, we used a total of 31 series (25 real + 6 synthetic)
representing monthly sales. The series are listed in Appendix A. In all cases, the
initial 30 points are used exclusively for training. Forecasting performance is
measured using MAPE (Mean Absolute Percentage Error) starting with the 31% point
of the series. Also, in all cases, models are re-trained (i.e., their parameters are re-
computed) after performing a forecast.

The goal of our first experiment was to compare the forecasting performance with and
without decomposition. For the latter, we selected 26 forecasting models. These are
mostly seasonal ARIMA or variations of the Holt-Winter model (Appendix B). In the
case of decomposition, we employed the services of 86, 34 and 33 atomic forecasters
for 7, IC and S respectively thus yielding a total of 96492 experts. The names and
notations for the atomic forecasters are listed in Appendix B.

Table 1 shows the MAPEs using Best. The WoD column shows the MAPEs without

performing decomposition. Columns D1-D5 show the MAPEs using the different
decomposition methods. The MAPESs using decomposition are better than the MAPEs
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without decomposition in a majority of the series. MAPEs that are within 1% of the
best MAPE in a given row are shown in bold. It is clear that some decompositions
are better suited to some series than others. Every decomposition method performs
best for at least one series while no single method emerges a clear winner across all
series.

The last row shows the improvement using decomposition over the case without
decomposition averaged over all series — the greatest improvement is in the case of
D1 which is 3.65% better than the MAPE without decomposition. D1 also performs
best in about 50% of the series but it is also the worst performer in series such as Spk
and Sto.

Series WoD Dl D2 D3 D4 D5
Abr 2.94 2.76 2.84 2.8 2.83 2.75
Beer 247 2.23 244 2.39 241 233
Clo 2.5 247 232 2.39 2.37 244
Dry 8.44 8.6 8.58 8.47 8.43 8.61
Eqp 0.75 0.8 0.77 0.77 0.74 0.81
For 8.17 7.98 8.14 7.78 7.65 7.89
Fur 2.3 243 2.25 2.29 2.26 2.29
Gas 2.6 247 2.62 2.67 2.52 247
Gro 1.39 1.18 1.37 1.27 1.25 1.26
Hsa 8.33 7.95 8.37 8.15 8.29 8.35
Jew 3.78 3.96 3.76 3.75 3.65 3.77
Mer 0.83 0.8 0.8 0.81 0.82 0.83
Mot 1.47 1.52 1.63 1.62 1.57 1.58
New 435 3.99 4.14 4.01 4.04 4.16
Pap 7.33 5.16 538 5.18 5.25 5.24
Red 9.83 9.7 9.05 9.26 9.38 9.35
Ros 14.04 13.67 13.94 13.55 14.1 14.25
Sho 3.04 3.07 2.97 2.99 3.19 3.06
Sof 3.97 3.57 3.71 3.53 3.58 3.6
Spa 8.25 7.94 8.38 8.24 8.23 8.07
Spk 12,71 13.46 12.6 12.78 12.97 13.22
Sto 0.9 0.97 0.85 0.89 091 0.93
Swe 16.85 16.05 15.67 15.74 15.93 16.37
Tot 0.66 0.66 0.69 0.66 0.65 0.64
Win 8.13 741 7.77 7.73 7.72 7.57
Sl 1.66 1.62 1.62 1.65 1.67 1.68
S2 342 3.11 3.28 3.62 3.11 3.07
S3 3.06 2.33 249 2.53 248 2.36
S4 0.61 0.65 0.65 0.63 0.66 0.67
S5 2.90 2.89 2.96 294 2.94 2.96
S6 598 5.68 6.03 6.09 5.94 5.87

%Impr 0 3.65 2.59 3.03 3.34 2.92

Table 1 MAPES using various decomposition methods in conjunction with Best

4 Combining

The Best method outlined in Section 2 suffers from the problem of model selection
instability [2] — a model’s superior overall performance in the past is not necessarily
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indicative of excellent performance in the future. To reduce the risk of making a poor
choice, we resort to combining the forecasts of multiple experts. The most obvious
option is to compute the mean or median of all the experts’ forecasts. We
experimented with combining in both scenarios — without decomposition (using 26
experts) and with decomposition (five decomposition methods, each using 96,492
experts.) By way of clarification, we now have six possibilities:

1. No Decomposition 2. Decomposition ( 5 methods)
a) Using Best (26 forecasters) a) Using Best (96,492 * 5 experts)
b) Mean of 26 forecasters b) Mean of 96,492 * 5 experts
¢) Median of 26 forecasters ¢) Median of 96,492 * 5 experts

The MAPES for each of the above cases is shown in Table 2. The last row shows the
average percentage improvement of the Mean/Median approach over Best. It is clear
that, overall, there is no advantage of combining over Best when no prior
decomposition is employed. However, with decomposition, the median of all experts’
forecasts exhibits better performance over Best on the average. Using the median
rather than the mean yields an improvement in the vast majority of cases especially
when decomposition is not employed.

WOD WD

Series Best MN MED Best MEAN MED
Abr 2.94 3.44 3.4 2.8 295 2.96
Beer 247 2.66 2.63 2.22 2.5 2.48
Clo 2.5 2.66 2.44 2.39 248 2.29
Dry 8.44 8.61 8.03 8.69 84 8.27
Eqp 0.75 1.15 0.75 0.82 0.79 0.75
For 8.17 8.29 8.29 8.09 7.74 7.74
Fur 2.3 2.25 2.16 2.28 235 2.13
Gas 2.6 331 2.65 2.62 2.62 2.56
Gro 1.39 1.54 1.62 1.18 1.71 1.29
Hsa 833 9.08 831 7.75 8.25 8.14
Jwl 3.78 4.56 3.79 3.63 3.67 3.52
Mer 0.83 0.99 0.78 0.83 0.78 0.75
Mot 1.47 2.03 1.51 1.59 1.75 1.69
New 4.35 3.93 3.97 4.14 3.93 3.94
Pap 7.33 6.25 5.91 5.17 5.12 5.02
Red 9.83 10.22 9.77 9.33 9.44 9.33
Ros 14.04 14.71 14.69 13.88 12.86 12.86
Sho 3.04 3.18 3.1 3 2.93 291
Sof 3.97 3.94 3.57 3.57 3.39 3.35
Spa 8.25 9.22 8.68 8.17 8.31 8.43
Spk 12.71 12.67 11.95 13.24 12.45 12.38
Sto 0.9 1.06 0.84 0.9 0.85 0.83
Swe 16.85 16.23 15.59 15.98 15.33 15.49
Tot 0.66 0.94 0.64 0.67 0.73 0.69
Win 8.13 8.21 7.89 7.41 7.6 7.52
S1 1.66 1.91 1.83 1.65 1.77 1.68
S2 3.42 3.38 3.14 3.24 3.37 3.27
S3 3.06 3.20 3.01 241 2.90 2.79
S4 0.61 1.47 0.85 0.66 0.62 0.63
S5 2.90 3.44 3.22 2.95 2.89 2.88
S6 5.98 6.39 6.41 5.84 5.79 5.86
%Impr 0 -14.58 -0.97 0 -2.32 0.87

