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1. INTRODUCTION

Until very recently, the lack of adequate and reliable
instrumentation was considered one of the major obstacles
for the implementation of control and automation systems
in wastewater treatment plants (WWTPs, Olsson, 2012).
This barrier is now slowly starting to engulf offering
new challenges and opportunities to the modern plants.
WWTPs are aiming to achieve efficient and safe operations
with high-quality effluents, while optimising operating
costs through the use of real-time automation technologies,
such as model predictive control (MPC) and multivariate
statistical process control (SPC) tools.

MPC has been an attractive control strategy for a con-
siderable number of WWTP applications over the last
decades, mainly due to its ability to deal with multi-
variate constrained control problems in an optimal way
(Maciejowski, 2002). Examples of successful applications
are given inter alia by Steffens and Lant (1999); Rosen
et al. (2002); Corriou and Pons (2004); Vrec̆ko et al.
(2004); Stare et al. (2007); Ekman (2008); Ostace et al.
(2011). Few works relate to pilot plants (e.g., Marsili-
Libelli and Giunti, 2002; Vrec̆ko et al., 2011) and very few
with full-scale plants. For instance, Weijers (2000) applied
a linear MPC on the calibrated model of a wastewater
treatment plant of the carrousel type in the Netherlands.
O’Brien et al. (2011) detailed the real-time implementation

of predictive control and a plant monitoring system for
a wastewater treatment process in the United Kingdom.
Mulas et al. (2015) compared different predictive control
configurations on an activated sludge plant in Finland,
aiming at decreasing the energy costs and reducing the
effluent nitrogen compounds.

Reliability of the on-line measurements is fundamental
for the successful implementation of the predictive con-
trol. Multivariate data analysis is an advanced statistical
approach that has been applied for monitoring the data
collected in biological WWTPs (see Haimi et al. (2013),
for references). Considerable efforts in the development of
multivariate techniques, as for instance principal compo-
nent analysis (PCA), were made since the pioneering works
of Rosen (2001) and Lennox (2002). Full-scale applications
on municipal plants are proposed by Baggiani and Marsili-
Libelli (2009) for real-time fault detection and isolation
and by Corona et al. (2013) for detecting outliers in the
measurement data of a biological post-filtration unit.

The purpose of this work is to present the testing out-
comes of the real-time implementation of predictive and
statistical process control tools on a full-scale wastewater
treatment plant. The tools are combined in a single con-
trol package, the advanced control system (ACS) devel-
oped as part of the 2-year EU-funded project DIAMOND
(“AdvanceD data management and InformAtics for the
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optimuM operatiON anD control of wastewater treatment
plants”). The project represented a multidisciplinary effort
for optimising the global operation of wastewater systems
by adequately managing and using all the information
available. This paper discusses the results of the first six
months of continuous operation of ACS in the full-scale
testing plant, the Mussalo WWTP located in the district
of Kotka on the east coast of the gulf of Finland.

The paper is organised as follows. After an introductory
description of the testing site and the available instru-
mentation (Section 2), the set-up of ACS is introduced
in Section 3 and its building modules detailed in Section
3.1 and Section 3.2. The results are discussed in Section 4
and some preliminary conclusions drawn in Section 5.

2. ACTIVATED SLUDGE PROCESS AT THE
FULL-SCALE TEST-PLANT

The Mussalo WWTP has a treatment capacity of 40000
m3/d. It receives wastewater from four municipalities
(Kotka, Pyhtää, Anjalankoski and Hamina) and from
industries such as board mills, glass-fibre and food (bakery
and sweeteners) production. Being industry the major
share with around 55% of incoming organic load, the
plant is designed to treat wastewater of 200000 population
equivalent with an estimation of 93000 inhabitants from
the four municipalities. A total revamp and renewal of the
plant were carried out in 2009.

The wastewater treatment line includes bar screening,
sand removal, primary sedimentation, aeration basins and
secondary sedimentation. The sludge, coming from pri-
mary sedimentation and aerations basins, is treated in
drying tanks with polymer addition before the spin-dryer.

