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Abstract. This paper presents the Optimally-Pruned Extreme Learn-
ing Machine (OP-ELM) toolbox. This novel, fast and accurate method-
ology is applied to several regression and classification problems. The
results are compared with widely known Multilayer Perceptron (MLP)
and Least-Squares Support Vector Machine (LS-SVM) methods. As the
experiments (regression and classification) demonstrate, the OP-ELM
methodology is considerably faster than the MLP and the LS-SVM, while
maintaining the accuracy in the same level. Finally, a toolbox performing
the OP-ELM is introduced and instructions are presented.

1 Introduction

The amount of information is increasing rapidly in many fields of science. It
creates new challenges for storing the massive amounts of data as well as to the
methods, which are used in the data mining process. In many cases, when the
amount of data grows, the computational complexity of the used methodology
also increases.

Feed-forward neural networks are often found to be rather slow to build,
especially on important datasets related to the data mining problems of the
industry. For this reason, the nonlinear models tend not to be used as widely as
they could, even considering their overall good performances. The slow building
of the networks comes from a few simple reasons; many parameters have to
be tuned, by slow algorithms, and the training phase has to be repeated many
times to make sure the model is proper and to be able to perform model structure
selection (number of hidden neurons in the network, regularization parameters
tuning. .. ).

Guang-Bin Huang et al. in [I] propose an original algorithm for the determi-
nation of the weights of the hidden neurons called Extreme Learning Machine
(ELM). This algorithm decreases the computational time required for training
and model structure selection of the network by hundreds. Furthermore, the
algorithm is rather simplistic, which makes the implementation easy.

In this paper, a methodology called Optimally-Pruned ELM (OP-ELM), based
on the original ELM, is proposed. The OP-ELM methodology, presented in Sec-
tion [ is compared in Section [B] using several experiments and two well-known
methods, the Least-Squares Support Vector Machine (LS-SVM) and the Mul-
tilayer Perceptron (MLP). Finally, a toolbox for performing the OP-ELM is
introduced in Appendix.
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Fig. 1. The three steps of the OP-ELM algorithm

2 OP-ELM

The OP-ELM is made of three main steps summarized in Figure [Tl

2.1 Extreme Learning Machine (ELM)

The first step of the OP-ELM algorithm is the core of the original ELM: the
building of a single-layer feed-forward neural network. The idea of the ELM has
been proposed by Guang-Bin Huang et al. in [I], even the idea of such network
was already proposed in [2].

In the context of a single hidden layer perceptron network, let us denote the
weights between the hidden layer and the output by b. Activation functions
proposed in the OP-ELM Toolbox differ from the original ELM choice since
linear, sigmoid and gaussian functions are proposed here. For the output layer,
a linear function is used.

The main novelty introduced by the ELM is in the determination of the ker-
nels, initialized randomly. While the original ELM used only sigmoid kernels,
gaussian, sigmoid and linear are proposed in OP-ELM: gaussian ones have their
centers taken randomly from the data points and a width randomly drawn be-
tween percertile 20 percent and percentile 80 percent of the distance distribution
of the input space; sigmoids weights are drawn at random from a uniform dis-
tribution in the interval [—5,5]. A theorem proposed in [I] states that with the
additional hypothesis of infinite differentiability of the activation functions, out-
put weights b can be computed from the hidden layer output matrix H: the
columns h; of H are computed by h; = Ker(xiT)7 where Ker stands for either
linear, sigmoid or gaussian activation functions (including multiplication by first
layer weights). Finally, the output weights b are computed by b = Hfy, where
H' stands for the Moore-Penrose inverse [3] and y = (y1, ..., ya)T is the output.

The only remaining parameter in this process is the number of neurons N of
the hidden layer. From a practical point of view, it is advised to set the number
of neurons clearly above the number of the variables in the dataset, since the
next step aims at pruning the useless neurons from the hidden layer.

2.2 Multiresponse Sparse Regression (MRSR)

For the removal of the useless neurons of the hidden layer, the Multiresponse
Sparse Regression proposed by Timo Simild and Jarkko Tikka in [4] is used. It
is mainly an extension of the Least Angle Regression (LARS) algorithm [5] and
hence is actually a variable ranking technique, rather than a selection one. The
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main idea of this algorithm is the following: denote by T = [t1...tp] the n x p
matrix of targets, and by X = [x;...X;,] the n x m regressors matrix. MRSR
adds each regressor one by one to the model Y* = XW¥ where Y* = [y} ... y¥]
is the target approximation by the model. The W* weight matrix has k nonzero
rows at kth step of the MRSR. With each new step a new nonzero row, and a
new regressor to the total model, is introduced.