Table 2 MAPES using Best, Mean/Median with and without decomposition

266




5 Discussion and Conclusions

In addition to comparing the schemes presented here with one another, we also
compared them to results using the Holt-Winter model. For the latter, we used a
monthly adaptive approach where the smoothing constants are updated each month.
To forecast the value of X at point t, a global search is conducted to determine the
values of a, f and y (Equations 1-3) that minimize the MAPE up to and including
time = t-1. The Holt-Winter set of equations with the updated smoothing constants are
then used to forecast X at time =t.

Table 3 shows that Best without decomposition performs better than HW in 20 of the
31 series while Best after decomposition performs better in 26 series. Decomposition
followed by combining using the median performs better than HW in 29 series, its
MAPE being only marginally higher in the other two series. The last row of Table 3
shows the average percentage improvement over HW across all series considered
here. As can be seen, decomposition greatly helps - the improvement using the naive
median approach (9.08% improvement) is greater than that using Best (7.88%
improvement). Best without decomposition is also better than HW but the
improvement in this case is only about 4%.

Best MED

Series HW WoD D D
Abr 3.26 2.94 2.8 2.96
Beer 2.52 247 2.22 248
Clo 246 2.5 239 2.29
Dry 8.26 8.44 8.69 8.27
Eqp 097 0.75 0.82 0.75
For 7.9 8.17 8.09 7.74
Fur 237 2.3 228 2.13
Gas 2.7 2.6 2.62 2.56
Gro 1.4 1.39 1.18 1.29
Hsa 10.17 8.33 7.75 8.14
Jwl 3.76 3.78 3.63 3.52
Mer 0.85 0.83 0.83 0.75
Mot 221 1.47 1.59 1.69
New 4.13 435 4.14 3.94
Pap 5.19 7.33 5.17 5.02
Red 9.57 9.83 933 933
Ros 15.12 14.04 13.88 12.86
Sho 3.02 3.04 3 291
Sof 3.86 3.97 3.57 335
Spa 8.39 8.25 8.17 8.43
Spk 12.79 12.71 13.24 12.38
Sto 0.92 0.9 0.9 0.83
Swe 15.8 16.85 15.98 15.49
Tot 0.92 0.66 0.67 0.69
Win 7.55 8.13 7.41 7.52
S1 1.73 1.66 1.65 1.68
S2 4.00 3.42 3.24 3.27
S3 3.79 3.06 2.41 2.79
S4 0.77 0.61 0.66 0.63
S5 295 2.90 295 2.88
S6 6.15 5.98 5.84 5.86
%lImpr 0 3.98 7.88 9.08

Table 3 Improvements of various methods over HW
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Decomposing a series into its trend, seasonality and other components seems like a
“natural” top-down approach to forecasting. Best and combining, both, reap
considerable benefit if the time series is first decomposed. Thanks to decomposition
and the use of multiple forecasters for each component, we have effectively increased
the cardinality of the pool of experts (26 forecasters without decomposition and
96492 using decomposition). Using 5 decomposition schemes further magnifies the
pool of experts.

We report results using combining obtained from the median of all experts’ forecasts.
Earlier work in the area of combining indicates that the mean or median performs as
well as more sophisticated approaches using weighted experts, etc. Most earlier
studies, however, have far fewer forecasters, usually less than hundred. It is yet to be
established whether the mean/median approach still wears the crown when the
number of experts touches a million. Our current work in this area seems to indicate
otherwise.
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Appendix

A. Time Series Used

For our experiments, we have used real world sales series from [14] and [15]. These
series are described in Table 4 and 5. We also considered a few synthetic series with
the following component definitions. Series S4, S5 and S6 are borrowed from [11].

A(t)=500+41; 1<t<200 (12)
Bl(t)=1+40.2sin(2.7.£/12) (13)
B2(t)=1+0.3sin(2.7.¢/12) (14)
C(t,x) = Normal (0,x) (15)

The series that we have synthesized are:

S1: Here D(t) = A(t) * B1(t) * C(t,0.02)

S2: Here D(t) = A(t) * B3(t) * C(t,0.02), where B3(t) is defined as

B3(¢) = BI(¢) if mod(|z/24))=0; B2(t) otherwise, (16)

S3: It is created as D(t) = A(t) * B4(t) * C(t,0.02), where B3(t) is defined as
B4(t)= BI(¢) if mod(|¢/12])=0; B2(¢) otherwise; (17)

Series Description Series Description
Abr Gasoline demand Ontario Dry Australia sales of dry white wine
For Australian sales of fortified wine Hsa Sales of new houses sold in the USA
Pap Sales of printing and writing paper Red Australian sales of red wine
Ros Australian sales of rose wine Spa CFE specialty writing papers
Spk Australian sales of sparkling wine Swe Australian sales of sweet white wine
Win Australian wine sales
Table 4 Series from Time Series Library
Beer | US Retail Sales: beer, wine, liquor stores Clo US Retail Sales: Clothing stores
Eqgp | US Retail Inventories: Building materials Fur US Retail Sales: Furniture stores
Gas | US Retail Sales: Gasoline stations Gro | US Retail Sales: Grocery stores
Jwl | US Retail Sales: Jewelry stores Mer | US Retail Inventories: General merchandise
Mot | US Retail Inventories: motor vehicle dealers New | US Retail Sales: New car dealers
Sho | US Retail Sales: Shoe stores Sof | US Retail Sales: Computer and software
Sto | US Retail Inventories: Department stores Tot US Retail Inventories: totals

