
A variable selection approach based on the Delta

Test for Extreme Learning Machine models

Fernando Mateo1 and Amaury Lendasse2

1- Universidad Politécnica de Valencia - Dept. Ingenieŕıa Electrónica
Camino de Vera s/n, 46022 Valencia - Spain

2- Helsinki University of Technology - Adaptive Informatics Research Centre
Konemiehentie 2, 02150 Espoo - Finland

Abstract. Extreme Learning Machine, ELM, is a newly available learn-
ing algorithm for single layer feedforward neural networks (SLFNs), and
it has proved to show the best compromise between learning speed and
accuracy of the estimations. In this paper, a methodology based on
Optimal-Pruned ELM (OP-ELM) for function approximation enhanced
with variable selection using the Delta Test is introduced. The least angle
regression (LARS) algorithm is used after variable selection to rank the
input variables, and scaling is also introduced as a way to estimate the
influence of each input in the output value. The performance is assessed
on a dataset related to anthropometric measurements for children weight
prediction. The accurate results show that this combination of techniques
is very promising to solve real world problems and represents a good al-
ternative to classic backpropagation methods.

1 Introduction

In many real-life problems it is convenient to reduce the number of involved fea-
tures (variables) in order to reduce the complexity, especially when the number
of features is large compared to the number of observations. There are several
criteria to tackle this variable reduction problem. Three of the most common
are: maximization of the mutual information (MI) between the inputs and the
outputs, minimization of the k-nearest neighbors (k-NN) leave-one-out gener-
alization error estimate and minimization of a nonparametric noise estimator
(NNE).

Extreme Learning Machine (ELM)[1] is a new learning technique to train
single layer feedforward neural networks (SLFN) which chooses the input weights
randomly and determines the output weights analytically. This algorithm is
designed to build models that provide the best possible generalization in the
shortest time. Given its success, it has already been applied to several fields of
machine learning such as text classification [2] or time series prediction [3].

This work intends to make use of the methodology described in [4] which
proposes a combination of Extreme Learning Machine with optimal pruning
(OP-ELM) and variable selection. In this case, we focus on the use of a NNE as
a selection criterion, concretely by using the Delta Test (DT) as estimator. The
applicability of the method is assessed on a dataset of children anthropometric
measurements.

This paper is structured as follows: Section 2 explains the variable selection
methodology using the Delta Test as a criterion, and how it is integrated in the
forward-backward search (FBS) algorithm. In Section 3 there is a description of
the LARS methodology for input ranking and Section 4 gives a mathematical
perspective on the Extreme Learning Machine method. In Section 5, the exper-
iments are described and some relevant results are presented, while Section 6
summarizes the conclusions of this work.

2 Variable selection

2.1 The Delta Test

The Delta Test, firstly introduced by Pi and Peterson for time series [5], is
a technique to estimate the variance of the noise, or the mean squared error
(MSE), that can be achieved without overfitting. Given N input-output pairs
(xi, yi) ∈ R

M × R, the relationship between xi and yi can be expressed as

yi = f(xi) + ri, i = 1, ..., N

where f is the unknown function and r is the noise. The DT estimates the
variance of the noise r.

The DT is useful for evaluating the nonlinear correlation between two random
variables, namely, input and output pairs. The DT can be also applied to input
selection: the set of inputs that minimizes the DT is the one that is selected.
Indeed, according to the DT, the selected set of inputs is the one that represents
the relationship between inputs and output in the most deterministic way. DT
is based on hypotheses coming from the continuity of the regression function.
If two points x and x′ are close in the input space, the continuity of regression
function implies the outputs f(x) and f(x′) will be close enough in the output
space. Alternatively, if the corresponding output values are not close in the
output space, this is due to the influence of the noise.

The DT can be interpreted as a particularization of the Gamma Test [6] con-
sidering only the first nearest neighbor. Let us denote the first nearest neighbor
of a point xi in the R

M space as xNN(i). The nearest neighbor formulation of
the DT estimates Var[r] by

Var[r] ≈ δ =
1

2N

N
∑

i=1

(yi − yNN(i))
2, with Var[δ] → 0 for N → ∞

where yNN(i) is the output of xNN(i).

