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Abstract. This paper presents a working combination of input selection
strategy and a fast approximator for time series prediction. The input
selection is performed using Tabu Search with the Delta Test. The ap-
proximation methodology is called Optimally-Pruned k -Nearest Neighbors
(OP-KNN), which has been recently developed for fast and accurate regres-
sion and classification tasks. In this paper we demonstrate the accuracy of
the OP-KNN with the Tabu Search using the ESTSP 2008 Competition
datasets.

1 Introduction

The amount of information is increasing rapidly in many fields of science. It
creates new challenges for storing the massive amounts of data as well as to the
methods, which are used in the data mining processes. In many cases, when the
amount of data grows, the computational complexity of the used methodology
also increases. In this paper, we combine a clever way of selecting the input data
and a very fast approximation method for time series prediction task.

In the time series prediction the problem is prediction of future values based
on appropriate number of previous values in the series. This number can be
decided empirically with trial and error and/or by looking at the periodicity of
the series itself. Since the approximation model we are using is very fast, we
used both conditions upon decisions of good regressor sizes for the ESTSP 2008
competition datasets.

Further performance improvement can be achieved with adequate input se-
lection strategy. Delta Test is a nonparametric noise estimator which can be used
for that purpose [1]. Since exhaustive search is the only way to obtain global
optimum, but it is impractical to use with large datasets, a common strategy is
to rely on suboptimal Forward-Backward selection. To overcome the problem
of local optima we use Tabu Search, which incorporates additional memory and
can be extended with various heuristics.

After variable selection with Tabu Search using Delta Test as input selection
criterion, actual prediction is done with Optimally-Pruned k -Nearest Neighbors
(OP-KNN). It is based on the inspiring work on Extreme Learning Machine
(ELM) by Guang-Bin Huang et al. in [2] and on Optimally-Pruned ELM by
Yoan Miche et al. in [3]. Unlike the two previous methods, the OP-KNN is
deterministic and simple, while still retaining the speed of the ELM and the
accuracy of the OP-ELM. Since we are predicting several values ahead, we focus



on using Direct Strategy [4] over Recursive for better long-term prediction ac-
curacy. The Direct Strategy includes building a separate model for every time
step. This also includes separate variable selection.

Section 2 presents the Tabu Search and the Delta Test estimation meth-
ods. In Section 3, the OP-KNN methodology is explained and finally, Section 4
presents the experimental results using ESTSP 2008 Competition benchmarks.

2 Tabu Search (TS)

Tabu Search [4] resembles the Forward-Backward Selection procedure [5], which
only continues along selections that improve the objective function. Tabu Search
tries to overcome the problem of local optima with additional use of memory and
by considering solutions which do not improve the objective function. Memory
is used to keep track of already visited solutions and those are prevented from
being explored again, as they are in tabu state, hence the name of the method.
On the other hand, there are no guarantees that the TS will find the global
optimum, but results found with it are usually better than the ones obtained
with plain greedy approach.

Consider the optimization problem f(x), x ∈ X, where f(x) is the objective
or cost function and x is one possible solution for the problem. The f(x) in
our case is the Delta Test. In the context of Tabu Search the neighborhood of
solution x, denoted N(x), plays an important role. N(x) is a set of solutions
reachable from x via transition moves.

The weakening of search criterion, moving to solutions with worse f values,
introduces a problem of cycles, and this is one of the reasons for using memory.
One part of memory is used to prevent already visited solutions in N(x) to
be explored again. Memory is divided into two parts, short term and long term
memory. The short term memory strategies are focused on directly modifying the
set of neighbors N(x). The long term memory strategies can include solutions,
which are not part of the N(x) and which can generate solutions based on the
attributes of the good solutions.

The simplest approach is to use only the short term memory, to mark solu-
tions already visited as tabu and to choose solutions from N(x) that have the
best f value. This approach is called Simple Tabu Search [4]. The neighborhood
N(x) will be influenced by the contents of the memory and the set will change
during the search. This is why the TS is sometimes called dynamic neighborhood
search technique. The size of solutions would make TS impractical to use and
it is much more efficient to store transition moves or some other attributes of
vector x.

In the case of variable selection, the neighborhood is easily formed by having
two solutions being neighbors if they disagree on the selection of exactly one
variable vk. The move that links these two neighbors is just flipping the state
of the variable vk. The size of the search space grows exponentially with the
dimensionality of the inputs and for a dataset with a lot of variables it is very
difficult to find optimal selection.



2.1 Delta Test (DT)

Delta Test is a Nonparametric Noise Estimator based on a nearest neighbor
principle. The nearest neighbor of a point is defined as the (unique) point,
which minimizes a distance metric to that point. Distance metric is usually the
Euclidean distance, but other metrics can also be used.

In function approximation, we have a set of input points (xi)N
i=1 and as-

sociated scalar outputs (yi)N
i=1. The assumption is that there is a functional

dependence between them, but with an additive noise term yi = f(xi)+ εi. The
function f is assumed to be smooth, and the noise terms εi are independent and
identically distributed with zero mean. Noise variance estimation is the study of
how to give an a priori estimate for Var(ε) given some data without considering
any specifics of the shape of f .