Table 5 Series from Economic Time Series
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B. Forecasting Models Used

Table 6 shows the forecasters used for the original series and for T, S and I. In the
Type column, the notation (p,d,q) and (p,d,q)(P,D,Q) are standard notation for
ARIMA and Seasonal ARIMA models respectively. Most of the atomic forecasters
are parsimonious ARIMA or seasonal ARIMA models (p <= 3 and q <= 2). Options
such as differencing (d = 1) and log transformations are also used.
The numbers in the Var column have the following meaning;

e 1 No log transformation.

e 2 Log transformations.

e 3 No log transformation and p = 0.

e 4 Log transformations and p = 0.
Here p is the parameter of the Seasonal ARIMA in:

L 0(BY0.(B)

(I1-B)'(1-B")"Y,=u W;(Bs)al (18)

Table 6 Forecasting Models selected for series and various components

Type Var Type Var Type Var

Trend Experts Irregular Experts WoD Experts
([0-2],1,1) 1,234 | Mean (0,0,1)(0,1,1)s 4
([0-2],1,2) 1,234 | ([0-11,1,0) 1,2 (0,1,0)(0,1,1)s 4
([0-2],2,1) 1,234 | ([1-2],0,0) 1,2 (0,[1-2],2)(0,1,1)s 4
([1-2],1,0) 1,234 | (1,1,2) 1,2 (3,0,0)(1,1,0)s 4
(1,2,0) 1,234 | (0,1,1) 1 ([1-21,0,0)(0,1,1)s 3
([0-11,1,0)(1,0,0)s 1,234 | (0,0,0)([0-1],0,1)s 1,2 (2,1,0)(0,1,0)s 3
([0-1],1,0)(J0-1],0,1)s | 1,2 ([0,21,0,0)(1,0,0)s 1,2 (2,1,2)(0,1,1)s 3
(1,1,[1-2])(0,0,1)s 1,2 (0,1,1)(1,0,0)s 34 (0,1,1)(0,1,1)s 2,34
(1,1,2)(1,0,0)s 1,2 (0,0,0)(0,1,1)s 34 (0,0,0)(0,1,1)s 234
(3,1,0)(0,0,1)s 1,2 Linear Exp with (0,0,0)(0,1,2)s 2
([1-21,0,1) 1 AR=1,23 1,2 (0,1,0)(1,0,0)s 1
(3,1,0) 1,2 Linear Exp 1,2 (0,0,0)(1,1,0)s 34
(2,1,0)(1,0,0)s 1,3 (3,0,0)(1,0,0)s 1 (2,1,0)(0,1,1)s 34
(3,1,0)(1,0,0)s 1,23 (0,0,0)(3,1,1)s 4 (3,0,0)(0,1,1)s 1,3
(2,0,0)(1,0,0)s 24 Season Experts Seasonal Exp Smoot 1,2
(0,1,1)(1,0,0)s 34 ([0-31,0,0)(0,1,1)s 24 Add Winters
Holt Method ([0-11,0,1)(0,1,1)s 24

([1-3],1,0)(0,1,1)s 24

([0-2],1,1)(0,1,1)s 24

([0-2],1,2)(0,1,1)s 24

(0,0,2)(0,1,1)s 24

Holt Winter
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Abstract. Autoregressive models have been widely used for time series
prediction. Several univariate and multivariate estimators have been implemented
for the use with missing data. These algorithms were used to perform the
prediction of the ESTSP2007 competition. In order to determine the free
parameters (model order and estimation algorithm), segments of the competition
data were encoded as missing samples; then the prediction error on these samples
was used for comparison. The predication using different models are shown. The
prediction result of an AR(p=300) process with superimposed sinusoid and a
constant mean term was submitted to the ESTSP2007 prediction competition.

1 Introduction

Time series analysis is an important approach for analyzing biomedical signals like
the electroencephalogram (EEG). The first autoregressive estimation of EEG can be
traced back to Lustick et al. Fenwick et al. Zetterberg and Gersch in the late 1960s.
Nowadays, multivariate autoregressive (MVAR) models are used to estimate various
coupling measures, e.g. Directed transfer function, Coherence, Partial Directed
Coherence and several other coupling parameters (Schlogl and Supp, 2006).

All these methods relay on algorithms for estimating autoregressive model parameter.
Several estimators for univariate (Levinson-Durbin algorithm, the Burg algorithm and
the geometric lattice algorithm) and multivariate (Nutall-Strand, Vieira-Morf and
Multichannel Yule-Walker) autoregressive models have been implemented for
Octave and Matlab, and were made available under the GNU General Public License
through the TSA-toolbox (Schlogl 1996-2006).

Recently, a comparison of these MVAR estimators and ARFIT (Schneider and
Neumeier, 2001) was performed (Schlogl 2006). Because, biomedical signals are
often contaminated by artifacts (causing missing samples), the estimators in the
“TSA-toolbox for Octave and Matlab“ were modified to enable the handling of data
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with missing samples, the missing samples have to be encoded as not-a-number
(NaN). In this work, the cross-validation scheme for determining the free parameters
(model order, choice of estimation algorithm) will utilize this property of being able
to handle data with missing samples.

This work describes a contribution to the Time Series prediction competition 2007,
using a simple autoregressive model. Several different AR estimators will be used,
the degrees of freedom (model order and choice of estimation algorithm) will be
determined by a cross-validation procedure on the training data. It is not expected that
a pure autoregressive method will provide the optimal performance because detailed
data inspection suggests that the data is non-Gaussian and contains at least one
sinusoidal component. Therefore, the most prominent components are identified, and
only the residual process is modeled by an autoregressive model.

2 Method

2.1 Initial analysis

Visual inspection of datay
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investigating the data, as well a the limited number of data samples, only the second
order statistical properties are investigated. For this purpose, an autoregressive model

can be used. An AR process is defined as
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by Wiggens and Robbinson, Nutall, Strand, Vieira and Morf (Marple, 1987, Schloegl,
2006). In this work, two univariate AR estimators (Levinson-Durbin recursion and
Burg) and six MVAR estimators (Nutall-Strand, Vieira-Morf and Levinson-Wiggens-
Robbinson recursion, each using “biased” and “unbiased” covariance estimation)
were used. The algorithmic implementation was providled by DURLEV.M,
LATTICE.M and MVAR.M from the TSA toolbox for Octave and Matlab (Schlogl
1996-2006).

