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Abstract— The problem of selecting an adequate set of models will not be able to set their parameters correctly if
variables from a given data set of a sampled function, beconse there are not enough input vectors in the training set. Many
crucial by the time of designing the model that will approximate  ya5)_ jife problems present this drawback since they have a
It. Several approaches have been presented in the literater considerable amount of variables to be selected in compar-
although recent studies showed how the Delta Test is a powelf | . . P
tool to determine if a subset of variables is correct. This pper ~ i1SON to the few number of observations. Thus, efficient and
presents new methodologies based on the Delta Test such aseffective algorithms to reduce the dimensionality of théada
Tabu Search, Genetic Algorithms and the hybridization of ttem,  sets are required.
to determine a subset of variables which is representativefo The literature presents a wide number of methodologies
a function. The paper co_n5|de(s as well the scahng problem for feature or variable selection ([6], [7], [8]) althou
where a relevance value is assigned to each variable. The new LA D ’ ghety .
algorithms were adapted to be run in parallel architecturesso ~ have been.focused on C!QSSW_'C&\“QH problems. Regression
better performances could be obtained in a small amount of problems differ from classification since:
time, presenting great robustness and scalability. « The output of the problem is continuous, not like in

|. INTRODUCTION classification, where a finite number of classes is defined

a priori.

« There is a proximity between different outputs, not like
in classification, where classes (in general) cannot be
related.

N many real-life problems it is convenient to reduce the
number of involved features (variables) in order to reduce
the complexity, especially when the number of features is

large compared to the number of observations (e.g. finance
g P (e.g Therefore, specific algorithms for this kind of problem

problems, weather forecast, electricity load predictiete,). be desianed. R v, it has b q di
There are several criteria to tackle this variable redactighUSt be designed. Recently, .'t as been emonstrated in
] how the Delta Test (DT) is a quite powerful tool to

problem. Three of the most common are: maximization ) ) . .
éjetermme the quality of a subset of variables using Forward

the mutual information (MI) between the inputs and th S
outputs, minimization of the k-nearest neighbors (k-NN 3ackward optimization. However, there are other alterna-

leave-one-out generalization error estimate and minitiiza V€S that allow to perform a global optimization of the
of a nonparametric noise estimator (NNE). variable selection like Genetic Algorithms (GA) [10] and

The problem of regression or function approximation conlau Search (TS) [11]. One of the main drawbacks of using

sists in, given a set of input vectors with their correspagdi global optimization techniques is th.elr computatlonaI.tCOS
output, it is desired to build a model that learns the relal}levertheless, the latest advances in computer archigectur

tionship between the input variables and the output vaeriablprovmIe powerful clusters_wit_hout requiring a Iarge budg_et
Formally this problem can be enunciated as, given a set an adeqqate parallehza_tlo_n of_the_se techm_ques mlght
observations{(Z;;y;);j = 1,.., N} with y; = F(Z;) € R ame]lorz?\te this problem. This is qglte important in reéd-li
andz, € RY, it is desired to obtain a functiod so vi=G applications where the response time of the algorithm mus.t
(&) & R with z; € R ' be acceptable from the perspective of a human operator. This

There exists a wide variety of models that are able tgaper presents several new approaches to perform variable

: : election using the DT as criterion to decide if a subset
approximate any function such as Neural Networks [1], [fo variables isg adequate or not. The new approaches are

Fuzzy Systems [3], Support Vector Machines (SVM) an . . L

Least Square SVM [4], etc. however, they all suffer from th aseq in local search me_thodolog|es, global optimization
Curse of Dimensionality [5]. As the number of dimens,ion§echmc.1ues and the hybridization of bOth.' The rest of the
d grows, the number of input values required to sample tHeaper is structured as follows: Section 2 introduces the DT

