
New Methodologies Based on Delta Test for Variable Selection in
Regression Problems

Alberto Guillén, Dusan Sovilj, Fernando Mateo, Ignacio Rojas and Amaury Lendasse

Abstract— The problem of selecting an adequate set of
variables from a given data set of a sampled function, becomes
crucial by the time of designing the model that will approximate
it. Several approaches have been presented in the literature
although recent studies showed how the Delta Test is a powerful
tool to determine if a subset of variables is correct. This paper
presents new methodologies based on the Delta Test such as
Tabu Search, Genetic Algorithms and the hybridization of them,
to determine a subset of variables which is representative of
a function. The paper considers as well the scaling problem
where a relevance value is assigned to each variable. The new
algorithms were adapted to be run in parallel architecturesso
better performances could be obtained in a small amount of
time, presenting great robustness and scalability.

I. I NTRODUCTION

I N many real-life problems it is convenient to reduce the
number of involved features (variables) in order to reduce

the complexity, especially when the number of features is
large compared to the number of observations (e.g. finance
problems, weather forecast, electricity load prediction,etc.).
There are several criteria to tackle this variable reduction
problem. Three of the most common are: maximization of
the mutual information (MI) between the inputs and the
outputs, minimization of the k-nearest neighbors (k-NN)
leave-one-out generalization error estimate and minimization
of a nonparametric noise estimator (NNE).

The problem of regression or function approximation con-
sists in, given a set of input vectors with their corresponding
output, it is desired to build a model that learns the rela-
tionship between the input variables and the output variable.
Formally this problem can be enunciated as, given a set of
observations{(~xj ; yj); j = 1, ..., N} with yj = F (~xj) ∈ R

and~xj ∈ R
d, it is desired to obtain a functionG so yj = G

(~xj) ∈ R with ~xj ∈ R
d.

There exists a wide variety of models that are able to
approximate any function such as Neural Networks [1], [2],
Fuzzy Systems [3], Support Vector Machines (SVM) and
Least Square SVM [4], etc. however, they all suffer from the
Curse of Dimensionality [5]. As the number of dimensions
d grows, the number of input values required to sample the
solution space increases exponentially, this means that the

Alberto Guillén and Ignacio Rojas are with the Department of Com-
puter Architecture and Technology, University of Granada,Spain (email:
aguillen@atc.ugr.es).

Fernando Mateo is with the Department of Electronic Engineering,
Polytechnic University of Valencia, Spain.

Dusan Sovilj and Amaury Lendasse are with the Department of Informa-
tion and Computer Science, Helsinki University of Technology, Finland.

This work has been partially supported by the projects TIN2007-60587,
P07-TIC-02768 and P07-TIC-02906, and by research grant BES-2005-9703
from the Spanish Ministry of Science and Innovation.

models will not be able to set their parameters correctly if
there are not enough input vectors in the training set. Many
real- life problems present this drawback since they have a
considerable amount of variables to be selected in compar-
ison to the few number of observations. Thus, efficient and
effective algorithms to reduce the dimensionality of the data
sets are required.

The literature presents a wide number of methodologies
for feature or variable selection ([6], [7], [8]) although they
have been focused on classification problems. Regression
problems differ from classification since:

• The output of the problem is continuous, not like in
classification, where a finite number of classes is defined
a priori.

• There is a proximity between different outputs, not like
in classification, where classes (in general) cannot be
related.

Therefore, specific algorithms for this kind of problem
must be designed. Recently, it has been demonstrated in
[9] how the Delta Test (DT) is a quite powerful tool to
determine the quality of a subset of variables using Forward-
Backward optimization. However, there are other alterna-
tives that allow to perform a global optimization of the
variable selection like Genetic Algorithms (GA) [10] and
Tabu Search (TS) [11]. One of the main drawbacks of using
global optimization techniques is their computational cost.
Nevertheless, the latest advances in computer architecture
provide powerful clusters without requiring a large budget,
so an adequate parallelization of these techniques might
ameliorate this problem. This is quite important in real-life
applications where the response time of the algorithm must
be acceptable from the perspective of a human operator. This
paper presents several new approaches to perform variable
selection using the DT as criterion to decide if a subset
of variables is adequate or not. The new approaches are
based in local search methodologies, global optimization
techniques and the hybridization of both. The rest of the
paper is structured as follows: Section 2 introduces the DT
and its theoretical framework, then, Section 3 describes the
previous methodology to perform the variable selection as
well as the new developed algorithms. Section 4 presents a
complete experimental study analyzing the behavior of the
algorithms and, in Section 5, conclusions are drawn.

II. EQUIVALENT REFORMULATIONS

The Delta Test (DT), firstly introduced by Pi and Peterson
for time series [12] and proposed for variable selection in
[9], is a technique to estimate the variance of the noise, or

the mean squared error (MSE), that can be achieved without
overfitting. GivenN input-output pairs(xi, yi) ∈ R

d × R,
the relationship betweenxi andyi can be expressed as:yi =
f(xi)+ri, i = 1, ..., N , wheref is the unknown function and
r is the noise. The DT estimates the variance of the noiser.

