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Abstract.  A crucial problem in non-linear time series forecasting is to
determine its auto-regressive order, in particular when the prediction method is
non-linear.  We show in this paper that this problem is related to the fractal
dimension of the time series, and suggest using the Curvilinear Component
Analysis (CCA) to project the data in a non-linear way on a space of adequately
chosen dimension, before the prediction itself.  The performances of this method
are illustrated on the SBF 250 index.

1. Introduction

Time series forecasting is a problem encountered in many industrial (electrical load,
river flow…) and economic (exchange rates, stock exchange…) tasks.  Often,
prediction must be done without indication about the (unknown) underlying process;
input values to the prediction method must thus be chosen by trial and error.  In some
situations, a priori information can be fed into the prediction method, but this remains
an exception: as an example, weekly and monthly past values are obviously good
candidates to predict the electrical load.

In most situations however information about the underlying process is hardly
available.  Forecasting with non-linear methods is then usually achieved through one
of the two following methods:
•  linear prediction models (for example ARX) are built; the best auto-regressive

order of the linear model is used for the non-linear prediction method too.
•  non-linear prediction models only are used: many possible auto-regressive orders

are investigated and the best one is chosen by trial and error.
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These methods are often the only possible ones but they have large defects. The first
over-estimates the autoregressive order necessary (because it does not take account of
non-linear dependencies between the data) and lead to overfitting. The second is very
heavy to implement and often not very reliable; indeed, the various trainings can be
sullied with errors which are caused by the method of prediction itself, such as for
example the presence of local minima in the optimization of Multilayer Perceptrons.

The method suggested in this paper try to overcome these disadvantages. It will be
exposed in the second part and then applied to a simple artificial example. In the
fourth part, we will try to predict the successive fluctuations of the SBF 250 Stock
Market Index.

2. Forecasting method

2.1. Autoregressive order and vector

The autoregressive non-linear order can be defined as the optimal number of past
values to use in a time series for a good prediction. The autoregressive vector includes
these past values. Using a non-linear method to evaluate the autoregressive order must
make it possible to take into account the non-linear relations between past values of
the series; a traditional linear method to estimate the autoregressive order only takes
into account the correlation (linear dependence) between past values.

One can still choose the autoregressive vector in two ways.  The first one consists in
estimating the optimal autoregressive order n, and to look for the best n past values in
the series to use for the prediction [5, 9].  Another possibility is to look for a n-
dimensional vector built with non-linear mixings of the past values of the series,
instead of the raw values themselves.

In the following we will use the second possibility.  We will first look for a way to
estimate the non-linear autoregressive order, and secondly we will build the auto-
regressive vector with a projection method.

2.2. Intrinsic dimension

In order to determine the non-linear autoregressive order, we will use the notion of
“intrinsic” dimension of a set of points.  Without going into mathematical details, the
intrinsic dimension of a data set can be defined as the minimum number of coordinates
that would be necessary to describe the data without loss of information, is these
coordinates were measured on curved axes.  For example the intrinsic dimension of a
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set of points forming a string in dimension 2 (or higher) is 1, and the intrinsic
dimension of a set of points forming a non-planar surface in dimension 3 (like the
well-known horseshoe distribution) is 2.

First we build an autoregressive vector of size m from the last past values of the raw
time series. This vector will have to be sufficiently large to contain all information
necessary to a good prediction. One possible solution is to take the optimal
autoregressive vector for an ARX model [5]; indeed this one is built in a way that it
contains “sufficient” information when used with a linear prediction method, and will
thus obviously contain enough information too when used with a non-linear prediction
method.  Larger vectors can be taken for more security, but they would make more
difficult the continuation of work. An autoregressive vector is built at each time step;
they are laid out as rows in a matrix called autoregressive matrix.

Since it is supposed that there is an excess of information in the autoregressive
vectors, we will try to reduce their dimension.  This goes through a first step which
consists in estimating an optimal reduced dimension, which will be identified to the
fractal dimension of the set of points (the autoregressive vectors) in a m-dimensional
space.  This value will be further referred as the fractal dimension of the
autoregressive matrix. It can be interpreted as the number of columns "non-linearly
independent" of this matrix: there is a non-linear transformation which makes it
possible to entirely rebuild the matrix from d columns.

To estimate the fractal dimension of the autoregressive matrix, we use the Grassberger
and Procaccia method [4]; many other methods can however be used to estimate a
fractal dimension [1, 6, 7].  It must be mentioned that the concept itself of non-linear
dependency is difficult to define.  Therefore the fractal dimension found by these
methods can vary; in difficult situations, it may be worthwhile to use several methods
in order to asses their results.   The intrinsic dimension can also be a non-integer
value; in the following, we will use the integer value nearest to the intrinsic dimension
as an approximation of the non-linear autoregressive vector size defined below.