solution space increases exponentially, this means theat tﬂnd _|ts theoretical framework, then, Secthn 3 descrlb_es th
previous methodology to perform the variable selection as
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the mean squared error (MSE), that can be achieved withoutThe difference between the first two is that the Forward
overfitting. GivenN input-output pairs(x;,y;) € R? x R,  Search starts from an empty set of selected variables and
the relationship betweexy andy; can be expressed ag:= adds variables to it according to the optimization of a
f(X;))+ri,i=1,...,N,wheref is the unknown function and search criterion, while the Backward Search starts from a
r is the noise. The DT estimates the variance of the naise set containing all the variables and removes those for which
The DT is useful for evaluating the nonlinear correlatiorthe elimination optimizes the search criterion.
between two random variables, namely, input and output Both Forward and Backward Search suffer from incom-
pairs. The DT can be also applied to input variable selectioplete search. The Forward-Backward Search (FBS) is a
the set of input variables that minimizes the DT is the oneombination of them. It is more flexible in the sense that
that is selected. Indeed, according to the DT, the seleeted & variable is able to return to the selected set once it has
of input variables is the one that represents the relatipnshbeen dropped, and vice versa, a previously selected variabl
between input variables and the output variable in the mosan be discarded later. This method can start from any linitia
deterministic way. DT is based on hypothesis coming frormput variable set: empty set, full set, custom set or rarigom
the continuity of the regression function. If two points initialized set. If we consider a set @f input-output pairs
andx’ are close in the input variable space, the continuityx;,y;) € R? x R, the FBS algorithm can be described as
of regression function implies the outpuf$x) and f(x') follows
will be close enough in the output space. Alternatively, if 1) |njtialization:
the corresponding output values are not close in the output = | et § be the selected input variable set, which can
space, this is due to the influence of the noise. contain any input variables, arfdthe unselected input
The DT can be interpreted as a particularization of the  variable set, which contains the variables not present
Gamma Test [13] considering only the first nearest neighbor.  in §. Compute Varf] using Delta Test on the sét.

Let us denote the first nearest neighbor of a pajnin the 2) Forward-Backward selection step:
R4 space asy v (i)- The nearest neighbor formulation of the Find the variabler® to include or to remove from the
DT estimates Var[] by setS to minimize Varf]:

N S . j 4
1 x” = argming ,; {(Varlr]|SUa’) U (Varlr]|S\ z*)},
Varlr] ~ 6 = IN Z(yi —ynnG)’s e SpicF
=1 )

with Var[é] — 0 for N — oo 3) If the old value of Varf] on the setS is lower than
the new result, stop; otherwise, update Sedind save
the new Varf]. Repeat step 2 untif is equal to any
former selectedb.

4) The selected input variable setSs

This Section presents the previous methodology proposed

to compute the minimum value for the DT, the ForwardB. Tabu Search

Backward Search. Then, it presents an adaptation of the T3, Search (TS) is a metaheuristic method designed to
for the minimization of the DT. Finally, a new algorithm thaty jje |ocal search methods to explore the solution space
combines the TS and the global optimization capabilities 03eyond local optimality. The first most successful usage was
GA is introduced. i ] ) by Glover in [14] for combinatorial optimization. Later TS

The methodologies described below are applied to thgas syccessfully used in scheduling [15], [16], routing][17
problem of variable selection from two perspectives: bynargnq general optimization problems [18].

and scaled. The binary approach considers a solution as g, general, the problem is in form of an objective or cost
set of binary values that indicate if _that var|ab[e is refeva f,nction f(v), given the set of solutions € V. In the
or not. The scaled approach assigns a weighting fact@pniext of TS, the neighborhood relationship between solu-
to each yarlable accordmg to its importance. Th.e Sca“nl%ns, denotedVe(v), plays the central role. While there are
problem is more challenging because the solution spaggner neighborhood based methods, such as descent/ascent
grows considerably. methods widely used, the difference is that tabu uses memory
in order to influence which parts of the neighborhood are
A. Forward-Backward Search going to be explored. A memory is used to record various
To overcome the difficulties and the high computational timaspects of the search process and the solutions encountered
that an exhaustive search would entail (i2¢. — 1 input such as recency, frequency, quality and influence of moves.
variable combinations, being the number of variables), The most important aspect of the memory is to forbid
there are several other search strategies. These steategie some moves to be applied, or in other words, to prevent the
affected by local optima because they do not test every inpsi¢arch to go back to solutions that were already visiteds Thi
variable combination. Among the typical search strategiealso allows the search to focus on such moves that guide the
there are three that share similarities: Forward Searctk-Ba search toward unexplored areas of the solutions space. This
ward Search (or pruning), and Forward-Backward Search.part of the memory is called &bu list and the moves in

whereyy ;) is the output ofXy ;).