The DT is useful for evaluating the nonlinear correlation
between two random variables, namely, input and output
pairs. The DT can be also applied to input variable selection:
the set of input variables that minimizes the DT is the one
that is selected. Indeed, according to the DT, the selected set
of input variables is the one that represents the relationship
between input variables and the output variable in the most
deterministic way. DT is based on hypothesis coming from
the continuity of the regression function. If two pointsx
and x′ are close in the input variable space, the continuity
of regression function implies the outputsf(x) and f(x′)
will be close enough in the output space. Alternatively, if
the corresponding output values are not close in the output
space, this is due to the influence of the noise.

The DT can be interpreted as a particularization of the
Gamma Test [13] considering only the first nearest neighbor.
Let us denote the first nearest neighbor of a pointxi in the
R

d space asxNN(i). The nearest neighbor formulation of the
DT estimates Var[r] by

Var[r] ≈ δ =
1

2N

N∑

i=1

(yi − yNN(i))
2,

with Var[δ] → 0 for N → ∞

whereyNN(i) is the output ofxNN(i).

III. VARIABLE SELECTION METHODOLOGIES

This Section presents the previous methodology proposed
to compute the minimum value for the DT, the Forward-
Backward Search. Then, it presents an adaptation of the TS
for the minimization of the DT. Finally, a new algorithm that
combines the TS and the global optimization capabilities of
GA is introduced.

The methodologies described below are applied to the
problem of variable selection from two perspectives: binary
and scaled. The binary approach considers a solution as a
set of binary values that indicate if that variable is relevant
or not. The scaled approach assigns a weighting factor
to each variable according to its importance. The scaling
problem is more challenging because the solution space
grows considerably.

A. Forward-Backward Search

To overcome the difficulties and the high computational time
that an exhaustive search would entail (i.e.2d − 1 input
variable combinations, beingd the number of variables),
there are several other search strategies. These strategies are
affected by local optima because they do not test every input
variable combination. Among the typical search strategies,
there are three that share similarities: Forward Search, Back-
ward Search (or pruning), and Forward-Backward Search.

The difference between the first two is that the Forward
Search starts from an empty set of selected variables and
adds variables to it according to the optimization of a
search criterion, while the Backward Search starts from a
set containing all the variables and removes those for which
the elimination optimizes the search criterion.

Both Forward and Backward Search suffer from incom-
plete search. The Forward-Backward Search (FBS) is a
combination of them. It is more flexible in the sense that
a variable is able to return to the selected set once it has
been dropped, and vice versa, a previously selected variable
can be discarded later. This method can start from any initial
input variable set: empty set, full set, custom set or randomly
initialized set. If we consider a set ofN input-output pairs
(xi, yi) ∈ R

d × R, the FBS algorithm can be described as
follows

1) Initialization:
Let S be the selected input variable set, which can
contain any input variables, andF the unselected input
variable set, which contains the variables not present
in S. Compute Var[r] using Delta Test on the setS.

2) Forward-Backward selection step:
Find the variablexS to include or to remove from the
setS to minimize Var[r]:

xS = arg minxi,xj{(Var[r]|S ∪xj)∪ (Var[r]|S \xi)},

xi ∈ S, xj ∈ F

3) If the old value of Var[r] on the setS is lower than
the new result, stop; otherwise, update setS and save
the new Var[r]. Repeat step 2 untilS is equal to any
former selectedS.

4) The selected input variable set isS

B. Tabu Search

Tabu Search (TS) is a metaheuristic method designed to
guide local search methods to explore the solution space
beyond local optimality. The first most successful usage was
by Glover in [14] for combinatorial optimization. Later TS
was successfully used in scheduling [15], [16], routing [17]
and general optimization problems [18].

In general, the problem is in form of an objective or cost
function f(v), given the set of solutionsv ∈ V . In the
context of TS, the neighborhood relationship between solu-
tions, denotedNe(v), plays the central role. While there are
other neighborhood based methods, such as descent/ascent
methods widely used, the difference is that tabu uses memory
in order to influence which parts of the neighborhood are
going to be explored. A memory is used to record various
aspects of the search process and the solutions encountered,
such as recency, frequency, quality and influence of moves.

The most important aspect of the memory is to forbid
some moves to be applied, or in other words, to prevent the
search to go back to solutions that were already visited. This
also allows the search to focus on such moves that guide the
search toward unexplored areas of the solutions space. This
part of the memory is called atabu list, and the moves in

this list are then considered tabu, and thus forbidden to use.
The size of the tabu list as well as the time each move is
kept in the list are important issues in TS. These parameters
should be set up so that the search is able to go through
two distinct, but equally important phases:intensificationand
diversification.

As far as we know, no implementation of the TS to
minimize the DT has ever been done, so it was implemented
in this work as an improvement over the FBS, which does
not have any memory enhancement. Due to the fact that
this paper considers the variable selection and the scaling
problem, two different algorithms had to be designed. Both
algorithms use only short-term recency based memory to
store reverse movesinstead of solutions to speedup the
exploration of the search space.

1) TS for pure variable selection:In the case of variable
selection, a move was defined as a flip of the status of
exactly one variable in the data set. The status is excluded
(0) or included (1) from the selection. For a data set of
dimensionalityd, a solution is then a vector of zeros and
onesv = (v1, v2, . . . , vd), wherevk ∈ {0, 1} , k = 1, ..., d,
are indicator variables representing the selection statusof k-
th dimension.

The neighborhood of a selection (solution)v is a set
of selectionsu which have exactly one variable that has
different status. This can be written as

Ne(v) = {u | ∃1q ∈ {1, . . . , d} vq 6= uq ∧ vi = ui, i 6= q}

With this setup, each solution has exactly the same amount
of neighbors, which will be equal tod.