The biological removal process is achieved in four activated
sludge process (ASP) lines, of which three were introduced
in the renovation process in 2009. The configuration and
arrangement of “old” and “new” ASPs is slightly different
but for all of them nitrogen removal is accomplished in the
bioreactor in presence of a high concentration of activated
sludge. In the design configuration, a large share of the
bioreactor is always aerated with fine bubble diffusers
located at the bottom of the basin. Each line begins with
an anoxic (i.e., the dissolved oxygen (DO) concentration
is low) zone (Z1) where the pre-settled wastewater, return
sludge from the secondary sedimentation basin and an
internal recycle from the degassing basin are fed. Two
zones (Z2 and Z3) follow for further empowering the den-
itrification or nitrification processes and three subsequent
aerobic zones (Z4-Z6) are always highly aerated in order to
achieve nitrification. The last zone (D) is devoted to the
degasification of the mixed liquor. The first three zones are
equipped with agitators and are either aerated or anoxic,
non-aerated (and mechanically mixed) depending on the
aeration mode in use. The internal recycle flow-rate is
regulated by a set of rules based on the influent flow-
rate and the upper and lower limits of the pumps. The
external sludge recycle from the secondary settler is kept
proportional to influent flow-rate with a constant ratio.

ACS involves the control and supervision of the four ASP
lines in Mussalo. We here present and discuss only the
implementation of ACS on the reactors line 4 (R 4), even

Table 1. On-line measurements selected for the
activated sludge process line R 4 in Mussalo.

Name Description Unit
IR 4 Qin Influent flow-rate to the ASP m3/h
IR 4 Qri Internal recycle to ASP m3/h
IR 4 Qre External recycle to ASP m3/h
R 4 DO 2 Dissolved Oxygen in ASP in Z2 mg/l
R 4 DO 3 Dissolved Oxygen in ASP in Z3 mg/l
R 4 DO 4 Dissolved Oxygen in ASP in Z4 mg/l
R 4 DO 5 Dissolved Oxygen in ASP in Z5 mg/l
R 4 DO 6 Dissolved Oxygen in ASP in Z6 mg/l
R 4 145 Qair Cumulative airflow in Z1, Z4 and Z5 Nm3/h
R 4 236 Qair Cumulative airflow in Z2, Z3 and Z6 Nm3/h
ER 4 Qw Excess sludge from ASP m3/h
ER 4 SS Suspended solids from ASP g/l
ER 4 NH4 NH4-N from ASP mg/l
ER 4 pH pH from ASP

though similar reasoning is adopted and implemented for
the other lines. For R 4, the available on-line instrumen-
tation employed by ACS is described in Table 1 and its
location is depicted in Figure 1 and Figure 2. Although not
directly involved in ACS, analysers available at the plant
effluent channel are inspected for verifying the effects of
the advanced controllers, in terms of nitrate, phosphate
and turbidity before discharging the treated water.

3. ACS ARCHITECTURE SET-UP

The ACS package provides tools for the control and su-
pervision of wastewater treatment operations in terms
of critical process parameters and energy usage on unit-
and plant-wide scale. In general terms, ACS aims at the
optimisation of operational costs of WWTPs, while guar-
anteeing compliance with the environmental regulations.
In more specific terms, ACS achieves these goals through
two modules: The so-called optimal process control mod-
ule (OPCM) and the statistical process control module
(SPCM). At the Mussalo WWTP, the main scope of the
OPCM is to control ammonia concentration at the exit of
the biological reactor (ER 4 NH4), while minimising the
operational costs of the unit. This is achieved by providing
the set-points for the low-level DO controllers in the anoxic
zones of the reactor and the internal recycle flow-rate with
a MPC strategy. The main scope of the SPCM is to pre-
pare, select and complement plant data and information,
before it is internally transmitted to the OPCM. In this
first implementation of the ACS at the Mussalo WWTP,
the two modules are working independently.

ACS is further reinforced by dedicated support routines for
the cleaning of the raw on-line data. That is, unfeasible
zeros and constant process values associated with satu-
rated measurements as well as obviously wrong data are
removed, prior conveying the data to the two modules.

3.1 Optimal process control module

Given the prime concern of an easy and straightforward
solution to solve the optimisation problem, the dynamic
matrix control (DMC) algorithm is selected among the
several MPC methods. The use of the linear DMC con-
troller satisfies the requisite of simplicity which makes it
more attractive for the full-scale application. As shown in
Figure 1, the OPCM control structure for the Mussalo’s
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Fig. 1. Activated sludge process at the Mussalo WWTP:
Inputs (in red) and outputs (in blue) for OPCM.