Ill. VARIABLE SELECTION METHODOLOGIES



this list are then considered tabu, and thus forbidden to ugterations. The combination of these two lists gave better
The size of the tabu list as well as the time each move iesults than when each of the conditions was used alone.
kept in the list are important issues in TS. These parametersFor example, fork = 10, if a move is performed along
should be set up so that the search is able to go throughmension 3 from value 0.1 to 0.2, which can be written
two distinct, but equally important phaséstensificationrand as a vectorn = (3;0.1,0.2), then its reverse mover ! =
diversification (3;0.2,0.1) is stored in the list. The search will be forbidden
As far as we know, no implementation of the TS toto use any move along dimension 3 féf4 + 2 iterations,
minimize the DT has ever been done, so it was implementedhd after that time, it will be further 2 iterations resteidtto
in this work as an improvement over the FBS, which doegse the moven 1!, or in other words to go back from 0.2
not have any memory enhancement. Due to the fact thtat O0.1.
this paper considers the variable selection and the scalingWith these settings, in the case of variable selection, two
problem, two different algorithms had to be designed. Bothonditions are then implicity merged into one condition:
algorithms use only short-term recency based memory testrict a flip of the variable for/4 + 2 iterations. This
store reverse movesnstead of solutions to speedup theis because there are only two values 0,1 as possible choices.

exploration of the segrch space. , C. Hybrid Parallel Genetic Algorithm
1) TS for pure variable selectionn the case of variable

selection, a move was defined as a flip of the status gfe benefits and gdvantages of the 9"?'09' optimization and
exactly one variable in the data set. The status is excludéqfa! _search tec_h”'ql_les have been hybridized in the pr_olp_ose
(0) or included (1) from the selection. For a data set oplgorithm. The idea is to be able to have a global optimiza-

dimensionalityd, a solution is then a vector of zeros andHON: Using & GA, but still being able to make a fine tune of
onesv = (v1, v, ..., vq), wherewy, € {0,1},k = 1,....d the solution, using the TS. The following paragraphs descri

are indicator variables representing the selection staftés the different_ elements t_hat (_jefine the a!g_o_rithm. :
th dimension. 1) Encoding of the individuals and initial population:

The neighborhood of a selection (solution)is a set Deciding how a.c.hromos.ome encod_es a.SO“.Jt'(?n IS one
of the most decisive design steps since it will influence

of selectionsu which have exactly one variable that has ) ; .
different status. This can be written as the res_,t of the d§3|gn [19]. The classical enpodlng used
for variable selection has been a vector of binary values
Ne(w) = {u| Fg € {1,...,d} v, #uqs Avi =u;,i #q}  Where 1 represents that the variable is selected and 0 that
the variable is not selected. Since this paper considers the
With this setup, each solution has exactly the same amougiriable selection using scaling, instead of using binary
of neighbors, which will be equal td. values, other encoding must be chosen. If the algorithm uses
2) TS for the scaling problemThe first modification that real numbers to determine the weight of a variable, it could
requires the adaptation to the scaling problem is the digimit fall into the category of Real Coded Genetic Algorithms
of the neighborhood of a solution. A solutianis now a (RCGA). However, the number of scales has been discretized
vector with scaling values from a discretized sgtc H = in order to bound the number of possible solutions making
{0, 1/k, 2/k,..., 1}, wherek is discretization parameter. the algorithm a classical GA where the cardinality of the
Two solutions are neighbors if thelisagreeon exactly one alphabet for the solutions is increasedkvalues. For the
variable, same as for variable selection, but the disageaém sake of simplicity in the implementation, an individual is a
is the smallest possible valu¥e(v) is defined in a same way vector of integers where the number 1 represents that the
as for variable selection, but with an additional constrain variable was selected arid+ 1 means that the variable is
|vg — uq| = 1/k. For example, fork = 10 andd = 3, the not selected.
solutionsv; = (0.4,0.2,0.8) and vy = (0.3,0.2,0.8) would Regarding the initial population, some individuals are
be neighbors, but not the solutiag = (0.1,0.2,0.8). The included in the population deterministically to ensurettha
move between solutions is defined as a change of value fesch scaling value for each variable exists in the populatio
one dimension, which can be written as a vector (dimensiohese individuals are required if the classical GA crossove
old value, new value). operators (one/two-points, uniform) are applied so all the
3) Setting the tabu conditionsThe tenure for a move possible combinations can be reached. For example, if the
is defined as the number of iterations that it is consideratumber of scales is 4 in a problem with 3 variables, the
as tabu. This value is determined empirically when the T8idividuals that are always included in the population dre:
is applied to solve a concrete problem. For the variablé 1,22 2,3 3 3,and 4 4 4.
selection problem, this paper proposes a value which is2) Selection, crossover and mutation operatofithe al-
dependent on the number of dimensions so it can be appligdrithm was designed in order to be as fast as possible
to several problems. In the experiments, two tabu lists, areb when several design options appeared, the fastest one
thus two tenures, were used. The first list is responsib(@n terms of computation time) was selected, as long as
for preventing the change along certain dimensiondpt it was reasonable. The selection operator chosen was the
iterations. The second one prevents the change along thieary tournament selection as presented by Goldberg in [20
same dimension and for specified scaling valuedi6t + 2 instead of the Baker's roulette wheel operator [21] or other