2) TS for the scaling problem:The first modification that
requires the adaptation to the scaling problem is the definition
of the neighborhood of a solution. A solutionv is now a
vector with scaling values from a discretized setvk ∈ H =
{0, 1/k, 2/k, . . . , 1}, where k is discretization parameter.
Two solutions are neighbors if theydisagreeon exactly one
variable, same as for variable selection, but the disagreement
is the smallest possible value.Ne(v) is defined in a same way
as for variable selection, but with an additional constraint of
|vq − uq| = 1/k. For example, fork = 10 and d = 3, the
solutionsv1 = (0.4, 0.2, 0.8) andv2 = (0.3, 0.2, 0.8) would
be neighbors, but not the solutionv3 = (0.1, 0.2, 0.8). The
move between solutions is defined as a change of value for
one dimension, which can be written as a vector (dimension,
old value, new value).

3) Setting the tabu conditions:The tenure for a move
is defined as the number of iterations that it is considered
as tabu. This value is determined empirically when the TS
is applied to solve a concrete problem. For the variable
selection problem, this paper proposes a value which is
dependent on the number of dimensions so it can be applied
to several problems. In the experiments, two tabu lists, and
thus two tenures, were used. The first list is responsible
for preventing the change along certain dimension ford/4
iterations. The second one prevents the change along the
same dimension and for specified scaling value ford/4 + 2

iterations. The combination of these two lists gave better
results than when each of the conditions was used alone.

For example, fork = 10, if a move is performed along
dimension 3 from value 0.1 to 0.2, which can be written
as a vectorm = (3; 0.1, 0.2), then its reverse movem−1 =
(3; 0.2, 0.1) is stored in the list. The search will be forbidden
to use any move along dimension 3 ford/4 + 2 iterations,
and after that time, it will be further 2 iterations restricted to
use the movem−1, or in other words to go back from 0.2
to 0.1.

With these settings, in the case of variable selection, two
conditions are then implicitly merged into one condition:
restrict a flip of the variable ford/4 + 2 iterations. This
is because there are only two values 0,1 as possible choices.

C. Hybrid Parallel Genetic Algorithm

The benefits and advantages of the global optimization and
local search techniques have been hybridized in the proposed
algorithm. The idea is to be able to have a global optimiza-
tion, using a GA, but still being able to make a fine tune of
the solution, using the TS. The following paragraphs describe
the different elements that define the algorithm.

1) Encoding of the individuals and initial population:
Deciding how a chromosome encodes a solution is one
of the most decisive design steps since it will influence
the rest of the design [19]. The classical encoding used
for variable selection has been a vector of binary values
where 1 represents that the variable is selected and 0 that
the variable is not selected. Since this paper considers the
variable selection using scaling, instead of using binary
values, other encoding must be chosen. If the algorithm uses
real numbers to determine the weight of a variable, it could
fall into the category of Real Coded Genetic Algorithms
(RCGA). However, the number of scales has been discretized
in order to bound the number of possible solutions making
the algorithm a classical GA where the cardinality of the
alphabet for the solutions is increased ink values. For the
sake of simplicity in the implementation, an individual is a
vector of integers where the number 1 represents that the
variable was selected andk + 1 means that the variable is
not selected.

Regarding the initial population, some individuals are
included in the population deterministically to ensure that
each scaling value for each variable exists in the population.
These individuals are required if the classical GA crossover
operators (one/two-points, uniform) are applied so all the
possible combinations can be reached. For example, if the
number of scales is 4 in a problem with 3 variables, the
individuals that are always included in the population are:1
1 1, 2 2 2, 3 3 3, and 4 4 4.

2) Selection, crossover and mutation operators:The al-
gorithm was designed in order to be as fast as possible
so when several design options appeared, the fastest one
(in terms of computation time) was selected, as long as
it was reasonable. The selection operator chosen was the
binary tournament selection as presented by Goldberg in [20]
instead of the Baker’s roulette wheel operator [21] or other

more complex operators existing in the literature. The reason
for this is because the binary tournament does not require
the computation of any probability for each individual, thus,
a considerable amount of operations are saved on each
iteration. This is specially important for large populations.
Furthermore, the fact that the binary tournament does not
introduce a high selective pressure is not as traumatic as it
might seem. The reason is because the huge solution space,
that arises as soon as the number of scales increases, should
be deeply explored to avoid local minima. Nevertheless,
the algorithm incorporates the elitism mechanism, keeping
the 10% of the best individuals of the population, so the
convergence is still feasible.

Regarding the crossover operator, the algorithm imple-
mented the classical operators for a binary coded GA, these
are: one-point and two-point crossovers and the uniform
crossover [22], [10], [23]. The behavior of the algorithm
using these crossovers was quite similar and acceptable.
Nonetheless, since the algorithm could be included into the
Real Coded GA class, an adaptation of the BLX-α [24]
was implemented as well. The adaptation only required to
round the absolute value assigned to each gene and also the
modification of the value in case it is out of the bounds of
the solution space.

The mutation operates at a gene level, so a gene has the
chance to get any value of the alphabet.

3) Parallelization: The algorithm has been parallelized
so it is able to take advantage of the parallel architectures,
like clusters of computers, that are easy available anywhere.
The main reason to parallelize the algorithm is to be able
to explore more solutions in the same time, allowing the
population to reach a better solution.