2.2 Forward-backward search methodology

To overcome the difficulties and the high computational time that an exhaustive
search would entail (i.e. 2N −1 input combinations, being N the number of vari-
ables), there are several other search strategies. These strategies are suboptimal
because they do not test every input combination, and they are clearly affected

by local minima, but they are preferred to an exhaustive search if the number
of variables is large.

Among the typical search strategies, there are three that share similarities:

• Forward search

• Backward search (or pruning)

• Forward-backward search (or forward stagewise regression)

The difference between the first two is that the forward search starts from an
empty set of selected variables and adds variables to it according to the optimiza-
tion of a search criterion, while the backward search starts from a set containing
all the variables and removes those for which the elimination optimizes the search
criterion.

Both forward and backward search suffer from incomplete search. The forward-
backward search (FBS) is a combination of them. It is more flexible in the sense
that a variable is able to return to the selected set once it has left it, and vice
versa, a previously selected variable can be discarded later. This method can
start from any initial input set: empty set, full set, custom set or randomly
initialized set. If we consider a set of N input-output pairs (xi, yi) ∈ R

M × R,
the forward-backward search algorithm can be described as follows

1. Initialization:

Let S be the selected input set, which can contain any input variables, and
F the unselected input set, which contains the variables not present in S.
Compute Var[r] using Delta Test (see section 2.1) on the set S.

2. Forward-Backward selection step:

Find

xS = arg minxi,xj
{(Var[r]|S ∪ xj) ∪ (Var[r]|S \ xi)}, xi ∈ S, xj ∈ F

3. If the old value of Var[r] on the set S is lower than the new result, stop;
otherwise, update set S and save the new Var[r]. Repeat step 2 until S is
equal to any former selected S.

4. The selected input set is S

3 The LARS algorithm

Least angle regression (LARS)[7] is a stylized version of the stagewise procedure
that uses a simple mathematical formula to accelerate the computations. Only
m steps are required for the full set of solutions, where m is the number of
covariates.

The LARS procedure works roughly as follows. Supposing that the initial
estimate is µ0, the algorithm takes a first step in the direction of the most cor-
related predictor, say x1. When another predictor, say x2, becomes sufficiently
correlated to become one of the chosen variables, the next step is taken in the
bisecting angle between x1 and x2. This happens again when a third predictor,
x3, gains the sufficient importance to contribute to the model. The process con-
tinues until all the covariates have entered the model. This method is illustrated
in Fig. 1

x1

x2

x3

μ0

μ1

μ2

yLARS

Fig. 1: LARS algorithm evolution for m = 3 covariates.

The entire sequence of steps in the LARS algorithm with m < n variables,
where n is the number of observations, requires O(m3 +nm2) computations (the
cost of a least squares fit on m variables). The LARS algorithm works gracefully
for the case where there are many more variables than observations (m >> n).

It is important to take into account that the procedure requires that the
variables and outputs are previously scaled to have zero mean and variance
equal to 1.

4 Extreme Learning Machine

Let us consider a set of N points (xi, ti) ∈ R
n × R

m, where i = 1, ..., N . A
standard single layer feedforward neural network (SLFN) with L hidden neurons
and activation function g(x) can be mathematically modeled as

L
∑

i=1

βig(wixj + bi) = dj j = 1, ..., N

where wi is the weight vector connecting inputs and the ith hidden neuron, βi is
the weight vector connecting the ith hidden neuron and output neurons, bi is the
threshold of the ith hidden neuron, and dj is the output given by the ELM for
data point j. The standard SLFN with n hidden neurons and activation function
g(x) can approximate these N samples with zero error in the ideal case, meaning

that
∑L

j=1 ‖dj − tj‖ = 0, and thus, there exist βi, wi and bi such that

L
∑

i=1

βig(wixj + bi) = tj j = 1, ..., N

The above equations can be written compactly as:

Hβ = T

where

H =







g(w1x1 + b1) . . . g(wLx1 + bL)
... · · ·

...
g(w1xN + b1) . . . g(wLxN + bL)







N×L

β =







βT
1
...