more complex operators existing in the literature. Thearas size of population/number of processors.

for this is because the binary tournament does not requireThe algorithm has been implemented so the number of
the computation of any probability for each individual, $u communications (and their number of packets) is minimized.
a considerable amount of operations are saved on eagh gchieve this, all the processors execute exactly the same
iteration. This is specially import_ant for large popula code so, when each one of them has to evaluate its part
Furthermore, the fact that the binary tournament does ngf the population, it does not require to get the data from
introduce a high selective pressure is not as traumatic asyife master because it already has the current population.
might seem. The reason is because the huge solution spagge only communications that have to be done during
that arises as soon as the number of scales increases, shgdd execution of the GA are, after the evaluation of the
be deeply explored to avoid local minima. Neverthelesgygividuals, to send and receive the values of the DT, but
the algorithm incorporates the elitism mechanism, keepingt the individuals themselves. To make possible that all
the 10% of the best individuals of the population, so thgrgcessors have the same population all the time consiglerin
convergence is still feasible. that there are random elements, at the beginning of the
Regarding the crossover operator, the algorithm implesigorithm the master processor sends to all the others éte se
mented the classical operators for a binary coded GA, thegg their random number generators. This implies that thiey a
are: one-point and two-point crossovers and the uniforproduce the same values when calling the function to obtain
crossover [22], [10], [23]. The behavior of the algorithmy random number. In this way, when the processors have to
using these crossovers was quite similar and acceptab@mmunicate, only the value of the DT computed will be
Nonetheless, since the algorithm could be included into th’%m, saving the communications that would require to send
Real Coded GA class, an adaptation of the BuX24]  gach individual to be evaluated. This is specially impdrtan
was implemented as well. The adaptation only required t§nce some problems require large individuals, increasing

round the absolute value assigned to each gene and also §h traffic in the network and retarding the execution of the
modification of the value in case it is out of the bounds ofgorithm.

the solution space. e N Lo
The mutation operates at a gene level, so a gene has th&) Hybridization: The combination of local optimization

chance to get any value of the alphabet techniques with GA has been studied in several papers [27],

3) Parallelization: The algorithm has been parallelized[zs]’ [29].' Furthermqre, the mCl.US'O” of a FBS in a stage O.f
so it is able to take advantage of the parallel architecture n algorithm for_vanable se_lectlon was re?.e”“_y proposed i
like clusters of computers, that are easy available anysvhe 1 but, the algorithm was or_lented to cla35|f|cat|(_)n proie
The main reason to parallelize the algorithm is to be abl he new approach that this paper proposes is to perform

to explore more solutions in the same time, allowing thé‘}hloclal slearch ﬁt tr_1”ebbeg|nn|ng a”O,' at LheTeSn?j of th; (?A
population to reach a better solution. e local search will be done by using the escribed in

The fitness function still remains expensive in comparisow.e -Sectlon ”.l'B’ so it dog; _nqt st_op when it finds a local
inimum. Using a good initialization as a start point for

with the other stages of the algorithm (selection, crossov L ) . . .
v g ( 5 the GA, it is possible to find good solutions with smaller

mutation, etc.). At first, all the stages of the GA were lati 301, This i ite i tant b th !
parallelized, but the results showed that the communigati@ P42 lons [30]. This is quite important because the smal

and synchronization operations could be more expensive thtzpe po?.UIat'_?_E |s,fthe Esterl thgthalgpr|thm W”tl comp:je;g a
performing the stages synchronously and separately on eag:(?_rera |on.t q ere oret,h ('arg gort thm |n(;orporatest§1rllll II i
processot. Hence, only the computation of the DT for each @ generated using the 15, so there 1S a potential Sofution

individual is distributed between the different processior which has a good fiiness. Since the algorithm is able to use
veral processors, several TSs can be run on each processor

a master/slave topology quite similar to the ones propos§§I ; . ; .
in the literature [25], [26]. The processors will communlcate sending each other the final