The fitness function still remains expensive in comparison
with the other stages of the algorithm (selection, crossover,
mutation, etc.). At first, all the stages of the GA were
parallelized, but the results showed that the communication
and synchronization operations could be more expensive than
performing the stages synchronously and separately on each
processor1. Hence, only the computation of the DT for each
individual is distributed between the different processors in
a master/slave topology quite similar to the ones proposed
in the literature [25], [26].

The algorithm assumes that all processors are equal with
the same amount of memory and speed. If they were not,
it should be considered to send the individuals iteratively
to each processors as soon as they were finished with
the computation of the fitness of an individual. This is
equivalent to the case where the fitness function computa-
tional time might change from one individual to another.
However, the computation of the DT does not significantly
vary from one individual to another, despite the number
of variables they have selected. Thus, using homogeneous
processors and constant time consuming fitness function, the
amount of individuals that each processor should evaluate is

1This paper considers that a processor will execute one process of the
algorithm.

size of population/number of processors.

The algorithm has been implemented so the number of
communications (and their number of packets) is minimized.
To achieve this, all the processors execute exactly the same
code so, when each one of them has to evaluate its part
of the population, it does not require to get the data from
the master because it already has the current population.
The only communications that have to be done during
the execution of the GA are, after the evaluation of the
individuals, to send and receive the values of the DT, but
not the individuals themselves. To make possible that all
processors have the same population all the time considering
that there are random elements, at the beginning of the
algorithm the master processor sends to all the others the seed
for their random number generators. This implies that they all
produce the same values when calling the function to obtain
a random number. In this way, when the processors have to
communicate, only the value of the DT computed will be
sent, saving the communications that would require to send
each individual to be evaluated. This is specially important
since some problems require large individuals, increasing
the traffic in the network and retarding the execution of the
algorithm.

4) Hybridization: The combination of local optimization
techniques with GA has been studied in several papers [27],
[28], [29]. Furthermore, the inclusion of a FBS in a stage of
an algorithm for variable selection was recently proposed in
[7] but, the algorithm was oriented to classification problems.
The new approach that this paper proposes is to perform
a local search at the beginning and at the end of the GA.
The local search will be done by using the TS described in
the Section III-B, so it does not stop when it finds a local
minimum. Using a good initialization as a start point for
the GA, it is possible to find good solutions with smaller
populations [30]. This is quite important because the smaller
the population is, the faster the algorithm will complete a
generation. Therefore, the algorithm incorporates an individ-
ual generated using the TS, so there is a potential solution
which has a good fitness. Since the algorithm is able to use
several processors, several TSs can be run on each processor.
The processors will communicate sending each other the final
individual once the TS is over. Afterwards, they will start
the GA using the same random seed. Thus, if there arep
processors,p individuals of the population will be generated
using the TS. Thanks to the use of the binary tournament
selection, there is no need to worry about converging too
fast to a local minimum near these individuals. The GA will
then explore the solution space and when it finishes, each
processor will take an individual using it as the starting point
for a new TS. In this way, the exploitation of a good solution
is guaranteed. The first processor takes the best individual,
the second, takes the second best individual and so on. As
the GA maintains diversity in the population, the best result
after applying the TS does not always come from the best
individual in the population. This fact shows how important
is to keep exploring the solution space instead of letting the

Fig. 1. Algorithm scheme. Dashed line represents one to one communica-
tion, dotted lines represent collective communications.

GA converge too fast.
Figure 1 shows how the algorithm is structured as well

as the communications that are necessary to obtain the final
solution.

IV. EXPERIMENTS AND RESULTS

This Section will show empirically the performance of the
algorithm. First, the data sets that have been used are
introduced. Then, the effect of the parallelism applied over
the GA will be analyzed. Afterwards, more experiments with
the parallel version will be done in order to show how the
addition of the BLX-α crossover and the TS can improve the
results. Finally, the new proposed algorithm will be compared
against the local search technique used so far, demonstrating
how the global optimization, in combination with the local
search, leads to better solutions. Nothing was commented
so far about the stopping criterion of the algorithm. In
the experiments, a time limit of 600 seconds for all the
algorithms was used. The decision to set this time limit is
because the experience when working with industries says
that 10 minutes is the maximum amount of time that an
operator is willing to wait. Furthermore, this value has been
widely used in the literature as time limit. Two different
clusters were used in the experiments but, due to the lack
of space, only the results of the better one will be showed.
Nonetheless, the algorithms had a similar performance in
both of them. A remarkable fact was that the size of the
cache was crucial by the time of computing the DT. Due to
the large size of the distances matrix, the faster computer
had a worse performance because it did not have as much
cache memory as the other. The processors in the cluster
used had the following characteristics:Cpu family: 6, Model:
15, Model name: Intel(R) Xeon(R) CPU E5320 @ 1.86GHz,
Stepping: 7, Cpu MHz: 1595.931,Cache size: 4096 KB,

Cpu cores: 2, Bogomips: 3723.87,Clflush size: 64, Cache
alignment: 64,Address sizes: 40 bits physical, 48 bits virtual.

The algorithms were implemented in MATLAB and, in
order to communicate the different processes, the MPImex
ToolBox presented in [31] was used.

A. Data sets used in the experiments

To assess the presented methods, several experiments were
performed, using the following data sets:

1) The Housing data set2 is related to the estimation of
housing values in suburbs of Boston. The value to predict is
the median value of owner-occupied homes in $1000’s. The
data set contains 506 instances, with 13 input variables and
one output.