These algorithms were modified in such a way that data with missing samples
(encoded as NaN) can be handled. The modification for handling missing samples is
based on the idea that missing samples are ignored (skipped) when estimating some
expectation values, a counter counts the number of valid terms.

Specifically, the estimation of the expected autocorrelation 7
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3 Results

3.1 Decomposition of the data

Based on the initial analysis using visual inspection and histogram analysis, a
constant mean and a sinusoidal component have been identified. After subtraction of
these components, a residual process is obtained. The various components are shown
in Figure 1.
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Figure 1: Decomposition of the data. The time series is decomposed into a (constant)
mean, a sinusoid with amplitude A=3 and a cycle duration of 51.9 samples, and the
residual activity.

3.2 Selecting the estimator and the order of the AR model

Figure 2 shows the mean square of the predication error for different estimators and
model orders. The prediction error of all estimators were computed up to moder
p=100. Then, it became apparent that several estimators perform significantly worse.
Therefore, only the univariate Levinson-Durbin and the Burg methods as well as the
MVARI method (Levinson-Wiggins-Robinson recursion) were used for higher
model orders.
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Figure 2: Comparison of different model estimates. Most algorithms
were computed only to model order p=100, because this seem to
perform worse. Only MVARI, Levinson-Durbin and Burg were
computed for larger model orders, too.

3.3 Prediction results

The prediction of 4 different models is shown in Figure 3. Three models are based on
sole AR models, using different estimators and different model orders; two models
use the decomposition model and the residual is modeled by AR processes. The
submitted prediction for the ESTSP2007 competition was based on the
decomposition model combined with an residual AR process estimated with an
MVARI1(p=300) model.
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Figure 3: Prediction of different models.

4 Conclusion

Several standard AR estimators (including Levinson-Durbin, Burg, LWR, Nutall-
Strand, Vieira-Morf) were modified for its use on data with missing samples. The
solution follows the general idea of estimating the expectation values from the
available samples only.

The computational effort of the AR estimators increased at most by a factor of 2. This
is much less then the computational effort of maximum likelihood estimators or
imputation methods. In this work, missing samples were used for the implementation
of the cross-validation procedure. Moreover, it is shown that estimators are stable also
for large model orders.

The fact that the estimators are able to handle data with missing sample values
simplified the implementation of the a cross-validation procedure. The cross-
validation was used to exclude bad-performing estimators and demonstrate the fact
that large model orders need to be used for this data. However, due to the limited
time, submission for the ESTSP 2007 competition has based on subjective judgment
using an AR mode of p=300.
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Removing seasonality on time series, a practical
case
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Abstract. A good analysis of a time series is essential in order to
obtain optimal predictions, specially when performing long term forecas-
ting. Patterns in time series are normally described in terms of two basic
components: trend and seasonality. There are a number of techniques in
order to identify and eliminate those components from time series; howe-
ver there is no automatic techniques and each specific problems needs a
detailed analysis. This paper presents a solution to the benchmark propo-
sed for the ESTSP’2007, obtained by exploiting the seasonality and trend
properties of the provided time series.

1 Introduction

Time series forecasting is a challenge in many fields. There exist many techniques
that are applied to the problem of predicting new values in univariate time series
[1]. Among them we may enumerate linear methods such as ARX, ARMA, etc.
and nonlinear ones such as artificial neural networks, fuzzy models, support
vector machines, etc. However, it is important to perform an appropriate time
series analysis before tackling with the modeling of the time series, in order to
discover possible patters to help in the prediction. This becomes even more
essential on long term prediction problems, in which the uncertainty increases
with the horizon of prediction [4].

Most time series patterns can be described in terms of two basic classes of
components: trend and seasonality. Trends represent a general systematic linear
or nonlinear component that changes over time and does not repeat or at least
does not repeat within the time range captured by the data available. Seasonality
represents a certain pattern that repeats itself in systematic intervals over time
[5]. Those two general classes of time series components may coexist in real-life
data. An example would be the sales of a company that can rapidly grow over
years, but that still follow a consistent seasonal pattern.

This work presents a practical study on the analysis and model of a time
series: the benchmark proposed in the European Symposium on Time Series
Prediction (ESTSP’2007). The series is analyzed, and the trend and seasona-
lity are eliminated. Finally some improvements are proposed by modeling the
obtained series using a simple AR model [2, 6].

The rest of the work is structured as follows. Section 2 briefly describes
the ESTST’2007 benchmark time series. Section 3 performs an analysis of the
series, describing its trend and seasonality components. Section 4 explains how
new values of the series are predicted. Finally section 5 concludes the paper.
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2 ESTSP’2007 Benchmark

The data set provided is shown in fig. 1. The number of samples in the time
series is 875. The goal of the competition is the prediction of the 50 next values
of the time series. The evaluation of the performance will be done using the
mean squared error MSE obtained from the prediction of both the 15 and the
50 next values.
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Fig. 1: Original data set

In the tests performed in this work, from the 875 data samples of the series
x(t), the first 750 data samples were used as training data, leaving the remaining
125 data samples as test data.

3 Data Analysis

The first characteristic that is noticed in the series is that it shows to have sea-
sonality. However, it is to be noticed too that when performing a input/output
(I/0) modeling of the time series in the form

Ft+h)=F(x(t—-0), z(t—1),... 2(t—1)) (1)
it might be not convenient to work in the original series domain, since it is
possible that some fluctuation of the series (like the peak within the 400-450
samples) are not discovered -there is no I/O data available from which to learn
those fluctuations. That is to say, the trend of the time series needs to be taken
into account explicitly.
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3.1 Differenced Time Series

This will be done, as is proposed in [2] by differencing the time series. The
differenced series with lag 1 is calculated as [3]

d(t) = z(t+1) — x(t) 2)

The differenced time series is shown in fig. 2. The number of samples in
the series is now is 874. In the differenced series the trend has been eliminated,
although the resulting series isn’t still stationary. The seasonality will be also
eliminated as it is explained in the next subsection.