Using the previous notation, the Delta Test is usually written as

Var(ε) ≈ 1
2N

N∑

i=1

(yi − yP (i))2,

where P (i) defines the nearest neighbor of xi in the input space. Hence, using
the DT, we consider the estimate of the noise as the mean of the differences in the
outputs associated with neighboring points (divided by 2). This is a well-known
and widely used estimator, and it has been shown for example in [6] that the
estimate converges to the true value of the noise variance in the limit N → ∞.

3 Optimally-Pruned k-Nearest Neighbors (OP-KNN)

The OP-KNN is similar to the OP-ELM [3], which is an original and efficient way
of training a feedforward neural network. The three main steps of the OP-KNN
are summarized in Figure 1.

Fig. 1: The three steps of the OP-KNN algorithm.

3.1 Single hidden Layer Feedforward Neural Network (SLFN)

The first step of the OP-KNN algorithm is similar to the original ELM: building
of a Single hidden Layer Feedforward Neural network. The idea of the ELM has
been proposed by Guang-Bin Huang et al. in [2].

In the context of a single hidden layer network, let us denote the weights
between the hidden layer and the output by b. Activation functions used with
the OP-KNN differ from the original SLFN choice since the original sigmoid
activation functions of the neurons are replaced by the k -Nearest Neighbors,



hence the name OP-KNN. For the output layer, the activation function remains
as a linear function.

A theorem proposed in [2] states that the output weights b can be com-
puted from the hidden layer output matrix H: the columns hi of H are the
corresponding output of the k-nearest neighbors.

Finally, the output weights b are computed by b = H†y, where H† stands
for the Moore-Penrose inverse [7] and y = (y1, . . . , yM )T is the output.

The only remaining parameter in this process is the initial number of neurons
N of the hidden layer.

3.2 k-Nearest Neighbors (KNN)

The k-Nearest Neighbors model is a very simple, but powerful tool. It has been
used in many different applications and particularly in classification tasks. The
key idea behind the KNN is that similar training samples have similar output
values. In the OP-KNN, the approximation of the output is a weighted sum of
the outputs of the k-nearest neighbors as

ŷi =
k∑

j=1

bjyP (i,j),

where ŷi represents the output estimation, P (i, j) is the index of the jth nearest
neighbor of sample xi and b is the result of the Moore-Penrose inverse introduced
in the previous section.

3.3 Multiresponse Sparse Regression (MRSR)

For the removal of the useless neurons of the hidden layer, the Multiresponse
Sparse Regression proposed by Timo Similä and Jarkko Tikka in [8] is used. It
is an extension of the Least Angle Regression (LARS) algorithm [9] and hence
is actually a variable ranking technique, rather than a selection one.

An important detail shared by the MRSR and the LARS is that the ranking
obtained is exact in the case where the problem is linear. In our case this is true,
since the neural network built in the previous step is linear between the hidden
layer and the output. Therefore, the MRSR provides the exact ranking of the
neurons for our problem.

MRSR is hence used to rank the kernels of the model: the target is the
actual output yi while the ”variables” considered by MRSR are the outputs of
the k -nearest neighbors.

3.4 Leave-One-Out (LOO)

Since the MRSR only provides a ranking of the kernels, the decision over the
actual best number of neurons for the model is taken using a Leave-One-Out
method. One problem with the LOO error is that it can be very time consuming



to calculate if the dataset has a high number of samples. Fortunately, the PRESS
(PREdiction Sum of Squares) statistics provides a direct and exact formula for
the calculation of the LOO error for linear models [10, 11]. The LOO error using
the PRESS statistics can be written as

εPRESS =
yi − hib

1 − hiPhT
i

,

where P is defined as P = (HT H)−1 and H as the hidden layer output matrix
defined in Section 3.1.

The final decision over the appropriate number of neurons for the model is
taken by minimizing the LOO error versus the number of neurons used (properly
ranked by the MRSR already).

4 Experiments

In the experiments, we are using the datasets of the ESTSP 2008 Competition.
The section is divided into three subsections and each presents one dataset. The
first dataset is explained more deeply and the latter two are less detailed.

What is common to all datasets is the selection of the initial regressor sizes
for the TS. The OP-KNN was used with several different regressor sizes with
all the variables and the ones with the smallest LOO errors were selected for
each dataset. For the dataset 3, also the periodicity of the data was taken
into account. The inputs and outputs are normalized before running the Tabu
Search.

After the selection of the initial regressor sizes, the Tabu Search with the
Delta Test as the cost function was used. The set of variables, which had the
lowest delta value, was selected individually for each prediction step. This means,
that the prediction strategy used was the Direct Strategy [5], where each pre-
diction step needs its own selection of variables and its own model to be built.

Tabu Search was implemented as a Simple Tabu Search, where only recent
moves, or changes of variables, were kept in memory. The memory was set to 1/5
of the dimensionality of samples. For example, for sample with 10 dimensions,
the memory size would be set to 2 so that only the last 2 applied moves are
considered tabu.