2)The Tecator data set3 aims at performing the task of
predicting the fat content of a meat sample on the basis of
its near infrared absorbance spectrum. The data set contains
215 useful instances for interpolation problems, with 100
input channels, 22 principal components (which will remain
unused) and 3 outputs, although only one is going to be used
(fat content).

3)The Anthrokids data set4 represents the results of a three-
year study on 3900 infants and children representative of
the U.S. population of year 1977. The data set comprises
121 variables and the target variable to predict is children’s
weight. As this data set presented many missing values, a
prior sample and variable discrimination had to be performed
to build a robust and reliable data set. The final set5 without
missing values contains 1019 instances, 53 input variables
and one output (weight). More information on this data set
reduction methodology can be found in [32].

4) The Santa Fe time series competition data set6 is a
time series recorded from laboratory measurements of a
Far-Infrared-Laser in a chaotic state. The set contains 1000
samples, and it was reshaped for its application to time series
prediction using regressors of 12 samples. Thus, the set used
in this work contains 987 instances, 12 inputs and one output.

5) The ESTSP 2007 competition data set5: This time
series was proposed for the European Symposium on Time
Series Prediction 2007. It is an univariate set containing
875 samples but has been reshaped using a regressor of 55
variables, producing a final set of 819 samples, 55 variables
and one output.

All the data sets were normalized to zero mean and unit
variance, so the DT values obtained are normalized by the
variance of the output.

B. Parallelization of the GA

This subsection will show the benefits that are obtained
by adding parallel programming to the sequential GA. The
sequential version was designed exactly in the same way
that was described in Section 3, using the same operators,

2http://archive.ics.uci.edu/ml/data sets/Housing.
3http://lib.stat.cmu.edu/data sets/tecator.
4http://ovrt.nist.gov/projects/anthrokids.
5http://www.cis.hut.fi/projects/tsp/index.php?page=timeseries.
6http://www-psych.stanford.edu/∼andreas/Time-Series/SantaFe.html

however, the evaluation of the individuals was performed
uniquely in one processor. For these experiments, the TS
was not incorporated to the algorithms so the benefits of the
parallelism could be more easily appreciated.

For these initial tests, the GA parameters were adjusted to
the following values:Crossover Type: One point crossover,
Crossover Rate: 0.85, Mutation Rate: 0.1, Generational
elitism: 10%

The results were obtained from three of the data sets,
namely Anthrokids, Tecator and ESTSP competition data set.
The performances are presented in Table I. Figures 2 and
3 show the effect of increasing the number of processors
in the number of generations done by the algorithms for a
constant number of individuals for the Tecator problem. As
it was expected, if the number of individuals increases, the
number of generations is smaller. This effect is compensated
with the introduction of more processors that increase in
almost a linear way the number of generations completed.
The linearity is not that clear for small populations with
50 individuals since the communication overheads start to
be significant. However, larger population sizes guaranteea
quite good scalability for the algorithm.

Once the superiority of the parallel approach was proved,
the next sections will only consider the parallel implemen-
tations of the GA.

C. Hybridization of the pGA with the TS and using the BLX-
α crossover

Once it has been demonstrated how important is the paral-
lelization of the algorithm, the benefits of adapting the BLX-
α operator and the addition of the TS will be shown. This
hybrid algorithm has received the name of pTBGA. The time
limit of 600 seconds was divided into three time slices that
were assigned to the three different stages of the algorithm:
tabu initialization, GA, and tabu refinement.

The goal was to find the best trade-off in terms of time
dedicated to explore the solution space and to exploit it.
When assigning the time slices to each part it was considered
that, for the initialization using the TS, just a few evaluations
were willed in order to improve slightly the starting point for
the GA. Several combinations where tried but always keeping
the time for the first TS smaller than the GA and the second
TS.

The results are listed in Table II. The Tables present a
comparison between pRCGA, pTBGA using only TS at the
end, and pTBGA using TS at the beginning and at the end,
both with and without scaling. The population size was fixed
to 150 individuals based on previous experiments where no
significant difference was observed over 200 individuals if
the number of processors is fixed to 8. The configuration
of pTBGA is indicated in Table II astTS1

/tGA/tTS2
where

tGA is the time (in seconds) dedicated to the GA,tTS1
is

the time dedicated to the first tabu step, andtTS2
the time

dedicated to the last.
The values of DT obtained show how the application

of the adapted BLX-α crossover improves the results for
pRCGA. Regarding the hybridization, there is no doubt that

introducing the TS to the algorithm improves the results
significantly. The effect of introducing the TS before the start
of the GA improves the results in some cases, although the
improvement is not too significant. However, it is possible
to appreciate how the application of the TS at the beginning
and at the end reduces the standard deviation making the
algorithm more robust.

D. Comparison against the classical methodologies

This last Subsection performs a comparison of the final
version of the proposed algorithm in this paper with the
classical local search methodology already proposed in the
literature to minimize the value of the DT. The pTBGA with
optimal settings running on 8 processors was compared in
terms of performance (minimum Delta Test and number of
solutions evaluated) with other widely used sequential search
methods such as FBS and the TS presented in this paper, both
running on single processors of the grid. As FBS converged
rather quickly (always before the time limit of 10 minutes),
the algorithm was run with several initializations, until the
time limit was reached. The results of these tests appear listed
in Table III.