0 100 200 300 400 500 600 700 800 900
Fig. 2: Differenced time series

3.2 Seasonality in Time Series

Seasonality in time series occurs when there is a certain pattern that is repeated
each k elements. The data series in fig. 2 shows to have a certain seasonality, as
can be seen from the autocorrelation function of the time series in fig. 3.

The period of the seasonality can be obtained by a number of techniques [2].
In this work, the period has been obtained by evaluating the distances between
the different supposed-seasons of the differenced time series. The specific period
for which the distances among the different seasons was lowest, was taken as
a solution. The specific period found in this case was 52; fig. 4 shows the
superposition of the different seasons of 52 samples of the time series. This
value reminds a weekly registered phenomena along different years (seasons).
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Sample Autacorrelation Function (AGF)
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Fig. 3: Sample Autocorrelation Function of the Differenced Series
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Fig. 4: Joint representation of 16 complete seasons in the differenced time series.
The bold line represents the mean value for each time step of a season of 52 values
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Removing the seasonality in the series was performed by calculating the
average values on a season, and by subtracting these average values to the series.
fig. 4 shows in bold the mean of the differences series values for a season. Thus
the resulting time series will be the difference of each time step of the season with
respect to its mean value for the sequence of 16,8 seasons in the 874 differenced
series samples. Fig. 5 shows the time series after removing the average values
within each season.

1.5 . T T .

100 200 300 400 500 600 700 800 900

Fig. 5: Differenced series after erasing seasonality, u(t)

4 Prediction of Future Values in the Time Series

Once the series has been differenced and the seasonality has been removed from
the series, the series can be modeled.
Any paradigm or model could be used to perform the modeling of the series

u(t) in fig. 5
t+h)=F(u(t—0), u(t—1),... u(t—1)) (3)

where

u(t) = d(t) — meanValue(t) (4)

However, a first analysis of the series shows that the series is very noisy, and
there are few chances to perform any prediction. The autocorrelation function of
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the series in fig. 6 shows that just the u(t) brings information about an objective
variable to predict u(t + 1).

Sample Partial Autocorrelation Function
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Fig. 6: Sample partial autocorrelation function of the series u(t)

Therefore a simple AR model was built to predict the value u(t 4+ 1) as a
function of u(t); the model found as optimal parameter (being the mean of the
series equal to 0)

a(t) = u(t — 1) = (—0.2123) (5)

However due to the low performance of the model, the AR system was used
to predict just the first 5 values of the series: 4(876) : 4(880) (with an estimated
NRMSE of almost 1).

The final prediction was obtained by adding the predicted @ to the expected
mean values obtained by un-seasoning the differenced series (see fig. 4). After
the series was reconstructed by reversing the differencing procedure.

Fig. 7 shows the prediction for the desired data points for the ESTSP’2007
competition. The expected MSE of the prediction procedure described in this
paper is 0.81, that has been obtained by using the first 750 data points as training
(to obtain the average of the differenced series for each season) and the rest for
testing complete predictions of 50 data points. The final prediction was obtained
by using the whole 875 data samples of the series as training.
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Fig. 7: Original series plus the new predicted 50 values

5 Conclusions

In this paper, a practical case of a time series prediction problem, the ES-
TSP’2007 proposed benchmark has been analyzed. Several paradigms and met-
hodologies have been applied to the problem of time series prediction, however,
it’s very important to perform an appropriate previous analysis in order to ob-
tain optimal prediction results. In this paper, trend and seasonality have been
removed from the time series by firstly differencing and secondly removing the
mean values within each season. The obtained series shows to have a very noisy
behaviour and a simply AR model has been finally used to predict short term
values. The desired long term prediction has been finally performed supposing a
mean-valued season, and by re-seasoning and inverting the differencing process
of the 50 desired values.
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Abstract. In this paper, we analyse the “prediction competition dataset” provided by the
first European Symposium on Time Series Prediction (ESTSP). In modelling the given
univariate process, we use Hamilton’s (2003, J. of Econometrics) definition of a shock. The
application of Hamilton’s shock definition to a series with oscillatory behaviour for identifying
positive and negative shock waves is a novelty of this paper. In addition, we show that it is
possible to extract information on the dynamics of the shock waves and identify turning points.
Furthermore, we use the generated shock wave series in the construction of a prediction model.
In specifying the prediction model, we make use of Poskitt and Tremayne’s (1987, Biometrika)
posterior odds ratio test.

1 Introduction

The identification of the presence of individual shocks or shock waves in a given time
series has important implications for the empirical modeling of the underlying
process. The topic is of an interdisciplinary nature with applications ranging from
solar research to financial economics. Here, we will discuss some of the methods in
identifying the shocks or regime-changes in time series with a view from
macroeconomics and econometrics.

There has been a time-series revolution in the economics literature in the 1980s.
The main contributions, such as Nelson and Plosser [11] and Engle and Granger [6],
focus on the presence and implications of non-stationarity in economic time series.
For instance, if a given series is not stationary, a shock to the system has permanent
effects. On the other hand, for a stationary series, a shock will have only transitory
effects. In this context, Perron [13] and Rappoport and Reichlin [16] argued that
macroeconomic series might indeed be stationary around a breaking trend. That is, a
shock to the series reflects the effect of an exogenous event rather than being a
realization from the tail of the data generating process for the series in question. Zivot
and Andrews [21] further developed Perron [13] structural break test by endogenising
the selection of the location of the break. Raj [15], among others, reported evidence in
favour of breaking trends in the real GDP series of a number of industrialised
countries.

It is also possible that a given time series contain several breaks. In other words,
several shocks might disturb the process in question. Yao [19], Yin [20], and Bai and
Perron [2,3,4], among others, deal with the identification of multiple breaks or shocks.
The current review of the literature on multiple breaks in economic time series is
provided in Jaouni and Boutahar [10].
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Another strand of the literature that examines whether a given stochastic process
is driven as a product of different regimes relates to non-linear time series models.
Examples of such models include (self-exciting-) threshold models, (SETAR), smooth
transition models (STAR), and Markov regime-switching models. The structure of
these models include several segments of autoregressions with different parameter
values and transition rules (threshold) across the regimes. In Markov switching
models, the regime change is probabilistic and a transition probability matrix across
the regimes is also a part of the model. In addition, various extensions of the
generalized autoregressive conditional heteroscedasticity (GARCH) model are used
for modelling the regime-switching unobserved volatility. A review of the above
models and their applications in finance can be found in Tong [18] and Frances and
van Dijk [7].