The algorithm assumes that all processors are equal wi dividual once the TS is over. Afterwards, th(_ay will start

e GA using the same random seed. Thus, if therepare

the same amount of memory and speed. If they were n(g 2 . )
it should be considered to send the individuals iterativelgh.)cessorsfp individuals of the population will be generated
I

to each processors as soon as they were finished w Rd _the TS. Thanks fo the use of the binary tournament
selection, there is no need to worry about converging too

the computation of the fitness of an individual. This isf st 1o a local minimum near these individuals. The GA will
equivalent to the case where the fitness function comput% inimu individuais. Wi

tional time might change from one individual to anotherF en explorg the SOIUt.'on. space apd yvhen I f|n|sr.1e.s, each
rocessor will take an individual using it as the startingnpo

However, the computation of the DT does not si nificantl)? . o .
b 9 ra new TS. In this way, the exploitation of a good solution

vary from one individual to another, despite the numbel ) S
y P ssquaranteed. The first processor takes the best individual

X . |

of variables they have selected. Thus, using homogeneg A

processors and constant time consuming fitness functien, tﬁe second_, ta_kes t.he sgcc_md best |nd|v!dual and so on. As
pe GA maintains diversity in the population, the best resul

amount of individuals that each processor should evalsate :
after applying the TS does not always come from the best
1This paper considers that a processor will execute one gsookthe !ndN'dual in the populatlon. ThIS fact Sh_OWS how 'mpf)rta”t
algorithm. is to keep exploring the solution space instead of lettirey th



Cpu cores 2, Bogomips 3723.87,Clflush size 64, Cache
alignment 64, Address size<10 bits physical, 48 bits virtual.

The algorithms were implemented in MATLAB and, in
order to communicate the different processes, the MPImex
ToolBox presented in [31] was used.

A. Data sets used in the experiments

To assess the presented methods, several experiments were
performed, using the following data sets:

1) The Housing data sétis related to the estimation of
housing values in suburbs of Boston. The value to predict is
the median value of owner-occupied homes in $1000's. The
data set contains 506 instances, with 13 input variables and

one output.

,  th Bestindividual of the population 2)The Tecator data sétaims at performing the task of

y  2%Bestindvidual of the population predicting the fat content of a meat sample on the basis of

Best individual of the population . k .
. its near infrared absorbance spectrum. The data set centain

| Sﬁjﬁ?ﬁ'v'd“a' SLalproressars 215 useful instances for interpolation problems, with 100
input channels, 22 principal components (which will remain
unused) and 3 outputs, although only one is going to be used
(fat content).

3)The Anthrokids data sktepresents the results of a three-
GA converge too fast. year study on 3900 infants and children representative of

Figure 1 shows how the algorithm is structured as weff'e U-S. population of year 1977. The data set comprises

as the communications that are necessary to obtain the fir:l*gtll variables and the target variable to predict is children
solution weight. As this data set presented many missing values, a

prior sample and variable discrimination had to be perfarme
IV. EXPERIMENTS AND RESULTS to_bu_ild a robust and reliable dgta set. The fingﬂ" sm'thouf[

missing values contains 1019 instances, 53 input variables
This Section will show empirically the performance of theand one output (weight). More information on this data set
algorithm. First, the data sets that have been used a@juction methodology can be found in [32].
introduced. Then, the effect of the parallelism appliedrove 4) The Santa Fe time series competition datef ssta
the GA will be analyzed. Afterwards, more experiments witiime series recorded from laboratory measurements of a
the parallel version will be done in order to show how the=ar-Infrared-Laser in a chaotic state. The set contain® 100
addition of the BLX« crossover and the TS can improve thesamples, and it was reshaped for its application to timeseri
results. Finally, the new proposed algorithm will be congglr prediction using regressors of 12 samples. Thus, the sdt use
against the local search technique used so far, demonstratjn this work contains 987 instances, 12 inputs and one output
how the global optimization, in combination with the local 5) The ESTSP 2007 competition data°sefhis time
search, leads to better solutions. Nothing was Commentgdries was proposed for the European Symposium on Time
so far about the stopping criterion of the algorithm. Inseries Prediction 2007. It is an univariate set containing
the experiments, a time limit of 600 seconds for all th&75 samples but has been reshaped using a regressor of 55