An important detail shared by the MRSR and the LARS is that the ranking
obtained is exact in the case, where the problem is linear. In fact, this is the
case, since the neural network built in the previous step is linear between the
hidden layer and the output. Therefore, the MRSR provides the exact ranking
of the neurons for our problem.

Details on the definition of a cumulative correlation between the considered
regressor and the current model’s residuals and on the determination of the next
regressor to be added to the model can be found in the original paper about the
MRSR [4].

MRSR is hence used to rank the kernels of the model: the target is the actual
output y; while the ”variables” considered by MRSR are the outputs of the
kernels h;.

2.3 Leave-One-Out (LOO)

Since the MRSR only provides a ranking of the kernels, the decision over the
actual best number of neurons for the model is taken using a Leave-One-Out
method. One problem with the LOO error is that it can get very time consuming
if the dataset tends to have a high number of samples. Fortunately, the PRESS
(or PREdiction Sum of Squares) statistics provide a direct and exact formula
for the calculation of the LOO error for linear models. See [6I7] for details on
this formula and implementations:

prESs _ Yi —hib
‘ ~ 1 —hPhT’ (1)

where P is defined as P = (H"H)~! and H the hidden layer output matrix
defined in subsection 211

The final decision over the appropriate number of neurons for the model can
then be taken by evaluating the LOO error versus the number of neurons used
(properly ranked by MRSR already).

In the end, a single-layer neural network possibly using a mix of linear, sigmoid
and gaussian kernels is obtained, with a highly reduced number of neurons, all
within a small computational time (see section Bl for comparisons of performances
and computational times between MLP, LSSVM and OP-ELM).

2.4 Discussion on the Advantages of the OP-ELM

In order to have a very fast and still accurate algorithm, each of the three
presented steps have a special importance in the whole OP-ELM methodology.
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Fig. 2. Comparison of LOO error with and without the MRSR ranking. The solid blue
line represents the LOO error without and the dashed orange one with the MRSR.

Indeed, the ELM is very fast, as can be seen in the original ELM paper [I] and
in the experiments in Section[3 The ELM also has the advantage of being rather
simple, for the process of training and initializing the neural network weights.

The variable ranking by the MRSR is also one of the fastest ranking methods
providing the exact best ranking of the variables, since the problem is linear,
when creating the neural network using ELM.

The linearity also enables the model structure selection step using the Leave-
One-Out, which is usually very time-consuming. Thanks to the PRESS statistics
formula for the LOO error calculation, the structure selection can be done in a
reasonable time.

The final model structure selection for the OP-ELM model using the Ailerons
dataset (see Section B) is shown in Figure

It can be seen from Figure ] that the OP-ELM benefits greatly from the
MRSR ranking step of its methodology. The convergence is faster and the LOO
error gets smaller with respect to the number of neurons when the MRSR is
used than when it is not.

3 Experiments

This section demonstrates the speed and accuracy of the OP-ELM method us-
ing several different regression and classification datasets. For the comparison,
Section provides also the performances using a well-known MultiLayer Per-
ceptron (MLP) [8] and Least-Squares Support Vector Machine (LSSVM) [J]
implementations. Following subsection shows a toy example to illustrate the
performance of OP-ELM on a simple case that can be plotted.

3.1 Toy Example: Sum of Two Sines

A set of 1000 training points are generated following a sum of two sines. This
gives a one-dimensional example, where no feature selection has to be performed.
Figure [l plots the obtained model on top of the training data.
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Fig. 3. Plot of a one dimensional sum of sines as black crosses and the model obtained
by OP-ELM as blue circles

The model approximates the data very nicely.

3.2 Real Measurement Datasets

For the comparison of the three methods, we selected several different datasets:
eight regression and four classification problems. For each dataset, all three meth-
ods are applied and the performances compared.

Each dataset is divided into two sets, train and test sets. The trainset in-
cludes two thirds of the data, selected randomly without replacement, and the
testset one third. Table [l shows some key information about the datasets and
the selected hyperparameters for the LS-SVM and the MLP methods.

Table 1. Key information about the selected datasets and the selected hyperparam-
eters for the LS-SVM and the MLP. For the classification, the variables column also
includes the number of classes in the dataset.