βT
L







L×m

and T =







t
T
1
...

t
T
N







N×m

The matrix H is called the hidden layer output matrix of the neural network.
When the number of neurons in the hidden layer is equal to the number of
samples, H is square and invertible. Otherwise, the system of equations needs
to be solved by numerical methods, concretely by solving

minβ‖Hβ − T‖

The solution that minimizes the norm of this least squares equation is

β̂ = H†T

where H† is called Moore-Penrose generalized inverse [1]. The most important
properties of this solution are:

• Minimum training error.

• Smallest norm of weights and best generalization performance.

• The minimum norm least-square solution of Hβ = T is unique, and is
β̂ = H†T.

Hence, the ELM algorithm for SLFNs can be summarized in these steps:

Given a training set (xi, ti) ∈ R
n ×R

m, i = 1, ..., N activation function g(x)
and L hidden neurons:

1. Assign arbitrary input weights wi and bias bi, i = 1, ..., L.

2. Calculate the hidden layer output matrix H.

3. Calculate the output weights β:

β = H†T

where H, β and T are as defined before.

5 Experiments and results

5.1 The ”anthrokids” dataset

The dataset used for testing the described methodology was a collection of an-
thropometric data that represents the results of a three-year study on 3900
infants and children representative of the U.S. population of year 1977, ranging
in age from newborn to 12 years of age. The dataset comprises 121 variables
and the target variable to predict is children’s weight. The data repository can
be found in http://ovrt.nist.gov/projects/anthrokids/.

This dataset is characterized by the presence of many missing values. There-
fore, a first sample and variable discrimination had to be done to build a robust
and reliable dataset. The approach to do this was to keep a minimum amount of
1000 samples out of the possible 3900. The number of variables was chosen by
means of an iterative routine which attacked the data set reduction both in terms
of number of samples and number of variables. The variables were removed one
by one (every time the one with the highest amount of missing values) while the
number of samples removed per iteration could be tuned. The best compromise,
with 43 samples removed per iteration, was a set of 54 variables which led to a
set of 1019 samples, free of missing values. Figures 2(a) and 2(b) describe this
process. One extra variable was removed because it had a constant value for all
samples, yielding a final set of 53 variables.

The resulting dataset was subdivided into training and test sets, with 70%
and 30% of the samples respectively. The variables were normalized to have zero
mean and standard deviation 1 before being processed.

5.2 Forward-backward search

Forward-backward search with Delta Test as the performance criterion and
empty initial search set was applied to the training set. The FBS algorithm
was applied to several training set combinations to find the best (lowest) DT
value. The method selected the 12 variables listed in Table 1 and the value of
Var[r] versus the number of variables is shown in Fig. 3. The lowest DT value
achieved was 0.0070 and the algorithm converged in 281.63 seconds.

5.3 OP-ELM model construction

After this initial selection, an OP-ELM model was built using these 12 variables
and the same percentages of training and test samples. The algorithm was
initialized with a high number of kernels (100) so that the pruning did not affect
the accuracy of the result.

The criterion to optimize during training was the estimation of the leave-one-
out (LOO) validation error. Usually, LOO estimation is too time consuming,
especially when the number of samples is large. For that reason, the estimation
was done using PRESS (PREdiction Sum of Squares) statistics, which gives
an exact formula for LOO calculation when the problem is linear. This exact
formula defines the LOO error ǫ as

http://ovrt.nist.gov/projects/anthrokids/

38 39 40 41 42 43 44 45 46 47

750

800

850

900

950

1000

1050

1100

1150

X: 43
Y: 1019

samples removed per iteration

sa
m

pl
es

 w
ith

 n
on

ze
ro

 e
le

m
en

ts

Sample discrimination

(a)

39 40 41 42 43 44 45 46 47

20

30

40

50

60

70

80

90

X: 43
Y: 54

samples removed per iteration

va
ria

bl
es

 w
ith

 n
on

ze
ro

 e
le

m
en

ts

Variable discrimination

(b)

Fig. 2: Composition of the dataset. The first step was the determination of
the number of samples to remove per iteration to achieve the minimum number
of samples (>1000) with nonzero elements (a) and the second was to find the
number of variables with nonzero elements determined by this amount of samples
removed between iterations (b).