WWTP ASP line consists of one controlled variable (the
ammonia concentration at the end of the ASP line, ACS-
CV) and three manipulated variables (ACS-MVs): the DO
set-points in the anoxic zones (Z2 and Z3) and internal re-
cycle flow-rate, namely, R 4 DO 2-SP, R 4 DO 3-SP and
IR 4 Qri. To ensure compliance with the environmental
regulation, the set-point for the controlled variable (ACS-
SP) is set at 1 mg/l. Given its modularity, the OPCM
configuration can be easily expanded for further improving
the effluent quality and minimising the operative costs.
For instance, the dissolved oxygen in aerobic zones (Z4,
Z5 and Z6) and the external recirculation flow rate could
be included in the control structure as manipulated vari-
ables. The suspended solids and the nitrate measurements,
when available, could be further considered as controlled
variables. In this work, the configuration in Figure 1 was
mainly selected because of its straightforward applicabil-
ity. It represents the most appropriate configuration for the
status of the available instrumentation in the plant and a
reasonable starting point for the future developments.

The DMC is selected as the building-block technology of
the OPCM. Its main idea, as for every predictive control
algorithm, is to calculate at each control step a control
sequence that minimises a certain objective function. The
control sequence is calculated based on a simplified model
of the process and measured outputs. For a prediction
horizon Hp and a control horizon Hu, the DMC of a
system with m inputs and n outputs finds the vector
∆u(k) ∈ RmHu of future control moves that minimises
the sum of squared deviations of the predicted control
variables from a time-varying reference trajectory, while
constraining the magnitude of the manipulated variables
u(k) and their rates ∆u(k). That is, the DMC optimises
the following objective function:

J [∆u(k)] =
[

e(k + 1)−A∆u(k)
]′[

e(k + 1)−A∆u(k)
]

+
[

∆u(k)
]T

R∆u

[

∆u(k)
]

.
(1)

Here, k denotes the time index and e(k + 1) is the
nHp-dimensional error vector representing the difference
between the desired input trajectory r(k + 1) ∈ RnHp

and current output prediction in the absence of further
control actions y0(k) ∈ RnHp . The error is corrected
by the measured outputs d(k) ∈ RnHp available at the

sampling instant k. In Equation 1, u(k) = u(k − 1) +
∆u(k) denotes the mHu-dimensional input vector and
the simplified model of the process is represented by the
dynamic matrix A ∈ RnHp×mHu . The dynamic matrix is
obtained by arranging nm blocks of coefficients between
pairs of inputs and outputs, each for a prediction horizon
Hp and a control horizon Hu. R∆u ∈ RmHp×mHp is a
diagonal weighting matrix that is used to penalise changes
in the control signals and avoid excessive effort on the
manipulated variables.

A careful identification of the process is a key step in
the development of the predictive controller and in the
construction of the dynamic matrix A. Linear predic-
tive models are developed and implemented in the DMC
algorithm (Ogunnaike and Ray, 1994). The matrix A
coefficients are obtained “off-line” by studying the plant
historical data. To this end, the responses of the controlled
variable ER 4 NH4 to the step changes in the manipulated
variables R 4 DO 2, R 4 DO 3 and IR 4 Qri are analysed
during selected representative periods.

For each ASP line, the parameters related to the DMC
development, such as prediction and control horizon, sam-
pling time and weights, are found by analysing the dy-
namic response of the process, considering the frequency
of the inputs variations and by tuning. For every line,
a sampling time of 15 minutes, a control horizon of 4
hours and a prediction horizon of 4 hours are set. The
upper value of the DO set-points is further constrained
to a maximum of 2.5 mg/l. For line R 4, in particular, to
allow an adequate DO profile and account for the practical
requirements of the recirculation pumps the weights of the
matrix R∆u are selected as [0.081 0.095 0.02].

3.2 Statistical process control module

Being principal component analysis (PCA, Jolliffe, 2007)
the leading method applied to multivariate data, it repre-
sents also the building-block technology of SPCM in ACS.

SPCM detects out-of-control observations according to
two measures of fit based on the residuals of a PCA
model: The Hotelling’s T 2 statistic and the Q statistic
(Jackson and Mudholkar, 1979). The former measures the
(normalised) distance of a projected observation from the
origin of the subspace and the latter measures the (orthog-
onal) distance of an observation from its reconstruction on
the principal subspace. For control purposes, acceptable
magnitudes of these distances are quantified by two cut-off
values, T 2

lim and Qlim (Atkinson et al., 2004; Nomikos and
MacGregor, 1995, respectively). The limits are estimated
using only training data and can be calculated for different
confidence values: usually, the 97.5% confidence limits are
used. Based on the two cut-offs, three types of anomalous
observations can be defined and the corresponding samples
flagged as out-of-control. The PCA model (together with
T 2 and Q) is recalculated as time evolves, in a moving-
window type of implementation.