algorithms was used. The decision to set this time limit igariables, producing a final set of 819 samples, 55 variables
because the experience when working with industries sagsd one output.
that 10 minutes is the maximum amount of time that an Al the data sets were normalized to zero mean and unit
operator is willing to wait. Furthermore, this value hastbeeyariance, so the DT values obtained are normalized by the
widely used in the literature as time limit. Two differentyariance of the output.
clusters were used in the experiments but, due to the lack o
of space, only the results of the better one will be showe®- Parallelization of the GA
Nonetheless, the algorithms had a similar performance iFhis subsection will show the benefits that are obtained
both of them. A remarkable fact was that the size of thby adding parallel programming to the sequential GA. The
cache was crucial by the time of computing the DT. Due tgequential version was designed exactly in the same way
the large size of the distances matrix, the faster computtrat was described in Section 3, using the same operators,
had a worse performance because it did not have as much - _
cache memory as the other. The processors in the cIusteihttpf”"?‘mh"’e''CS'“C''eo'“’m"d""t"’1 sets/Housing.
used had the following characteristi€pu family 6, Modet 4http'm'b'5ta.t'Cmu'edu{data sets/tecator.

! http://ovrt.nist.gov/projects/anthrokids.
15, Model namelntel(R) Xeon(R) CPU E5320 @ 1.86GHz,  sptp:/ww.cis.hut fiprojects/tsplindex.php?pageseiseries.

Stepping 7, Cpu MHz 1595.931,Cache size 4096 KB, Shttp://mww-psych.stanford.edwandreas/Time-Series/SantaFe.html

Fig. 1. Algorithm scheme. Dashed line represents one to omerwnica-
tion, dotted lines represent collective communications.



however, the evaluation of the individuals was performethtroducing the TS to the algorithm improves the results
uniquely in one processor. For these experiments, the BRynificantly. The effect of introducing the TS before tharst
was not incorporated to the algorithms so the benefits of thef the GA improves the results in some cases, although the
parallelism could be more easily appreciated. improvement is not too significant. However, it is possible

For these initial tests, the GA parameters were adjusted to appreciate how the application of the TS at the beginning
the following values:Crossover TypeOne point crossover, and at the end reduces the standard deviation making the
Crossover Rate 0.85, Mutation Rate 0.1, Generational algorithm more robust.
elitisnt 10% ) i i .

The results were obtained from three of the data set®. Comparison against the classical methodologies
namely Anthrokids, Tecator and ESTSP competition data sethis last Subsection performs a comparison of the final
The performances are presented in Table |. Figures 2 apdrsion of the proposed algorithm in this paper with the
3 show the effect of increasing the number of processotgassical local search methodology already proposed in the
in the number of generations done by the algorithms for gerature to minimize the value of the DT. The pTBGA with
constant number of individuals for the Tecator problem. Agptimal settings running on 8 processors was compared in
it was expected, if the number of individuals increases, therms of performance (minimum Delta Test and number of
number of generations is smaller. This effect is compedsateolutions evaluated) with other widely used sequentiaickea
with the introduction of more processors that increase imethods such as FBS and the TS presented in this paper, both
almost a linear way the number of generations completeginning on single processors of the grid. As FBS converged
The linearity is not that clear for small populations withrather quickly (always before the time limit of 10 minutes),
50 individuals since the communication overheads start the algorithm was run with several initializations, untilet
be significant. However, larger population sizes guaraateetime limit was reached. The results of these tests appeead lis
quite good scalability for the algorithm. in Table IlI.

Once the superiority of the parallel approach was proved, For the pTBGA, a fixed population of 150 individuals was
the next sections will only consider the parallel implemenselected. The crossover probability was 0.85 in all cases.
tations of the GA. When comparing the two local search techniques, this is,
C. Hybridization of the pGA with the TS and using the BLXIS and FBS, it is remarkable the good behavior of FBS
o crossover against the TS. This is not surprising since the FBS, as soon

. . . S it converged, it was reinitialized starting from another
Once it has been demonstrated how important is the par%1 g g

lelization of the algorithm, the benefits of adapting the BLX indom position. On the other hand, the TS started at one
X “rand int and lored th ighborhood of it duri
« operator and the addition of the TS will be shown. Thi rancom point and explore © neighbornood ot It dunng

hvbrid algorithm h ived th f OTBGA. The i he time frame specified, making it more difficult to explore
ybrid algorithm has received the name of p - The M@y o areas. The new hybrid approach improves the results of

limit of 600 seconds was divided into three time slices thaﬁ1e FBS in average for both pure selection and scaling, being

were assigned to the three different stages of the aIgo:rithrI'Q]ore robust than the FBS which does not always provide a
tabu initialization, GA, and tabu refinement. egood result