Stopping conditions for TS varied from one dataset to another due to the
different sizes of the initial regressors. After the selection of the variables, the
final model was obtained using the OP-KNN. All the data was used in the
training after the preliminary tests showed that the LOO and the test errors
behaved in the same way with each other.

4.1 Dataset 1: Multidimensionality

Dataset 1 consists of 3 time series with one of them being the target series, and
each of them have 354 values. All 3 series are shown in Figure 2 with the target
one being on the top of the figure.
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Fig. 2: Dataset 1. Top one is the series itself and the two lower ones are the
external series.

First step was the removal of the trend present in the target series by trans-
forming it using first order difference. The OP-KKN results showed that regres-
sor of size 20 is the optimum for the target series. From both external series we
chose 12 variables as extra inputs, based on the autocorrelations with the target
series. As the number of selected variables is lower than for the target series,
some of the values from the beginning of the two external series are removed.
The alignments of two external 12 variables are done in such a way so that we
always use the latest measurements as possible. Thus, the final regressor size
was 44 and the final number of training samples was 316.

Since the search space has 244 − 1 instances, the TS was run 24 times from



random starting points with 1 hour each. Roughly 106 solutions were examined
in every run, a very small percentage of the whole space, and the found delta
value is probably not the global optimum. Figure 3 shows that the variable
selection with Tabu Search using Delta Test does improve overall performance
of the OP-KNN with respect to the LOO error. In the same figure the Delta
values found by the TS are also shown.
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Fig. 3: LOO errors of 18 OP-KNN models with all variables (dashed line) and
the selected variables with the Tabu Search (solid line). For comparison, also
the Delta Test values found with the Tabu Search (dot-dashed line).

The Delta Test gives an estimate that one can achieve in terms of the training
error without overfitting the model. Using the TS the LOO error was decreased
more than 25% with respect to the Delta value. The Delta values are fairly high
for this dataset (over 0.5), which suggests that the target series is very noisy,
and therefore, hard to predict.

The predictions for the 18 steps ahead are shown in Figure 4.
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Fig. 4: Prediction of 18 steps for target series of Dataset 1. Solid line represents
last known values and dashed one the prediction.

4.2 Dataset 2: Easy Sailing

Dataset 2 consists of 1300 values and it is shown in Figure 5.
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Fig. 5: Dataset 2.

Because the data seems to have two distinct levels, which changes just before
the timestep 600, we decided to normalize the dataset in two parts: first part
including the values before the 600 and the second part after it. At the same
time, we have the whole set normalized for the TS.

The initial regressor size for the TS was selected to 20, which leaves us with
roughly 1180 samples for the TS phase and the training of the OP-KNN. The
stopping criterion for the TS was set to 10 percent of the search space, where
the running times were around 1.5 hours for each prediction step.

The predictions for 100 steps ahead are shown in Figure 6.
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Fig. 6: Dataset 2 prediction of 100 steps ahead using the OP-KNN with Tabu
selected variables. Solid line represents the known values and the dashed one is
the prediction.

4.3 Dataset 3: Measurements Aplenty

Data 3 includes vast amount of data, more than 31 000 samples, shown in Figure
7.

Since the dataset had a clear periodicity of 24, we decided to cut the dataset
into slices of 24 rather than build the traditional regressor by taking the samples
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Fig. 7: Dataset 3.

using moving window through the dataset. After the slicing, our dataset has
roughly 1300 samples of 24 dimensions.

Because the dataset exhibits heavy long-term seasonality, we decided to use
sample-wise normalization and predict the normalized series, the means and the
standard deviations separately. It means that in order to get 200 step ahead
prediction for the original dataset, we needed to predict 200 steps for the nor-
malized samples and 9 steps ahead for the means and standard deviations to be
added and multiplied with the normalized prediction.

In the prediction of the normalized samples, we used two previous days as
the initial regressor size for the TS. Hence, we have a regressor size 48. For
the means and standard deviations the regressor size was selected to be 15. For
normalized samples we had only 1 run with TS lasting 6 hours, while for the
means and standard deviations the stopping criterion was 10 percent of solution
space (same as in Dataset 2).

After similar steps than with the dataset 1, we obtain the prediction for 200
steps shown in Figure 8.
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Fig. 8: Dataset 3 with the prediction of 200 steps using the OP-KNN with Tabu
selected variables. The solid line denotes the known values and the dashed one
the predicted.



5 Conclusions

In this paper we have shown the efficiency of the combination of a clever and
adaptable input variable selection method, the Tabu Search, and a fast prediction
method, the OP-KNN.

The results are satisfying and obtained with a small calculation time. The
Tabu Search can be given a predefined amount of time for its search, which
covers the search space better than plain greedy methods. However, it is also
able to give acceptable results in reduced time, if necessary.

The OP-KNN is very fast to train and to use in the prediction task. The
accuracy of the method can be improved with input selection, which on the other
hand will increase the total calculation time. This creates the need for fast input
selection methodology.

For further work, the Tabu Search will be improved in terms of speed and used
heuristics with better finetuning for different datasets. The OP-KNN method-
ology will be tested more extensively with different input selection methods as
well as with different regression tasks.
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