Samples LS-SVM MLP

Regression Variables Train Test Gamma Sigma Neurons
Abalone 8 2784 1393 3.23 7.73 2
Ailerons 5 4752 2377  3.78  5.06 9
Elevators 6 6344 3173 2.2 7.27 10
Auto Price 15 106 53 621.84 5.43 7
Servo 4 111 56 21194 4.19 7
Breast Cancer 32 129 65 18.99 4.94 2
Bank 8 2999 1500 1099  4.92 6
Stocks 9 633 317 6739 2.3 12
Classification

Iris 4/3 100 50 151.53 1.24 4
Wisconsin Breast Cancer 30 /1 379 190 1169 6.07 1
Pima Indians Diabetes 8/1 512 256 57.88 2.38 1
Wine 13 /3 118 60 14.54 7.21 7
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The hyperparameters for the LS-SVM and the MLP are selected using a 10-
fold Cross-Validation. The LS-SVM is performed using the LS-SVM toolbox [J]
with the default settings for the hyperparameters and the grid search. The MLP
is performed using a Neural Network toolbox, which is a part of the Matlab
software from the Mathworks. The training of the MLP is performed using the
Levenberg-Marquardt backpropagation.

In order to decrease the possibility of local minima with the MLP, the training
is repeated 10 times for each fold and the best network according to the training
error is selected for validation. For example, in order to validate the MLP network
using 12 hidden neurons, we have to train a total of 100 MLP networks with 12
hidden neurons to evaluate the validation error. This procedure is done for each
number of hidden nodes from 1 to 20 and the selected number according to the
validation MSE is selected.

Table 21 shows the results of the validation for each method. Also included is
the respective calculation time consumed when using similar computer systems
in calculations.

Table [ shows the results of the test for each method.

Table 2. Validation errors for each method and the calculation times in seconds

Validation Error Calculation Time
Regression LS-SVM  MLP OP-ELM LS-SVM MLP OP-ELM
Abalone 4,42 4,16 4,35 9,36E+404 2640 25
Ailerons 2,80E-08 2,76E-08 2,77E-08 1,40E+405 6360 500
Elevators 2,92E-06 1,99E-06 2,00E-06 1,04E406 4080 1250
Auto Price 2,13E4-07 8,46E+06 5,21 E4-06 660 720 0,015
Servo 0,598 0,361 0,506 480 480 0,34
Breast Cancer 1301 1514 1164 900 1500 0,22
Bank 2,45E-03 8,93E-04 1,00E-03 1,21E+406 3360 54
Stocks 0,485 0,878 0,819 720 1320 3,8
Classification
Iris 0,923 0,980 0,950 300 540 0,13
Wisconsin Breast Cancer 0,953 0,966 0,958 960 2340 2,82
Pima Indians Diabetes 0,744 0,777 0,775 600 600 172
Wine 0,972 0,983 0,983 420 900 0,41

From Tables B and [B] we can see that in general, the OP-ELM is on the
same performance level than the other methods. On some datasets, the method
performs worse and on some, better than the LS-SVM or the MLP.

On all the datasets, however, the OP-ELM method is clearly the fastest, with
several orders of magnitude. For example, in the Abalone dataset using the OP-
ELM is more than 3700 times faster than the LS-SVM and roughly 100 times
faster than the MLP.

Finally, it should be noted that considering the very long computational time,
which relates to the complexity of the problem in the LS-SVM case, some of
the bad results obtained when using LS-SVM can be due to the fact that the
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Table 3. Test errors for each method

Regression LS-SVM MLP OP-ELM
Abalone 4,45 4,34 4,58
Ailerons 2,82E-08 2,64E-08 2,69E-08
Elevators 2,87E-06 2,11E-06 2,11E-06
Auto Price 2,25E407 1,02E+4-07 5,91E+06
Servo 0,644 0,565 0,589
Breast Cancer 907 1033 670
Bank 2,47E-03 9,05E-04 1,00E-03
Stocks 0,419 0,764 0,861
Classification

Tris 0,870 0,940 0,980
Wisconsin Breast Cancer 0,927 0,947 0,968
Pima Indians Diabetes 0,687 0,769 0,754
Wine 0,950 0,967 0,950

algorithm might not have converged properly. This might explain the results on
Bank and Elevators datasets.

4 Conclusions

In this paper we have demonstrated the speed and accuracy of the OP-ELM
methodology. Comparing to two well-known methodologies, the LS-SVM and
the MLP, the OP-ELM achieves roughly the same level of accuracy with several
orders of magnitude less calculation time.