The goal was to find the best trade-off in terms of tim
dedicated to explore the solution space and to exploit it. V.. CONCLUSIONS

When assigning the time slices to each part it was considerglaﬂiS paper has presented a new approach to solve the

that, for the initialization using the TS, just a few evalaas roblem of simole and scaled variable selection. The maior
were willed in order to improve slightly the starting poiot f probiem P ' J
Cé)ntnbutlons of the paper are:

the GA. Several combinations where tried but always keepin
the time for the first TS smaller than the GA and the second * The development of a TS algorithm for both, pure
TS. selection and scaling, based on the Delta Test. A first
The results are listed in Table Il. The Tables present a initialization of the parameters required by the short
comparison between pRCGA, pTBGA using only TS at the  time memory was proposed as well
end, and pTBGA using TS at the beginning and at the end, * The design of a Genetic Algorithm whose fitness func-
both with and without scaling. The population size was fixed  fion is the Delta Test and that makes a successful adap-
to 150 individuals based on previous experiments where no tation of the BLX« crossover to adapt the discretized
significant difference was observed over 200 individuals if ~ Scaling problem as well as the pure variable selection.
the number of processors is fixed to 8. The configuration « The parallel hybridization of the two previous algo-

of pTBGA is indicated in Table Il asrs, /tqa/trs, Where rithms that allows to keep the compromise between
tqa is the time (in seconds) dedicated to the GAg, is the exploration/exploitation allowing the algorithm to
the time dedicated to the first tabu step, and, the time find smaller values for the Delta Test than the previous
dedicated to the last. methodology does.

The values of DT obtained show how the applicatiormhe results showed how the synergy of different paradigms
of the adapted BLXx crossover improves the results forcan lead to obtain better results. It is also important to
pRCGA. Regarding the hybridization, there is no doubt thatotice how necessary is the addition of parallelism in the



TABLE |
PERFORMANCE OFRCGAVS PRCGAFORTHREEDIFFERENT DATA SETS VALUES OF THEDELTA TEST, NUMBER OF GENERATIONSCOMPLETED

AND STANDARD DEVIATION (IN BRACKETS).