1t is likely that the points or periods of regime-changes in non-linear time series
models could be identified as breaks or periods of shocks if the structural break tests
as in Perron [13], Zivot and Andrews [21], or Bai and Perron [2,3,4] were applied.
The difficulty lies in the fact that one does not know the true data generating process.
In this context, a pragmatic approach to what constitutes a shock without the need to
identify the underlying process is provided by Hamilton [8,9]. Hamilton [8,9] argues
that even a large increase or a decrease in a given time series need not constitute a
shock to the series if that value is not greater (or smaller) than what was observed in
the recent history of the series. However, Hamilton’s definition was made in view of
the oil price data. That is, economic agents’ reaction function to oil price changes are
also taken into account. In this sense, even a large price change would not constitute a
“shock” if the economic agents (such as firms) had already seen that price level
recently and adjusted their behaviour accordingly. Nevertheless, as we argue below,
Hamilton’s approach has further application potential in time series analysis.

In this study, we make use of Hamilton’s [8,9] definition of what constitutes a
“shock” to a given data series instead of employing a non-linear time series model in
the analysis and forecasting of the ESTSP dataset. This is because, Hamilton’s [8,9]
definition of a shock does not require any particular assumptions on the nature of the
data generating process.

The ESTSP competition data display highly cyclical behaviour with varying
amplitudes. As such, the application of Hamilton’s shock definition to data with
periodic behaviour is a novelty of this paper. In the case of series with oscillations, the
application of Hamilton’s shock concept leads to the identification of periods of
positive and negative shock waves and the calm periods in-between. In principle, it is
also possible to extract information on the dynamics of the shock waves. This is
especially important as it relates to the identification of turning points.

A further novelty in this paper lies in the use of the positive and negative shock
waves generated by employing Hamilton’s definition as explanatory variables in
constructing a prediction model for the underlying series. At the model identification
stage for the prediction model, we employ Schwarz’s [17] Bayesian information
criterion and the posterior odds ratio test developed by Poskitt and Tremayne [14].

In what follows, we first examine Hamilton’s [8,9] methodology in detail. Next,
we present our analysis of and the predictions for the ESTSP dataset. Some
observations on the ESTSP series and the lessons from the prediction exercise
conclude the paper.
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2 Methodology

2.1 Hamilton’s Shock Definition

As discussed in the Introduction, Hamilton [8,9] argues that any corrections, such as
mean-reversion, that follow large increases or decreases should not be considered as
large positive or negative changes in the variable of interest. Thus, even large
increases or decreases in a given time series are not necessarily shocks to the series
Hamilton’s methodology of identifying what is really a shock was undertaken in the
context of oil prices and the relevant history to consider is set to 12 months. In other
words, a shock increase in the oil prices occurs if the current price is higher than the
highest price in the last 12 months. The following equations illustrate the
identification of positive and negative shocks in Hamilton’s sense.

XPy =X —max(Xep, ... , X¢q) if XPy > 0; and XP; = 0 otherwise. (1)
XN; = X — min(X¢.p, ... , X¢q) if XN¢ < 0; and XN, = 0 otherwise. )

where XP and XN stand for the calculated positive and negative shock series, and
max(.) and min(.) are the maximum and minimum functions, respectively.

2.1.1  Application of Hamilton’s Methodology to the ESTSP Dataset

The ESTSP data display a highly regular cyclicality. There is, however, some
variation in the amplitude and the peak-to-peak and trough-to-trough times.
Nevertheless, the main irregularity is observed around 405™-430™ observations, where
the given process does not continue its downward movement but increases instead.
The peak reached as a result of this disturbance leads to the highest values recorded
for the process. Nevertheless, it turns out that a similar behaviour does not occur
afterwards. Therefore, whatever shocked the system seems to have only transitory
effects. The system, or the data-generating-process, continued its oscillation mostly in
line with its pre-disturbance history.

In applying Hamilton’s method to an unknown data series, the main
specification issue is the determination of the relevant history window, i.e., the value
of “n”. In principle, one can test various alternatives and choose the best performing
one (according to some statistical criteria) or a combine various alternatives. In our
case, we tried N=10, N=25, and N=50 for the releveant history (X1, ... , Xin). We
found that the 10-period window (i.e., N=10) tracks the dynamics of the series that
leads to the peaks and trough well. The 25- and 50-period windows do not add
substantial new information. Overall, the equations we employ in the calculation of
the positive and negative shocks to the ESTSP series are the following.

PS; = ESTSP; — max(ESTSPy, ... , ESTSP. o) if PS; > 0; and PS; = 0 otherwise. (3)
NS; = ESTSP; — min(ESTSPy 4, ... , ESTSP () if NS; > 0; and NS, = 0 otherwise. (4)

where, max(.) and min (.) are the maximum and minimum functions and PS and NS

stand for the positive and negative shocks, respectively. The PS and NS variables thus
calculated are shown below in Figure 1.
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Positive and Negative Shocks to the ESTSP Series
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Figure 1: Positive and Negative Shocks to the ESTSP Series

The PS and NS values calculated by the application of equations (3) and (4) to
the ESTSP series show that the alternating decreasing and increasing phases of the
series are preserved. In addition, there are periods where there is no signal of increase
or decrease (both PS and NS are equal to zero). Also, the consecutive values of the PS
and NS values signal whether a positive or a negative is approaching, continuing, or
coming to an end. This latter aspect is especially interesting and important in
identifying the turning points and the duration of a regime.