Our goal is not to prove that the OP-ELM provides the best results in terms
of the MSE, but instead to show that it provides very accurate results very fast.
This makes it a valuable tool for applications, which need a small response time
and a good accuracy. Indeed, the ratio between the accuracy and the calculation
time is very good.

For further work, the comparisons with other methodologies are performed
in order to verify the applicability and accuracy of the OP-ELM with different
datasets.
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Appendix: Toolbox

A small overview of the OP-ELM Toolbox [10] is given in this appendix. Users
can also refer to the toolbox documentation provided within the OP-ELM Tool-
box package at the address: http://www.cis.hut.fi/projects/tsp/index.
php?page=research&subpage=downloads. Main functions with their use and
arguments are first listed, followed by a small example.

gui OPELM

This command invokes the Graphical User Interface (GUI) for the OP-ELM
Toolbox commands (quickly reviewed in the following). It can be used for typical
problems. Figure @ shows a snapshot of the GUI.

) OPELM ¥1.1 - Helsinki University of Technology - €15~ TSPCI I i 3
Copyright (€) 2008 by A. Lendasse, 4. Sorjamaa and V. Miche
TSP =
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Fig. 4. Snapshot of the OP-ELM toolbox GUI
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train OPELM
This function trains a model using OP-ELM and the proper inputs.

function [model]l=train_OPELM(data, [kernel], [maxneur], [problem],
[normal], [KM])
Inputs: data the data (can be multi-output)
[kernel] (optional) is the type of kernels to use.
Either ’1’ (linear), ’s’ (sigmoid), ’g’
(gaussian), ’1ls’ (linear+sigmoid), ’1lg’
(linear+gaussian) or ’lsg’ (lin+sig+gauss).
[maxneur] (optional) maximum number of neurons model.
[problem] (optional) Either ’r’ (regression) or ’c’

(classification).
[normall (optional) Normalize data or not.
[kM] (optional) specifies a previously computed

Kernel Matrix to be used as initialization
of the model.
Output: [model] the obtained model.

sim OPELM
This function uses the model computed by train OPELM on a test dataset.

function [yh,error]=sim_O0PELM(model,datatest) Inputs: model
is the model previously obtained by the
train_OPELM function.
datatest 1is the test data.
Outputs: yh the estimated output by the model.
error the mean square error (for regression problem)
or classification error with confusion matrix
(for classification problem).
(if real output is known).

LARS Selection OPELM
This function uses the MRSR algorithm [4] with OP-ELM algorithm.

function myinputs=LARS_Selection_OPELM(data, [kernel], [maxneur],
[problem], [normall)
Inputs: same as train_OPELM Output: myinputs a 1xd matrix of
’1’> (for selected variables)
and ’0’ (for the unselected).

FB OPELM

This function uses the Forward-Backward [I1I] algorithm with OP-ELM algo-
rithm.
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function myinputs=FB_OPELM(data, [input_init], [kernel], [maxneur],
[problem], [normall)
Inputs: same as train_OPELM
[input_init] (optional) is an initialization of the input

selection to be used for the Forward-Backward
algorithm. Specified as a 1xd matrix of ’0’
(if the considered variable is not to
be taken) and ’1’ (if it is to be taken).

Ouput: myinputs a 1xd matrix of ’1’ (for selected variables)
and ’0’ (for the unselected).

Example of use

>> data.x = (-1:0.001:1)’;

>> data.y = 2*sin(8*data.x)+b*sin(3*data.x)+0.5*randn(2001,1);

>> datatest.x = (-1:0.0001:1);

>> datatest.y = 2*sin(8*datatest.x)+b5*sin(3xdatatest.x)+0.5%randn(20001,1);

Create some data. . .

Train a model on the data with default parameters. ..

>> [model] = train_O0OPELM(data);

Warning: normalization unspecified...

——————— > Switching to forced normalization.
Warning: problem unspecified...

——————— > Switching to regression problem.
Warning: kernel type unspecified...

——————— > Switching to lsg kernel.

Warning: maximum number of neurons unspecified...
——————— > Switching to 100 maximum neurons.

Display some info about the built model. . .

>> show_model (model)
Model for regression, build on 2001x1 data, one dimensional
output. Uses 16 neurons; LO0O error is 2.522819e-01.

Use the model on test data. . .

>> [yth,error] = sim_OPELM(model,datatest);
>> error
error = 0.2522
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