For the pTBGA, a fixed population of 150 individuals was
selected. The crossover probability was 0.85 in all cases.

When comparing the two local search techniques, this is,
TS and FBS, it is remarkable the good behavior of FBS
against the TS. This is not surprising since the FBS, as soon
as it converged, it was reinitialized starting from another
random position. On the other hand, the TS started at one
random point and explored the neighborhood of it during
the time frame specified, making it more difficult to explore
other areas. The new hybrid approach improves the results of
the FBS in average for both pure selection and scaling, being
more robust than the FBS which does not always provide a
good result.

V. CONCLUSIONS

This paper has presented a new approach to solve the
problem of simple and scaled variable selection. The major
contributions of the paper are:

• The development of a TS algorithm for both, pure
selection and scaling, based on the Delta Test. A first
initialization of the parameters required by the short
time memory was proposed as well

• The design of a Genetic Algorithm whose fitness func-
tion is the Delta Test and that makes a successful adap-
tation of the BLX-α crossover to adapt the discretized
scaling problem as well as the pure variable selection.

• The parallel hybridization of the two previous algo-
rithms that allows to keep the compromise between
the exploration/exploitation allowing the algorithm to
find smaller values for the Delta Test than the previous
methodology does.

The results showed how the synergy of different paradigms
can lead to obtain better results. It is also important to
notice how necessary is the addition of parallelism in the

TABLE I

PERFORMANCE OFRCGA VS PRCGA FOR THREE DIFFERENT DATA SETS. VALUES OF THEDELTA TEST, NUMBER OF GENERATIONSCOMPLETED

AND STANDARD DEVIATION (IN BRACKETS).

Data set Pop. Value
RCGA pRCGA(np=2) pRCGA(np=4) pRCGA(np=8)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids

50
DT(1e-2) 1.278(1e-3) 1.527(8e-3) 1.269(1e-3) 1.425(1e-3) 1.204(1e-3) 1.408(6e-2) 1.347(8e-2) 1.42(4e-2)

Gen. 35.5(1.9) 16.7(2.5) 74.8(4.1) 35.3(1.2) 137.8(6.8) 70(2.4) 169.3(13.8) 86(1.4)

100
DT(1e-2) 1.351(2e-3) 1.705(8e-8) 1.266(8e-3) 1.449(1e-3) 1.202(2e-3) 1.27(2e-3) 1.11(5e-2) 1.285(1e-3)

Gen. 17.2(1) 8.5(0.5) 35.4(1.2) 17.3(0.7) 68.8(4.3) 35(0.7) 104(28.2) 44.5(0.7)

150
DT(1e-2) 1.475(12.1e-2) 1.743(11.3e-2) 1.318(11.2e-2) 1.51(15.2e-2) 1.148(9.9e-2) 1.328(7.1e-2) 1.105(12e-2) 1.375(7.8e-2)

Gen. 11(0.8) 5.7(0.5) 22.7(0.9) 11.2(0.6) 45.6(0.6) 23.2(0.5) 61(4.2) 31(0)

Tecator

50
DT(1e-1) 1.3158(8e-4) 1.4151(7e-3) 1.4297(8e-3) 1.47(8e-3) 1.3976(8e-3) 1.4558(9e-3) 1.365(4e-3) 1.525(5e-3)

Gen. 627 (39.5) 298.1 (24.4) 1129.4 (55.4) 569.5 (16.6) 2099.2(119.6) 1126.6(89.6) 3369.5(256.7) 1778.5(48.8)

100
DT(1e-1) 1.3321(3e-3) 1.4507(9e-3) 1.3587(2e-3) 1.4926(7e-3) 1.3914(9e-3) 1.4542(8e-3) 1.3525(3e-4) 1.466(2e-3)

Gen. 310.8(23.6) 154.4(10.9) 579.6(34.4) 299.9(23.1) 1110.4(61.5) 583(44) 1731(32.5) 926.5(72.8)

150
DT(1e-1) 1.3146(8e-4) 1.4089(6e-3) 1.345(2e-3) 1.5065(5e-3) 1.3522(7e-3) 1.4456(2e-3) 1.303(9e-4) 1.404(6e-3)

Gen. 195(14.6) 98.3(6.2) 388.1(26.1) 197.8(14.3) 741.2(19.9) 377(14.7) 1288(21.2) 634.5(24.8)

ESTSP

50
DT(1e-2) 1.422(2e-2) 1.401(4e-2) 1.452(4e-2) 1.413(4e-2) 1.444(2e-2) 1.4(4e-2) 1.403(3e-2) 1.42(5e-2)

Gen. 51(2.7) 29.1(1.2) 99.2(8.5) 57.6(2.1) 190.8(16.4) 113.8(5.5) 229(7.9) 126.7(15)

100
DT(1e-2) 1.457(2e-2) 1.445(3e-2) 1.419(4e-2) 1.414(2e-2) 1.406(3e-2) 1.382(2e-2) 1.393(3e-2) 1.393(3e-2)

Gen. 24.8(1.4) 14(0.7) 50.5(2.8) 27.9(0.3) 93(2.9) 57.8(2.5) 128.7(2.1) 67.7(11.8)

150
DT(1e-2) 1.464(3e-2) 1.467(4e-2) 1.429(2e-2) 1.409(3e-2) 1.402(1e-2) 1.382(2e-2) 1.41(1e-2) 1.325(7e-3)

Gen. 16.6(0.8) 9.1(0.3) 33.6(1.2) 18.7(0.8) 63.2(2) 37.6(1.1) 82.5(2.1) 49.5(2.1)