2.3 Non-linear autoregressive vector

The following step consists in building a non-linear autoregressive vector of size d
from each of the m-dimensional autoreressive vectors.

The set of points defined by the rows of the autoregressive matrix form a d-surface in
a m-dimensional space.  If we could unfold this d-surface by projecting the m-
dimensional space onto a d-dimensional one, keeping the topology of the initial set,
we would obtain a d-dimensional non-linear autoregressive matrix that could be used
for further prediction.
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Many non-linear “projection” methods exist.  Kohonen’s self-organizing map is
probably the most widely known example.  Yet in our experiments we will use
another method, the Curvilign Component Analysis (CCA) [3]; unlike the Kohonen
maps, this method doe not make any assumption on the shape of the projection space,
and was found to give better results in our application.

2.3 Non-linear forecasting

After this projection, we obtain the required non-linear autoregressive matrix. Its rows
will be used as input vectors to any non-linear forecasting method.  We used in our
experiments the standard multi-layer perceptron (MLP) and radial-basis functions
(RBF) as prediction core.

Obviously, the prediction method could also use the initial m-dimensional
autoregressive vectors extracted from the raw series.  Nevertheless, it must be
reminded that even if neural networks are known to be good candidates (compared to
other non-linear interpolators) when dealing with the curse of dimensionality, it
remains that, for a fixed number of training vectors, their performance decrease with
the dimension of their input vectors.  The interest of our method is precisely here: we
expect that the little information lost in the non-linear projection will be largely
compensated by the gain of performance in the forecasting itself.  This will be
illustrated in the examples below.

3. Artificial time series example

In order to test the above method, we built a chaotic artificial time series from the
following non-linear equation:

xt+1 = a xt

2 + b xt-2 + ε (1)

Obviously, the non-linear autoregressive order of this time series is 2 (it is generated
from 2 past values). Let us note the lack of a xt-1 term, as well as the presence of a
noise ε (about 10% of the maximum value of the series).

This series is represented on Figure 1.
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Fig. 1. Artificial time series generated according to equation (1).

The first step of our method consists in the search for the optimal autoregressive
matrix for a linear ARX prediction model.

Figure 2 shows the sum (on 1000 test points) of the quadratic errors obtained if one
uses a standard ARX model of increasing size; the x-coordinate of the figure is the
autoregressive order.

Fig. 2. Sum of quadratic errors (on 1000 test points) obtained with an ARX model for different
values of the autoregressive order.

To ensure to collect the whole dynamics of the series, we will build an initial
autoregressive matrix of order 6. The estimation of the fractal dimension of this matrix
gives 2.12, which is very close to reality.

The following step of the method is the projection of the set of the points (rows of the
autoregressive matrix) from R6 to R2. Note that in the simulations we added the xt term
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to the two coordinated found by this projection, in order to improve the results.  The
final autoregressive vector dimension is thus equal to 3.

In a next step we used this 3-dimensional autoregressive vector as inputs to a non-
linear prediction model.  We used a Multi-Layer Perceptron with one hidden layer.
The sum of quadratic errors obtained with this MLP is around 5 (on 1000 points),
which significantly lower than the errors illustrated in Figure 2 (linear model).

We also compared this result to the error obtained with a similar Multi-Layer
Perceptron, where the input vector is the set of p last values from the raw series.
Figure 3 shows this error for different values of p.  The horizontal line corresponds to
the error obtained with our method; we conclude that we obtain (for this example) an
error similar to a result obtained by trial and error on several non-linear models, which
was the goal of our investigation.  This easiness of implementation will be valuable
when dealing with a “real-size” dataset for which the non-linear autoregressive order
is unknown.

Fig. 3. Sum of quadratic errors (on 1000 points) obtained with a MLP network for different
values of the autoregressive order.  The horizontal line corresponds to the result of the proposed
method.

4.� Application to the SBF250 Stock Market Index

An interesting example of time series in the field of finance is the SBF 2501 index.
The application of time series forecasting produces to financial market data is a real
                                                          
1 The SBF 250 is one of the reference index of the French stock market. As suggested by its

name, it is based on a representative sample of 250 individual stocks.
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challenge. The efficient market hypothesis (EMH) remains up to now the most
generally admitted one in the academic community, while essentially challenged by
the practitioners. Under EMH, one of the classical econometric tool used to model the
behavior of stock market prices is the geometric Brownian motion2. If it does
represent the true generating process of stock returns, the best prediction that we can
obtain of the future value is the actual one. Results presented in this section must
therefore be analyzed with a lot of caution.

To succeed in determining the variations of the SBF250, other variables being able to
influence its fluctuations are included as inputs (extrinsic variables).  We selected
three international indexes of security prices (S&P500, Topix and FTSE100,
respectively American, Japanese and English), two rates of exchange (Dollar/Mark
and Dollar/Yen), and two American interest rates (T-Bills 3 months and US Treasury
Constant Maturity 10 years).  We used daily data over 5 years (from 01/06/92 to
01/12/97), to have a significant data set.