1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of variables

V
ar

[r
]

Forward−backward search

Fig. 3: Forward-backward search algorithm evolution. The algorithm reaches
the minimum value of Var[r] for 12 variables.

ǫ =
ti − hi

1 − hiPhT
i

where P is defined as P = (HTH)−1, H is the hidden layer output matrix,
hi are the column vectors of matrix H, ti are the target values and β are the
output weights (see section 4 for details). Table 2 lists the results of several OP-
ELM models, using different activation functions for the hidden layer. A linear
component is always maintained because it generally helps fitting the data if
there is any linearity between the inputs and the outputs of the model.

The results show that variable selection allows building a model with the
same performance as with the full set of variables (or even improving it when
linear and sigmoid activation functions are used) in a much shorter time. The
reduction in the number of required neurons is also noticeable.

Variable number Variable name LARS ranking
1 Stature 12
8 Erect sitting height 7
13 Buttock-knee length 10
34 Shoulder breadth 4
38 Upper arm circumference 5
40 Elbow-hand length 8
62 Chest circumference 1
65 Waist circumference 6
70 Hip circumference 3
76 Upper thigh circumference 11
80 Calf circumference 2
85 Foot length 9

Table 1: Variables selected by FBS (DT = 0.0070) and ranking given by LARS
algorithm. The variable numbers correspond to their position in the original
dataset

Number of Activation Comput. LOO Test Number of
variables function time (s) error error neurons

L + S 7.79 0.0221 0.0354 88
53 (full set) L + G 8.12 0.0060 0.0167 118

L + S + G 7.98 0.0069 0.0169 143
L + S 3.15 0.0110 0.0214 47

12 (FBS) L + G 2.71 0.0060 0.0170 17
L + S + G 3.24 0.0062 0.0173 22

Table 2: Performance achieved by several OP-ELM models using different com-
binations of activation functions. L: linear, S: sigmoid, G: gaussian.

5.4 LARS ranking

The LARS algorithm is guaranteed to find the best ranking among all possible
inputs if a problem is linear. The OP-ELM model makes use of LARS to rank the
neurons of the hidden layer, since this layer can be considered an input layer to
the last (linear) stage of the neural network. We also used the LARS algorithm
to provide the best ranking of the variables selected. Despite the non-linearities
of the problem, LARS managed to find a coherent order for the set of selected
variables. The resulting ranking of variables appears in Table 1.

5.5 Scaling

The next step to take in order to optimize the variable selection is to scale
the selected variables according to their influence on the output value. Let us
consider f as the unknown function that determines the relationship between

the inputs and outputs of a regression problem, y = f(x) + r, with x ∈ R
M , y ∈

R, r ∈ R. Let d be the number of selected variables that minimize the Delta Test
without any scaling. Thus, the estimate of the output, ŷ ∈ R, can be expressed
as ŷ = g(x′) + r, with x′ ∈ R

d and g is the model that best approximates the
function f . The objective is to find a scaling vector α ∈ R

d such that

ŷ = g(α1x
′
1, α2x

′
2, . . . , αdx

′
d) + r

minimizes the variance of the noise (DT) of the problem.
Intuitively, the scaling will assign high values of α to the variables that are

most correlated with the output, and low values to those less correlated. It can
happen that some variable that initially was not selected, now enters the set of
selected variables with a low scaling factor.