TABLE II

PERFORMANCE OF PRCGA VS PTBGA, WITH THE BLX-α CROSSOVEROPERATOR. MEAN AND M INIMUM VALUE OF THE DT, AND STANDARD

DEVIATION (IN BRACKETS)

Data set Value
pRCGA(np=8) pTBGA(np=8)0/400/200 pTBGA(np=8)50/325/225

k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids
DT 0.0113(1e-5) 0.0116(1e-5) 0.0084(1e-6) 0.0103(5e-6) 0.0083(6e-5) 0.0101(8e-6)

Min (DT) 0.0102 0.0105 0.0083 0.0097 0.0083 0.0094

Tecator
DT 0.13052(3e-5) 0.1322(2e-5) 0.118(1e-4) 0.1303(2e-5) 0.1113(8e-5) 0.1309(1e-5)

Min (DT) 0.1279 0.1279 0.0988 0.1281 0.105 0.1299

ESTSP
DT 0.01468(1e-6) 0.01408(1e-6) 0.01302(8e-5) 0.01308(4e-6) 0.01303(5e-5) 0.0132(2e-6)

Min (DT) 0.0144 0.0139 0.0129 0.0125 0.0130 0.0130

Housing
DT 0.0710(0) 0.0584(9e-4) 0.0710(0) 0.0556(8e-4) 0.0710(0) 0.0563(6e-4)

Min (DT) 0.0710 0.0575 0.0710 0.0547 0.0710 0.0558

Santa Fe
DT 0.0165(0) 0.0094(9e-5) 0.0165(0) 0.0092(1e-6) 0.0165(0) 0.0092(1e-6)

Min (DT) 0.0165 0.0092 0.0165 0.0091 0.0165 0.0091

methodologies since the increasing size of the data sets will
not be able to be processed by monoprocessor architectures.
Regarding future research, this paper has addressed the
problem of the cache memory limitation that seems quite
relevant for large data sets. Also, further work on the study
of distributed demes genetic algorithms must be done.

REFERENCES

[1] T. Poggio and F. Girosi, “A theory of networks for approximation
and learning,” MIT Artificial Intelligence Laboratory, Cambridge, MA,
Tech. Rep. AI-1140, 1989.

[2] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,”Psychological Review, vol. 65,
pp. 386–408, 1958.

[3] B. Kosko, “Fuzzy systems as universal approximators,”Computers,
IEEE Transactions on, vol. 43, no. 11, pp. 1329–1333, Nov 1994.

[4] S.-W. Lee and A. Verri, Eds.,Pattern recognition with support vector
machines, First International Workshop, SVM 2002, NiagaraFalls,
Canada, August 10, 2002, Proceedings, ser. Lecture Notes in Com-
puter Science, vol. 2388. Springer, 2002.

[5] L. Herrera, H. Pomares, I. Rojas, M. Verleysen, and A. Guillen,
“Effective input variable selection for function approximation,” Lecture
Notes in Computer Science, vol. 4131, pp. 41–50, 2006.

[6] W. F. Punch, E. D. Goodman, M. Pei, L. Chia-Shun, P. Hovland, and
R. Enbody, “Further research on feature selection and classification
using genetic algorithms,” inProc. of the Fifth Int. Conf. on Genetic

Algorithms, S. Forrest, Ed. San Mateo, CA: Morgan Kaufmann, 1993,
pp. 557–564.

[7] I.-S. Oh, J.-S. Lee, and B.-R. Moon, “Hybrid genetic algorithms
for feature selection,”IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 26, no. 11, pp. 1424–1437, Nov. 2004.

[8] Y. Saeys, I. Inza, and P. Larranaga, “A review of feature selection
techniques in bioinformatics,”Bioinformatics, vol. 23, no. 19, pp.
2507–2517, 2007.

[9] E. Eirola, E. Liitiäinen, A. Lendasse, F. Corona, and M.Verleysen,
“Using the delta test for variable selection,” inESANN 2008, European
Symposium on Artificial Neural Networks, Bruges (Belgium), April
2008, pp. 25–30.

[10] J. J. Holland, Adaption in natural and artificial systems. University
of Michigan Press, 1975.

[11] F. Glover and F. Laguna,Tabu Search. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

[12] H. Pi and C. Peterson, “Finding the embedding dimensionand variable
dependencies in time series,”Neural Computation, vol. 6, no. 3, pp.
509–520, 1994.

[13] A. Jones, “New tools in non-linear modelling and prediction,” Com-
putational Management Science, vol. 1, no. 2, pp. 109–149, Jul. 2004.

[14] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, 1986.

[15] M. DellÁmico and M. Trubian, “Applying tabu search to the job-shop
scheduling problem,”Ann. Oper. Res., vol. 41, no. 1-4, pp. 231–252,
1993.

[16] C. Zhang, P. Li, Z. Guan, and Y. Y. Rao, “A tabu search algorithm with
a new neighborhood structure for the job shop scheduling problem,”
Computers & Operations Research, no. 11, pp. 3229–3242, November.

