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Abstract. The bootstrap resampling method may be efficiently used to estimate
the generalization error of nonlinear regression models, as artificial neural
networks. Nevertheless, the use of the bootstrap implies a high computational
load. In this paper we present a simple procedure to obtain a fast approximation
of this generalization error with a reduced computation time. This proposal is
based on empirical evidence and included in a suggested simulation procedure.

1 Introduction

A large variety of models may be used to describe processes: linear ones, nonlinear,
artificial neural networks, and many others. It is thus necessary to compare the
various models (for example with regards to their performances and complexity) and
choose the best one. The ranking of the models is made according to some criterion
like the generalization error, usually defined as the average error that a model would
make on an infinite-size and unknown test set independent from the learning one.

In practice the generalization error can only be estimated, but there exists some
methods to provide such an estimation: the AIC or BIC criteria and the like [1], [2],
[3] as well as other well-known statistical techniques: the cross-validation and k-fold
[3, 6], the leave-one-out [3, 6], the bootstrap [4, 6] and its unbiased extension the .632
bootstrap [4, 6]. The ideas presented in this paper can be applied both to the bootstrap
and the .632 bootstrap.

Although these methods are roughly asymptotically equivalent (see for example [5]
and [6]), and despite the fact that the use of the bootstrap is not an irrefutable
question, it seems that using the bootstrap can be advantageous in many “real world”
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modeling cases (i.e. when the number of samples is limited, the dimension of the
space is high, etc.) [6].

But the bootstrap main limitation in practice is the computation time required for
assessing an approximation of sufficient reliability (or accuracy). A second limitation,
in our context of model selection, is the fact that the selected best model is picked up
from a set of a priori chosen models, leading to a restricted choice.

In a previous work [7], we have proposed a fast approximation of the
generalization error using the bootstrap, based on linear and exponential
approximations of the optimism and apparent error (as defined by Efron [4])
respectively. In this paper, we prove experimentally the validity of the linear
approximation of the optimism, and show how to use this approximation to perform
efficient bootstrap simulations with reasonable computational complexity.

2 Model Selection Using Bootstrap Technique

The fundament of the bootstrap is the plug-in principle [4]. This general principle
allows to obtain an estimator of a statistic according to an empirical distribution. In
our context of model selection, our statistic of interest is the generalization error. We
thus use the bootstrap to estimate the generalization error (or the prediction error in
Efron’s vocabulary) in order to rank the models and choose the best one.

The bootstrap estimator of the generalization error is computed according to the
bootstrap resampling approach. Given an original sample (or data set) x, we generate
B new samples, denoted x”, 1 < b < B. The new samples x” are obtained from the
original sample x by drawing with replacement. For each bootstrap sample x”, we
compute a bootstrap estimator of our statistic of interest. The final value is obtained
by taking the mean of the estimators over the B bootstrap replications. In the
following, we will use the notation e4 g for the error of a model built (learned) on a
sample A and tested on a sample B.

In model selection context, Efron defines in [4] the bootstrap estimator of the
generalization (prediction) error:

€gen = €qpp T Optimism, 1)
where é,,, is the estimate of the generalization error e,,, given by bootstrap, e, is
the apparent error (computed on the learning set A), and optimism is an estimator of
the correction term for the difference between a learning and a generalization error,
which in fact aims to approximate the difference of errors obtained on the finite
sample x and an (infinite) unknown ideal sample. The optimism is computed
according to:

optimism = E g loptimism”1, @)

where Eg[ ] is the statistical expectation computed over the B bootstrap replications
and:
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.. b _
optimism =€ . exb’xb~ 3)

‘With our notation, (1) becomes:

A

Cgen =€y x T Ep [exb’x - exb,xb] @

In order to approach the theoretical value of the final bootstrap estimation of the
generalization error, we can increase the number B of bootstrap replications, but this
increases considerably the computation time. We have proposed in [7] a way to
reduce this computation load with a limited loss of accuracy.

Note that the .632 bootstrap [4] aims to reduce the slight bias introduced by the
optimism correction. This bias is due to € b where the error is computed on the

same set than the one used for the learning stage. The linear approximation of the
optimism term, presented in the following, is applicable to the bootstrap and the .632
bootstrap.

3 Framework

Assuming a linear relation between the optimism and the number p of parameters in
the model is probably an unexpected hypothesis. Nevertheless, this hypothesis is
strengthened by the fact that the general formulation of a structure selection criterion
can also be written as

A

€ prediction = €app correction (5)

where the correction term is 2pc/n for AIC and In(n)pc/n for BIC, with ¢ the
estimated quadratic error on the learning set containing n elements. In AIC, BIC
criteria and the like, we can see that the correction term is directly proportional to the
number of parameter p. Though the apparent error e, is also a function of p, we will
focus here on the second term, the correction.

Although the correction term is computed by bootstrap, and therefore called the
optimism, its value depends, as the apparent error, on the initialization conditions of
the learning process. In practice, a "good" local minimum of a learning error (either
on x or on x”) is obtained by repeating the learning with different initial conditions.
Nevertheless, when including this in a bootstrap procedure, the number of learnings is
again multiplied by B, resulting in an excessive computation time.

In comparison with the AIC and BIC criteria, we assume that the correction term is
linearly increasing. Our first goal is then to show experimentally that the optimism
term is a linear function of p, like a;p+a,.