The SPCM structure validated for the Mussalo WWTP
is identical for all of its four lines and it acquires the
following 12 raw process measurements (in Figure 2 for line
R 4): Influent flow-rate, internal recycle flow-rate, external
recycle flow-rate, DO in Z2, DO in Z3, DO in Z4, DO in
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Table 2. Line R 4 - Monthly averages during January–June 2014 and 2015.

Total airflow

per unit Qin

Airflow in Z1-Z4-

Z5 per unit Qin

Airflow in Z2-Z3-

Z6 per unit Qin

Internal

recycle

Effluent

Ammonia

[Nm3/m3] [Nm3/m3] [Nm3/m3] [m3/h] [mg/l]

2014 2015 2014 2015 2014 2015 2014 2015 2014 2015

January 5.81 6.41 3.04 3.74 2.77 2.67 885 799 1.34 1.71
February 7.73 6.39 4.70 3.71 3.03 2.68 883 763 0.97 1.40
March 5.64 3.95 3.08 2.37 2.46 1.58 737 739 0.99 1.23
April 6.50 4.99 4.95 3.14 2.35 1.85 823 740 0.86 1.37
May 6.46 6.88 4.86 5.61 1.60 1.27 610 654 0.27 0.63
June 8.64 10.97 6.96 9.02 1.68 1.95 597 593 0.35 0.22

Z5, DO in Z6, airflow rate to ASP Line (Zones 1 to 6), pH,
suspended solids and ammonia at the end of the bioreactor.

For each ASP line and for a given degree of the confidence,
SPCM returns a cumulative unit status. In addition, as
secondary output signals, SPCM provides the individual
status (OK and Not-OK) of the 12 input variables and
the total number of Not-OK variables. When one or
more variables are detected to be contributing to a not-
in-control state, it only means that their measurements
are likely to differ from what expected, when considered
together with measurements of all other variables. These
calculations are updated at fixed intervals of one week,
with a memory interval of one month.

In the current configuration of ACS operation in Mussalo,
OPCM and SPCM are working independently. The two
modules should be linked in the next step of implemen-
tation. In this way, SPCM provides support information
for a more efficient operation of OPCM, by authorising
the low-level controllers to use the calculated ACS-MVs
as set-points only when SPCM reports an in-control state.
Otherwise, the last available set-point should be used.

3.3 ACS architecture implementation

The ACS application is implemented in a stand-alone
machine at Aalto University with Mathworks Matlab
R2013b. The main ACS routine is implemented as a
single Matlab script that performs the communication
tasks and part of the calculations. The OPCM and SPCM
subroutines are called by the main routine and perform
ACS calculations. The raw data are received every 15

SPCM
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Fig. 2. Activated sludge process at the Mussalo WWTP:
Input (in red) and outputs (in blue) for SPCM.

seconds and, after calculations, the ACS outputs are
returned to the plant every 15 minutes.

4. RESULTS OF THE FIRST SEMESTER OF
REAL-TIME OPERATION

In this section the preliminary results for the first six
months of continuous operation in 2015 of the ACS are
presented and discussed for the ASP line R 4.

Given time differences in the ACS implementation on the
four ASP lines during 2015 and the slightly dissimilar
operational configurations of the lines, comparing their
behaviour during the same periods in 2015 is not possible.
For this reason, the performances of line R 4 in January-
June 2015 are discussed against the same period in 2014
when ACS was not operative yet. Although the correspon-
dence between two years of operation is not completely fair
due to all the possible differences in plant operation, here
we consider this comparison as a mere starting point for
discussing the ACS performances. Being the main assump-
tion that R 4 has been subjected to a reasonably similar
influent load in the first six months of 2014 and 2015.