TABLE III

PERFORMANCECOMPARISON OFFBS, TSAND THE BEST PTBGA CONFIGURATION. MEAN AND M INIMUM VALUE OF THE DT, AND STANDARD

DEVIATION (IN BRACKETS)

Data set Value
FBS TS pTBGA (np=8)*

k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids
DT 0.00851(2e-6) 0.01132(2e-5) 0.00881(3e-6) 0.01927(3e-5) 0.00833(5e-5) 0.0101(8e-6)

Min (DT) 0.0084 0.0092 0.0084 0.0147 0.0083 0.0094

Tecator
DT 0.13507(3e-5) 0.14954(1e-4) 0.12799(2e-5) 0.18873(1e-4) 0.1113(8e-5) 0.1309(1e-5)

Min (DT) 0.130 0.137 0.1214 0.179 0.105 0.1299

ESTSP
DT 0.01331(2e-6) 0.01415(4e-6) 0.01296(2e-6) 0.01556(1e-5) 0.01302(8e-5) 0.01308(3e-6)

Min (DT) 0.0129 0.0135 0.0124 0.0133 0.0129 0.0125

Housing
DT 0.0710(0) 0.0586(4e-6) 0.0711(3e-6) 0.0602(8e-5) 0.0710(0) 0.0556(8e-4)

Min (DT) 0.0710 0.0583 0.0710 0.0556 0.0710 0.0547

Santa Fe
DT 0.0165(0) 0.00942(7e-5) 0.0178(2e-5) 0.0258(2e-4) 0.0165(0) 0.0092(1e-6)

Min (DT) 0.0165 0.0094 0.0165 0.0091 0.0165 0.0091
* The best pTBGA configuration among the tested for each data set.

����

����

����

����

����

G
e
n

e
ra

ti
o

n
s

Tecator (k=1)

�

���

����

����

����

� � � � � � � 	

G
e
n

e
ra

ti
o

n
s

Number of processors

Population=50 Population=100 Population=150

Fig. 2. Generations evaluated by the GA vs the number of processors used.
Tecator without scaling.

����

����

����

����

����

����

G
e
n

e
ra

ti
o

n
s

Tecator (k=10)

�

���

���

���

���

����

� � � � � � 	 �

G
e
n

e
ra

ti
o

n
s

Number of processors

Population=50 Population=100 Population=150

Fig. 3. Generations evaluated by the GA vs the number of processors used.
Tecator with scaling.

[17] S. Scheuerer, “A tabu search heuristic for the truck andtrailer routing
problem,” Comput. Oper. Res., vol. 33, no. 4, pp. 894–909, 2006.

[18] F. Glover, “Parametric tabu-search for mixed integer programs,”Com-
put. Oper. Res., vol. 33, no. 9, pp. 2449–2494, 2006.

[19] K. A. De Jong, “ Evolutionary computation: Recent developments
and open issues,” inProceedings of the First International Conference
on Evolutionary Computation and Its Applications, E. D. Goodman,
B. Punch, and V. Uskov, Eds., Moscow, 1996, pp. 7–17.

[20] D. E. Goldberg, Genetic algorithms in search, optimization and
machine learning. Addison Wesley, 1989.

[21] J. E. Baker, “ Reducing bias and inefficiency in the selection algo-
rithm,” in Proceedings of the Second International Conference on
Genetic Algorithms, J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1987, pp. 14–21.

[22] K. A. De Jong, “ An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, University of Michigan, 1975.

[23] G. Sywerda, “Uniform crossover in genetic algorithms,” in Proceed-
ings of the third international conference on Genetic algorithms. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989,pp.
2–9.

[24] L. Eshelman and J. Schaffer, “Real-coded genetic algorithms and
interval schemata,” inFoundation of Genetic Algorithms 2, L. Dar-
rell Whitley, Ed. Morgan-Kauffman Publishers, Inc., 1993,pp. 187–
202.

[25] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Trans. on Evolutionary Computation, vol. 6, no. 5, pp. 443–462,
October 2002.

[26] E. Alba, F. Luna, and A. J. Nebro, “Advances in parallel heterogeneous
genetic algorithms for continuous optimization,”Int. J. Appl. Math.
Comput. Sci., vol. 14, pp. 317–333, 2004.

[27] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling,”IEEE Trans. on Evolutionary Com-
putation, vol. 7, pp. 204–223, 2003.

[28] K. Deb and T. Goel, “Controlled elitist non-dominated sorting genetic
algorithms for better convergence,” inFirst International Conference
on Evolutionary Multi-Criterion Optimization. Springer-Verlag, 2001,
pp. 67–81.

[29] A. Guillén, H. Pomares, J. González, I. Rojas, L. J. Herrera, and
A. Prieto, “Parallel multi-objective memetic rbfnns design and feature
selection for function approximation problems,” inIWANN, 2007, pp.
341–350.

[30] C. R. Reeves, “Using genetic algorithms with small populations,”
in Proceedings of the Fifth International Conference on Genetic
Algorithms, S. Forrest, Ed. Morgan Kaufmann, 1993, pp. 92–99.

[31] A. Guillen, I. Rojas, G. Rubio, H. Pomares, L. Herrera, and J. Gon-
zalez, “A new interface for mpi in matlab and its applicationover
a genetic algorithm,” inProceedings of the European Symposium on
Time Series Prediction, 2008, pp. 37–46.

[32] F. Mateo and A. Lendasse, “A variable selection approach based on
the delta test for extreme learning machine models,” inProceedings of
the European Symposium on Time Series Prediction, 2008, pp. 57–66.