Under this hypothesis, if we compute the value of the optimism term for a limited
number of models, we can determine (in mean square sense) constants a; and a,. Our
second goal is thus, under the linearity hypothesis, to propose a method to reduce the
number of tested models and the number of bootstrap replications.
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Since the values of a; and a, result from an experimental procedure, an obvious
advantages of our proposal is these parameters are set specifically for each
application, avoiding the use of asymptotic results.

4 Methodology

In the experimental results shown below, we used Radial Basis Function Networks
(RBFNs) as approximation models. We would like to emphasize on the fact that this
choice is made a priori and that the goal is not to compare the results with those that
could be obtained with other approximators. The learning procedure to fit the
parameters of the model is described in [8], [9].

For the RBFNs models, we consider p in expression a;p+a, as the number of
Gaussian units or Gaussian kernels (the total number of parameter in RBFNs is in fact
proportional to the number of Gaussian kernels). To observe the linearity, we use the
R? statistics, also called the square correlation coefficient. The R” statistics is here
computed between the optimism estimated for each model (different values of p) and
the linear approximation (a;p+a.) of these values. The more this R is close to 1, the
most our linear approximation is valid.

Remember that each optimism’, in the context of nonlinear models, is usually the
result of several learnings (Q learnings) with different initial conditions. To estimate
one value of the optimism (i.e. the optimism for a specific model complexity p), we
should therefore learn QB models, what could be excessive in our context. Now
notice that in practice we are not interested in a specific value of the optimism but
only in the linear approximation a;p+a,. A lower accuracy on each value of the
optimism can thus be balanced by the number of different complexities p, i.e. the
number of points (larger than 2) used for the linear approximation.

5 Experimental Results

5.1 Artificial Example

We first illustrate the validity of the linear approximation of the optimism described in
the previous sections on a toy example. We generate a set of 1000 datas (x, y), with x
randomly drawn in [0, 1] and y defined by:

y =sin(5x) +sin(15x) +sin(25x) + noise (6)

where noise is a uniform random variable in [-0.5, 0.5].

We then use the bootstrap resampling method in a model selection procedure,
observing the generalization error corresponding to a specific model characterized by
its number p of Gaussian kernels. Figure 1 presents the evolution of our R? criterion
versus the number B of bootstrap replications. We clearly see that R? is getting closer
and closer to one while B increases. Fishers' test (with a p-value of 2.2584 10" leads
to accept the linear hypothesis from B = 15.
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Since we admit the linear approximation hypothesis, we can go one step further
and address the reduction of computation time. We then look to the evolution of a;
and a, in function of B respectively in Figures 2.1 and 2.2. Here again, when B is

greater or equal to 15, we have a roughly constant value. Figure 3 shows the graph of

the optimism according to the number p of Gaussian kernels in the model. Figure 4 is
the graph of the generalization error versus the number of bootstrap replications,
where we can see that the “best” model for our toy example has 20 Gaussian kernels.
Finally, Figure 5 shows the 1000 learning data and the predictions we got with the

selected model.
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Fig. 1. Toy example: evolution of R? versus B

"
26210

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of bootstraps Number of bootstraps

Fig. 2.1 Toy example: evolution of coefficient Fig. 2.2. Toy example: evolution
a; versus B coefficient a, versus B
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Fig. 3. Toy example: approximation of the optimism term (thin line) versus the number of

Gaussian kernels with B = 20 (thick line : values obtained for the tested models)
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Fig. 4. Toy example: Learning (thick) and generalization (thin) errors versus p

Fig. 5. Toy example: learning data (dots) and predictions (solid line) with the selected model

5.2 Real Data Set (Abalone)

We use the abalone dataset [10] as a second example to validate the linearity
hypothesis, with a more realistic (and difficult) approximation problem. Here again,
we use 1000 data for the learning. Figure 6 is the evolution of R? with respect to B. In
this case, Fisher’s test p-value is rounded by the computer to 0. Figure 7.1 is the graph
of a; and figure 7.2 is the evolution of a; in function of B. According to these graphs,
we suggest to use B = 40. Figure 8 shows the reported optimism with respect to p.
Figure 9 shows the learning and generalization errors versus B. The minimum
corresponding to the “best” model for the Abalone data set has 62 Gaussian kernels.

70 10 20 30 40 50 60 70 80
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Fig. 6. Abalone: evolution of R? versus B
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Fig. 7.1 Abalone: evolution of coefficient a, Fig. 7.2 Abalone: evolution of coefficient a,
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Fig. 8. Abalone: approximation of the optimism term (thin) versus the number of Gaussian
kernels with B = 40 (thick: values obtained for the tested models)
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Fig. 9. Abalone: Learning (thick) and generalization (thin) errors versus the number p of
Gaussian kernels

6 Conclusion

In this paper we have shown that the optimism term of the bootstrap estimator of the
prediction error is a linear expression of the number of parameters p.

Furthermore, we illustrate the time saving procedure proposed in [7], enhanced
here with the early stop criterion based on the R? of the linear approximation.
According to the two results shown here and to other ones not illustrated in this paper,
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we recommend a conservative value of 50 for the number B of bootstrap replications
before stopping the approximation computation.

We would like to emphasize on the fact that the limited loss of accuracy is
balanced by a considerable saving in computation load, this last fact being the main
disadvantage of the bootstrap resampling procedure in practical situations. This
saving is due to the reduced number of tested models and to the limited number of
bootstrap replications.

Although this procedure has only been tested in a neural network model selection
context, this simple and time saving method could easily be extended to other
contexts of nonlinear regression, classification, etc., where computation time and
complexity play a role. It can also be applied to other resampling procedures, as the
.632 bootstrap.
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