Table 2 reports the monthly average results in terms of
airflow rate per influent flow-rate, internal recycle and
ammonia concentration at the exit of the bioreactor.
Noticeably, the overall airflow consumption diminished by
3% over the first six months in 2015, while the effluent
ammonia slightly increased, nevertheless it was kept within
the limits. The effect of the OPCM module is evident
from the average airflow R 4 236 Qair per influent flow-
rate in the line. In fact, in zones Z2, Z3 and Z6 the overall
airflow decreased by 14% and in particular, R 4 DO 2 and
R 4 DO 3 diminished by 33% and 11% during the period
under study. On the other hand, the dissolved oxygen in
zones Z4, Z5 and Z6 was kept close to the constant set-
points of, respectively, 3 mg/l, 2.5 mg/l and 2 mg/l by the
low-level controllers during 2014 and 2015. Furthermore,
the internal recirculation flow-rate decreased by 5%. It
must be stressed out that these figures refer to the sole
R 4 line and that similar results can be achieved for each
ASP line in Mussalo.

Although not directly involved in ACS, it is worth notic-
ing that the nitrate concentration at the effluent of the
Mussalo plant decreased by 12% during the first semester
of 2015. The effluent phosphate diminished by 9% and the
turbidity increased by 9%.

In order to appreciate the dynamic behaviour of the ACS
control module, about 2 weeks of operation in April 2014
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and April 2015 are plotted and discussed in the following.
During this period, line R 4 was subjected to a rather
similar dynamics of the influent flow-rate (Figure 3).
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Fig. 3. Line R 4 - Influent wastewater flow-rate in April,
2014 (top) and 2015 (bottom).
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Fig. 4. Line R 4 - Process operation comparison without
(left column) and with (right column) the OPCM, in
terms of effluent ammonia from the bioreactor, (a)
and (b), dissolved oxygen in zone Z2 (c) and (d), in
zone Z3, (e) and (f) and internal recycle, (g) and (h).
The black line is the control action given by OPCM.

Figure 4 shows the operation of Line R 4 in April 2014,
in red on the left column, and April 2015, in blue on the
right column. The black lines in Figure 4(d), Figure 4(f)
and Figure 4(h) represent the set-points that the OPCM
returns as control actions to the low-level controllers:
R 4 DO 2-SP, R 4 DO 3-SP and R 4 Qri.
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Fig. 5. Line R 4 - Process operation comparison without
(left column) and with (right column) the OPCM, in
terms of the cumulative airflow per influent flow-rate
in the zones Z1, Z4, Z5, (a) and (b), and in the zones
Z2-Z3-Z6, (c) and (d).

The airflow rates given by R 4 145 Qair and R 4 236 Qair
are plotted in Figure 5 per unit of influent flow-rate
during April 2014 (left column) and April 2015 (right
column). Compared to the normal operation in 2014, the
ACS predictive control module led to a reduction in the
dissolved oxygen demand. From Figure 5(d), in particular,
it is possible to notice the effect of the ACS control module
on the airflow to the 2nd and 3rd zone of the bioreactor.

The status of line R 4, represented by a flag {OK,Not OK}
calculated in real-time, is shown in Figure 6 for the first six
months of 2015. The line is considered in OK conditions
if and only if both the T 2 and the Q do not violate the
respective limits T 2

lim or Qlim, whereas violations of either
limit led to observations flagged as Not OK.

01.Jan.15 11.Feb.15 29.Mar.15 12.May.15 24.Jun.15
Not OK

OK

Fig. 6. Line R 4 - Status in the first six months of 2015.

5. CONCLUSIONS ON THE FIRST SEMESTER OF
REAL-TIME OPERATION

This paper presented the first results of the real-time
operation of an advanced control system to a full-scale bi-
ological wastewater treatment plant. The system involves
two main modules for the control and supervision of the
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plant and aims at reducing the operational costs while
improving or maintaining the process performances.

The first months of continuous operation show:

• The successful applicability of real-time multivariable
predictive control on a full-scale wastewater treat-
ment plant.

• The potential of the OPCM module in reducing the
aeration energy consumption in the bioreactor.

• The ACS control policy would lead to further savings
in the energy consumptions, if expanded to include
the aerobic zones in the bioreactor.

• The proposed advanced control structure can be
further enhanced by linking OPCM and SPCM. That
is, by allowing the low-level controllers to adopt the
set-points calculated by OPCM only when the unit
has been flagged as in-control by SPCM.

Summarising, the real-time operation of the proposed con-
trol architecture demonstrates the benefits of advanced
control for wastewater treatment plant. It shows that
stricter regulations and operative cost reduction can be
effectively enforced through the use of multivariable con-
trollers and that the status of the plant can be successfully
monitored through the use of multivariate statistical tools.
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