Table 1 shows that one single drop in the value of the ESTSP series is not an
enough signal for a regime change. One needs at least three consecutive non-zero
values to say that the ESTSP series starts an increase or a decrease. For example, at
the 277™ observation, the ESTSP series is in a declining phase. This is illustrated by
four consecutive negative values of NS and PS = 0. However, at the 280™-281"
observations, both NS and PS are equal to zero. Does this mean that the decline has
come to an end. The answer is no. PS is still zero, and indeed the 282™ observation
has NS < 0. We observe a similar situation until the 289" observation, where NS < 0
and remains so for five consecutive observations. Note that PS = 0 during this time,
even when NS = 0. Between the 294™ and the 300™ observations, both NS and PS
remain at zero. This indicates that some levelling-off has been reached. The downturn
has ended, but the upturn has not started yet. In such situations, there may be single
drops or increases in the series. This can result from a random shock which does not
disturb the series enough to trigger a new down- or up-turn. Between the 307" and the
309" observations, PS > 0, and NS = 0. This signals the upturn in the series. Despite a
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break at the 310™ observation (PS=0), the upturn continues into the 311%-313®
observations. We have examined the complete set of PS and NS values in line with
the discussion above and found that the three consecutive non-zero PS or NS values
consistently signal the upturns or downturns.

Obs.No. | ESTSP | PS NS Obs. No. | ESTSP | PS NS
274 25.40 0 0 294 20.00 0 0
275 24.90 0 -0.5 295 19.90 0 0
276 24.90 0 0 296 20.10 0 0
277 24.60 0 -0.3 297 20.40 0 0
278 23.50 0 -1.1 298 19.90 0 0
279 23.30 0 -0.2 299 20.20 0 0
280 23.00 0 -0.3 300 20.20 0 0
281 23.00 0 0 301 19.60 0 -0.3
282 23.20 0 0 302 20.20 0 0
283 22.80 0 -0.2 303 20.00 0 0
284 22.90 0 0 304 20.30 0 0
285 22.90 0 0 305 21.00 0.6 0
286 21.90 0 -0.9 306 20.60 0 0
287 21.80 0 -0.1 307 21.30 03 0
288 22.00 0 0 308 21.40 0.1 0
289 21.20 0 -0.6 309 21.60 0.2 0
290 21.00 0 -0.2 310 21.50 0 0
291 20.80 0 -0.2 311 21.70 0.1 0
292 20.30 0 -0.5 312 22.00 0.3 0
293 19.90 0 -0.4 313 22.80 0.8 0

Table 1: Signals for upturns and downturns: a numerical illustration

It is important to identify a rule for determining an upturn or a downturn and a
turning point. Nevertheless, in order to make point predictions (not just directional
forecasts), one also needs to take into account the amplitude of the increases and the
decreases in the series. Therefore, construct a prediction model that incorporates the
information provided by the positive and negative shocks and the turning point rule.
In doing so, we estimate a linear regression model, where the dependent variable is
the original ESTSP series and the explanatory variables are the lagged values of the
ESTSP, the PS, and the NS variables. That is, the model has some autoregressive
form which helps predict the level, but it is driven by the signals coming from the PS
and NS variables.
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2.2 Poskitt and Tremayne’s Posterior Odds Ratio Test

The main question in the specification of any time series model is the selection of
lags. There are many statistical criteria, such as the Akaike, Schwartz, Hannan-Quinn,
etc. in selecting the dimensions of the model. In our study, we make use of the
Schwarz’s [17] Bayesian information criterion (SBIC). The SBIC is shown to have
optimal asymptotic and small sample properties. Penm and Terrell [12] suggest the
SBIC as the first choice for applied researchers. In practice, employing a statistical
selection with optimal properties does not necessarily solve the model identification
problem since there may still exist another model which lie within a close proximity
of the chosen model.

Poskitt and Tremayne [14] argued that a posterior odds ratio test can be used to
“grade the decisiveness of the evidence” in time series model identification. Poskitt
and Tremayne’s posterior odds ratio test uses the SBIC as the basis and questions the
uniqueness of the best model (i.e., the model with the minimum SBIC value). If there are
alternative models with posterior odds “close enough” to the posterior odds of the model
chosen by the minimum of the SBIC, then a model portfolio — which can also be seen as
a fuzzy set of models within a given proximity — can be formed. The formula for the
posterior odds ratio test is

R=exp[%4 T | SBIC, - SBIC,| ] 5)

where T is the sample size and | SBIC - SBIC| is the absolute value of the difference
between the SBIC values being compared.

Then, the question is what is “close enough”. Poskitt and Tremayne [5] divide
the range of the R-ratio into three intervals: 1) if R > 100, the alternative model is
unconditionally discarded; 2) if V 10 < R <10, where V is the square root function, there
is “no substantial evidence” in favour of the model minimising the SBIC. That is, there
exists a competing model to the specification chosen by the minimum SBIC; 3) if 1 <R
<V 10, then the alternative model is a “close competitor” to the model chosen by the
minimum SBIC. One should also note the fourth case, i.e., 10 < R < 100, where the
alternative model should again be discarded as non-competing. In this case, however, the
best model and its close competitor are likely to be found to be statistically different by
classical significance tests. A recent application of Poskitt and Tremayne’s posterior odds
ratio test include Atukeren [1] in the context of Granger-causality tests. Chenoweth et al.
[5] also examine the R-ratio and interpret the proximity of competing models as a
distance function in a Hilbert space. .In principle, Poskitt and Tremayne’s posterior odds
ratio and the associated model portfolio approach can be especially useful in choosing the
models for making forecast combinations.

2.3 The Model

Upon testing various specifications and using the information that three consecutive
non-zero values of the PS or NS variables are needed as a signal for upturn and
downturn, we arrive at the following model.
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ESTSP Prediction Model
Dependent Variable: ESTSP
Sample (adjusted): 211 - 875
Included observations: 665 after adjustments