Data set Pop Value [ RCGA PRCGA(np=2) [ PRCGA(np=4) [ PRCGA(np=8) |
) [ k1 [ k=10 [ k=1 [ k=10 [ k=1 [ k=10 [ k=1 [ k=10 |
DT(le-2) | 1.278(le-3 1527(8e-3 1.269(1e-3 1.425(1e-3 1.204(1e-3 1.408(6e-2 1.347(8e-2 1.42(4e-2
50
Gen. 35.5(1.9) 16.7(2.5) 74.8(4.1) 35.3(1.2) 137.8(6.8) 70(2.4) 169.3(13.8) 86(1.4)
anthrokids | 100 | D12 | 1351(e3) 1.705(8e-8) 1.266(8¢-3) 1.449(1e-3) 1.202(2¢-3) 1.27(2¢-3) 1.11(5e-2) 1.285(1e-3)
Gen. 17.2(2) 8.5(0.5) 35.4(1.2) 17.3(0.7) 68.8(4.3) 35(0.7) 104(28.2) 445(0.7)
150 | DT(ed) | 1475(121e2)| 1743(113e2) | 1318(112e-2) | 151(152e2) | 1148(9.9e2) | 1328(7.1e2) | 1105(12e2) | 1375(7.80-2)
Gen. 11(0.8 5.7(0.5 22.7(0.9 11.2(0.6 45.6(0.6 23.2(0.5 61(4.2 31(0)
(0.8) (0.5) (0.9) (0.6) (0.6) (0.5) (4.2) (0)
5 DT(le-l) | 1.3158(8e-4) 1.4151(7e-3) 1.4297(8e-3) 1.47(8e-3) 1.3976(8e-3) | 14558(9e-3) | 1.365(4e-3) 1.525(5e-3)
Gen. 627 (39.5) 298.1 (24.4) 1129.4 (55.4) | 569.5 (16.6) | 2099.2(119.6) | 1126.6(89.6) | 3369.5(256.7) | 1778.5(48.8)
Tecator 100 | DT@eD) | 13821@3e3) 1.4507(9e-3) 1.3587(2¢-3) 14926(7e-3) | 1.3914(9e-3) | 1.4542(8e-3) | 1.3525(3e-4) | 1.466(2e-3)
Gen. 310.8(23.6) 154.4(10.9) 579.6(34.4) 299.9(23.1) 1110.4(61.5) | 583(44) 1731(32.5) 926.5(72.8)
DT(1e-1] 1.3146(8e-4; 1.4089(6e-3; 1.345(2e-3 1.5065(5e-3; 1.3522(7e-3; 1.4456(2e-3; 1.303(9e-4; 1.404(6e-3;
150
Gen. 195(14.6 98.3(6.2 388.1(26.1 197.8(14.3 741.2(19.9 377(14.7 1288(21.2 634.5(24.8
(14.6) (6.2) (26.1) (14.3) (19.9) (14.7) (21.2) (24.8)
o DT(1e2) | 1.422(2e-2) 1.401(4e-2) 1.452(4e-2) 1.413(4e-2) 1.444(2¢-2) 1.4(4e-2) 1.403(3¢-2) 1.42(5¢-2)
Gen. 51(2.7) 29.1(1.2) 99.2(8.5) 57.6(2.1) 190.8(16.4) 113.8(5.5) 229(7.9) 126.7(15)
EsTsp 100 | DT@ed) | 1457(e2) 1.445(3e-2) 1.419(4e-2) 1.414(2¢-2) 1.406(3e-2) 1.382(2e-2) 1.393(3¢-2) 1.393(3¢-2)
Gen. 24.8(1.4) 14(0.7) 50.5(2.8) 27.9(0.3) 93(2.9) 57.8(2.5) 128.7(2.1) 67.7(11.8)
DT(le-2) | 1.464(3e-2 1.467(4e-2 1.429(2e-2 1.409(3e-2 1.402(1e-2 1.382(2e-2 141(le-2 1.325(7e-3
150
Gen. 16.6(0.8 9.1(0.3 33.6(1.2 18.7(0.8 63.2(2 37.6(1.1 82.5(2.1 49.5(2.1;
(0.8) (0.3) (1.2) (0.8) (2) (1.1) (2.1) (2.1)
TABLE Il

PERFORMANCE OF RCGAVS PTBGA, WITH THE BLX-a CROSSOVEROPERATOR MEAN AND MINIMUM VALUE OF THEDT, AND STANDARD
DEVIATION (IN BRACKETS)

Data set | Value PRCGA(np=8) pTBGA(np=8)0/400/200 pTBGA(np=8)50/325/225
k=1 | k=10 k=1 | k=10 k=1 [ k=10

Anthrokids | PT 0.0113(1e-5) | 0.0116(1e-5) | 0.0084(le-6) | 0.0103(5e-6) | 0.0083(6e-5) | 0.0101(8e-6)
Min (DT) | 0.0102 0.0105 0.0083 0.0097 0.0083 0.0094

recator | PT 0.13052(3e-5)| 0.1322(2e-5) | 0.118(le-4) 0.1303(2e-5) | 0.1113(8e-5) | 0.1309(1le-5)
Min (DT) | 0.1279 0.1279 0.0988 0.1281 0.105 0.1299

estsp | DT 0.01468(1e-6)| 0.01408(le-6)| 0.01302(8e-5)| 0.01308(4e-6)| 0.01303(5e-5)| 0.0132(2e-6)
Min (DT) | 0.0144 0.0139 0.0129 0.0125 0.0130 0.0130

Housing DT 0.0710(0) 0.0584(9e-4) | 0.0710(0) 0.0556(8e-4) | 0.0710(0) 0.0563(6e-4)
Min (DT) | 0.0710 0.0575 0.0710 0.0547 0.0710 0.0558

santa e | PT 0.0165(0) 0.0094(9e-5) | 0.0165(0) 0.0092(1e-6) | 0.0165(0) 0.0092(1e-6)
Min (DT) | 0.0165 0.0092 0.0165 0.0091 0.0165 0.0091

methodologies since the increasing size of the data selts wil

not be able to be processed by monoprocessor architectures.
Regarding future research, this paper has addressed tHa

problem of the cache memory limitation that seems quite
relevant for large data sets. Also, further work on the study8l

of distributed demes genetic algorithms must be done.
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