The problem considered here is the forecasting of the SBF250 index at time t+1, from
available data at time t.

To capture the relations existing between the French (non-stationary) index and the
other variables chosen, a co-integration is necessary.  The result of this co-integration
is the (stationary) residues of the SBF250 index, defined by the difference between the
true value SBFt+1 and the approximation BFt+1 given by the model:

Rt = SBFt+1 - ��t+1 = SBFt+1 - ��
��∑

=

⋅β+α
7

1i
ititt I (2)

where It,i (1 ≤ i ≤ 7) are the 7 selected variables at time t..

In the following, we will focus on the forecast of these residues, or more exactly on
the forecast of daily return of these residues. Indeed, it is more useful for somebody
eager to play on the market, to forecast its fluctuations rather than its level. To predict
that the level of the SBF index tomorrow is close to the level today is trivial. On the
contrary, to determine if the market will raise or fall is much more complex and
interesting.

The daily return ρt of the Rt residue at time t is defined by:
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2 Stock prices would follow the following diffusion process :
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10 and   where ≈εε=σ+µ=  S is the stock price, µ is the drift rate by

unit of time and σ is the instantaneous volatility.
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According to Refenes et al. [12], we will use technical indicators directly resulting
from the outputs of the residues:
•  ρt , ρt-10, ρt-20, ρt-40 : returns ;
•  ρt - ρt-5, ρt-5 - ρt-10, ρt-10 - ρt-15, ρt-15 - ρt-20 : differences of returns ;
•  K(20), K(40) : oscillators ;
•  MM(10), MM(50) : moving averages ;
•  MME(10), MME(50) : exponential moving averages. ;
•  ρ-MME(10), ρ-MME(50) return and moving average differences ;
•  MME(10)-MME(50). moving average differences
.
If we carry out Principal Component Analysis (PCA) on these 17 indicators, we note
that 99,72% of the original variance is kept with the first eleven principal components:
6 technical indicators can be removed without loss of information.

The target variable, whose sign has to be predicted, is a forecast variable over 5 days:

Ct+6 = 5

1

6

+

+

W

W

�

�
(4)

The time series of this variable is illustrated in Figure 4.

Fig. 4. Time series of the target variable according to equation (4).

This variable has to be predicted using the 11 indicators selected after PCA.  The
interpolator we used is a Radial-Basis Function (RBF) network with the learning
algorithm presented in [13]. The network is trained with 1000 points and tested on 100
other points. Our interest goes to the sign of the prediction only, which will be
compared to the real sign of the prediction variable.

The best results we obtained are 60,2% correct approximations of the sign of the series
on the training set, and 48 % on the test set. This result is obviously bad: it is worst
than a pure random guess on the test set!
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On the other hand, is we use the proposed method and estimate the fractal dimension
of the data set, we obtain an approximate value of 5.  We then use the CCA method to
project the 11-dimensional data (after PCA) on a 5-dimensional space.  Thereafter, we
use another RBF network to approximate the variable to predict.  We obtain 61% of
correct sign prediction on the training set and 57 on the test set.  This result seems to
be significantly better than  the result that we could get by using a purely naïve
approach (for example, by predicting always a + sign). A lot of simulation work
remains however to be done to validate it (by, for example, constructing a bootstrap
estimator).

Still better results were obtained using a MLP instead of a network (more than 62%
correct sign predictions on the validation set). Unfortunately, the results obtained with
a MLP are difficult to repeat for various initial conditions, convergence parameters,…
We prefer to restrict our performances to those obtained with a RBF network, because
they are much less parameter-dependent.

5. Conclusion

The proposed method for the determination of the best autoregressive vector gives
satisfactory results on a financial series. Indeed, the quality of the prediction obtained
is either comparable to the quality obtained with other methods (slightly higher on a
real-world financial time series, and equivalent on an artificial data set).  The
advantage of our method mainly comes from the systematization of the procedure:
there is no need for many trials and errors for the determination of the variables to use
at the input of the predictor and of its parameters. Moreover, the determination of the
autoregressive vector is completely independent from the prediction method.
Ameliorations of the proposed method could be searched in alternative ways to
estimate the fractal dimension of the series or to project the data in a non-linear way.

The question of the predictability of a series such as the SBF250 index remains.  The
results presented in this paper are promising, but could certainly be improved.  We
must also remind that predicting a complex, mostly stochastic time series as the
SBF250 must be achieved with several prediction methods, in order to cross-validate
their results. It must also be noted that, the simple fact of being able to forecast, at a
certain level of confidence, a financial time series is not in itself sufficient to
invalidate the EMH. The problem is to see if it is possible to exploit the prediction
algorithm to obtain abnormal returns, that is to say returns that take into account the
level of the risk generated by the trading strategy as well as the associated transaction
costs.
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