Variable Coefficient Std. Error t-Statistic Prob.
C 1.6660 0.3293 5.0592 5.E-07
ESTSP(-1) 0.9066 0.0630 14.395 6.E-41
ESTSP(-2) 0.0701 0.0620 1.1298 0.2590
ESTSP(-15) -0.0265 0.0115 -2.3092 0.0212
ESTSP(-120) -0.0231 0.0092 -2.5197 0.0120
PS(-1) 0.1017 0.1057 0.9623 0.3363
PS(-2) 0.0704 0.0788 0.8930 0.3722
PS(-3) 0.0797 0.0809 0.9855 0.3247
PS(-15) -0.1158 0.0735 -1.5754 0.1157
PS(-25) -0.1736 0.0745 -2.3290 0.0202
PS(-55) 0.1873 0.0798 2.3477 0.0192
PS(-200) -0.2002 0.0758 -2.6407 0.0085
NS(-1) -0.0731 0.1017 -0.7185 0.4727
NS(-2) -0.0675 0.0792 -0.8517 0.3947
NS(-3) 0.1323 0.0773 1.7110 0.0876
NS(-25) -0.1683 0.0758 -2.2191 0.0268
NS(-30) -0.1641 0.0771 -2.1277 0.0337
NS(-76) -0.2115 0.0761 -2.7778 0.0056
NS(-100) 0.1072 0.0721 1.4862 0.1377
NS(-200) 0.2072 0.0714 2.9039 0.0038
Adjusted R-squared 0.9774 S.D. dependent var 2.5029
Sum squared resid 91.324 Schwarz criterion 1.0480
Durbin-Watson stat 1.9998 Prob(F-statistic) 0.0000

Table 2: Estimation results of the Prediction Model for the ESTSP Series

Note that we include long lags extending to 200 observations back in the final
equation. How meaningful is it to include such long lags in the equation? To answer
this question, let us estimate the equation without the 200™ lag of PS. The resulting
SBIC value is 1.048969. First of all, this SBIC value is larger than the final model’s
SBIC value (i.e., 1.047989). Therefore, the model that does not include the 200™ lag
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of PS is inferior in some sense. But, how decisive is that evidence? The R-ratio
between the final model and the one that excludes PS(-200) is 1.39 (despite the highly
significant t-statistic). That is, the two models lie in a close proximity. Given that we
do not know the frequency at which the underlying series is recorded and that the two
models are closely competing, we include the PS(-200) in the model. Nevertheless,
the same is not true for the PS(-199). The SBIC value with PS(-199) instead of PS(-
200) is 1.058515, which yields an R-ratio of 33.11. As a result, the model with PS(-
199) can be discarded as non-competing, while the term PS(-200) can be included in
the model. Similar exercises can be made with the exclusion and inclusion of various
lags. The procedure, however, becomes computationally intensive and some heuristic
approach may be needed. In our case, we were guided by the peak-to-peak and
trough-to-trough distances. In addition, we made use of a priori knowledge gained
through the examination of the patterns in PS and NS variables, and included their
first three values in the model in any case. Table 2 shows the estimations results.

2.4 Predictions

We make dynamic predictions. Our methodology involves one-step-ahead forecasts
for the ESTSP dataset and the calculation of the PS and NS values at every step. The
prediction for the 876™ observation uses information that is completely given within
the ESTSP dataset. The ESTSP prediction competition asks for the next 15 and next
50 predicted values separately. In our case, the first 15 predictions for both cases are
the same. This is because the methodology employed in this paper enables the use of
a single general model both for short-term and long-term predictions. Figure 2. shows
the predictions

ESTSP Prediction Competition
30

27 A

iii BEIEEIRIEE
AV ?m i

18 -

—— ESTSP Data

—— Predictions

15 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 101 201 301 401 501 601 701 801 901

Figure 2: Original and the Predicted values of the ESTSP 2007 Dataset

In tabular form, the predicted values are shown Table 4.
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Obs. | Pred. Obs. | Pred. Obs. | Pred. Obs. | Pred. Obs. | Pred.

876 | 21.7752 886 | 23.7698 896 | 25.6183 906 | 24.2021 916 | 21.9719

877 | 21.9052 887 | 23.9703 897 | 25.7815 907 | 23.9085 917 | 21.8508

878 | 22.0011 888 | 24.4491 898 | 25.6256 908 | 23.6186 918 | 21.7778

879 | 21.9735 889 | 24.7761 899 | 25.5746 909 | 23.3948 919 | 21.5869

880 | 22.4441 890 | 24.9299 900 | 25.4908 910 | 23.1994 920 | 21.4980

881 | 22.7614 891 | 25.0964 901 | 25.3822 911 | 22.9940 921 | 21.3073

882 | 22.9969 892 | 25.4090 902 | 25.1918 912 | 22.7318 922 | 21.2542

883 | 23.2119 893 | 254757 903 | 24.9182 913 | 22.5326 923 | 21.1998

884 | 23.4538 894 | 255178 904 | 24.7060 914 | 22.3592 924 | 21.1546

885 [ 23.7131 895 [ 255215 905 | 24.4516 915 | 22.1961 925 | 21.1441

Table 4: Predicted values for the ESTSP Competition

3 Conclusions

In this paper, we examined the dataset provided for the “Prediction Competition” by
the “First European Symposium on Time Series Prediction” that takes place in
February 2007 in Helsinki, Finland. Given the periodicity displayed in the data series,
we chose the shock definition suggested by Hamilton [3] to capture the dynamics of
the behaviour prior to, during, and after the expansions and contractions in the series.
The given series appears to be disturbed before the middle of the sample range.
However, this proves to be a transitory effect since it does not lead to a permanent
path change (level, or slope) in the aftermath of the disturbance. Our approach yields
insights as to the determination of the phase of the series, and the identifies a rule for
the start of a new regime (increase, decrease, or a turning point). That is, for the series
to enter an expansion phase, the last three values should be higher than the highest
values observed in the preceding 10 values. A similar rule can be defined for the
contractions as well. In making our predictions, we make use of these rules.
Nevertheless, we need to make not only directional forecasts but also estimate the
level of the series. This requires an analysis of the lead-lag relationship among the
peaks and troughs, and brings the model identification issues in question. In that
regard, we made use of Poskitt and Tremayne’s posterior odds ratio test to determine
whether another model is a close competitor to the model at hand or whether it can be
discarded as non-competing. We end up with a final model which includes some
elements of closely competing models (lags in this case). In principle, we make our
predictions with a fuzzy set of competing lag structures. The final model includes
short-term lags (t-1, t-2) as well as medium- (t-25, t-55), and long-term lags (t-100, t-
200). As such, it is a general model that is expected to capture the data generating
process. Thus, we do not develop two separate models to make short-term and long-
term predictions .

The predicted values show first an increase up to the 897" observation, then a
turning point, and a decrease that continues until the 925" observation. However, the
process is not a uniformly increasing one in the expansion phase, nor a uniformly
decreasing one in the contraction phase.
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