The method of FBS with scaling was applied to the anthropometrics example,
providing the ranking shown in Table 3. The result includes all the previously
selected variables with scaling factor 1, and adds 6 more with lower scaling
factors ranging from 0.1 to 0.5. The computational time employed was 1495.95
seconds and the DT with scaling was reduced to 0.0064. Finally, Table 4 shows
a comparison of several OP-ELM models built using the scaled variables.

Scaling factor Variable number Variable name
1.0 1 Stature
1.0 8 Erect sitting height
1.0 13 Buttock-knee length
1.0 34 Shoulder breadth
1.0 38 Upper arm circumference
1.0 40 Elbow-hand length
1.0 62 Chest circumference
1.0 65 Waist circumference
1.0 70 Hip circumference
1.0 76 Upper thigh circumference
1.0 80 Calf circumference
1.0 85 Foot length
0.5 42 Forearm circumference
0.4 36 Shoulder-elbow length
0.2 22 Lower face height
0.1 47 Hand breadth
0.1 57 Maximum fist circumference
0.1 112 Birth order

Table 3: Variables selected by FBS with scaling factors (DT = 0.0064).

6 Conclusion

This work has presented the use of variable selection using the Delta Test as
a selection criterion, based on the minimization of the variance of the noise

Number of Activation Comput. LOO Test Number of
variables function time (s) error error neurons

L + S 3.61 0.0106 0.0210 68
18 (scaled) L + G 3.71 0.0058 0.0168 17

L + S + G 3.72 0.0058 0.0166 17

Table 4: Study of the performance of several OP-ELM models using scaled vari-
ables. The different activation functions are: L: linear, S: sigmoid, G: gaussian.

in a regression problem. This selection of variables has been combined with
optimally pruned ELM models that effectively accelerate the learning process of
single layer feedforward neural network.

The OP-ELM models by themselves produced short training times (of the
order of 8 seconds for a problem involving 53 variables and around 1000 samples)
and relatively accurate estimations in terms of validation and test error. In the
example studied, the combination with variable selection using DT reduces the
computational time to less than half of the achieved with OP-ELM, maintaining,
or improving in some cases, the calculated errors. It also proved to reduce
substantially the necessary number of nodes in the network. The best performing
models for this application were those which included gaussian kernels, either
with or without sigmoid components.

The use of scaling factors to weight the variables according to their impor-
tance in the model slightly increases the accuracy but on the other hand it in-
creases the computational time too. Therefore, the convenience of using scaling
or not will depend on each specific application.

In particular, we consider that this methodology could be effectively used for
time series prediction as it is done in [3] but automatizing the choice of hidden
neurons and saving computational time by reducing the number of variables.

References

[1] G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, Extreme learning machine: A new learning
scheme of feedforward networks, Neurocomputing, 70:489–501, 2006.

[2] Y. Liu, H.-T. Loh and S.-B. Tor, Comparison of extreme learning machine with sup-
port vector machine for text classification, LNAI 3533:390–399, Springer-Verlag Berlin
Heidelberg, 2005.

[3] R. Singh and S. Balasundaram, Application of extreme learning machine method for time
series analysis, Int. Jour. Int. Tech., 2(4):256–262, 2007.

[4] Y. Miche, P. Bas, Ch. Jutten, O. Simula and A. Lendasse, A methodology for building
regression models using extreme learning machine: OP-ELM, In Proceedings of ESANN

2008, European Symposium on Artificial Neural Networks, pp. 247–252, 2008.

[5] H. Pi and C. Peterson, Finding the embedding dimension and variable dependencies in
time series, Neural Computation, 6(3):509–520, 1994.

[6] A.J. Jones, New tools in non-linear modelling and prediction, Comput. Manage. Sci.,
1:109–149, 2004.

[7] B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, Least angle regression, In Annals of

Statistics, 32:407–499, 2004.

	Introduction
	Variable selection
	The Delta Test
	Forward-backward search methodology

	The LARS algorithm
	Extreme Learning Machine
	Experiments and results
	The "anthrokids" dataset
	Forward-backward search
	OP-ELM model construction
	LARS ranking
	Scaling

	Conclusion

