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Abstract. The Optimally Pruned Extreme Learning Machine (OP-
ELM) and Optimally Pruned K-Nearest Neighbors (OP-KNN) algorithms
use the a similar methodology based on random initialization (OP-ELM)
or KNN initialization (OP-KNN) of a Feedforward Neural Network fol-
lowed by ranking of the neurons; ranking is used to determine the best
combination to retain. This is achieved by Leave-One-Out (LOO) cross-
validation. In this article is proposed to use the Hannan-Quinn (HQ)
Criterion as a model selection criterion, instead of LOO. It proved to be
efficient and as good as the LOO one for both OP-ELM and OP-KNN,
while decreasing computations by factors of four to five for OP-ELM and
up to 24 for OP-KNN.

1 Introduction

Since data can be collected automatically from various and numerous sources,
the global amount of information grows rapidly in most fields of science. Al-
though this data most likely improves precision and details, it also raises many
new challenges such as storage and processing. Among the most famous algo-
rithms used for data processing through machine learning techniques, lies Feed-
forward neural networks. While multilayer feedforward neural networks have
been proved to be universal approximators [1], they tend not to be used widely
when processing important datasets because of the computational time it takes
to actually train and build them: many parameters are required for a proper
selection of the model structure and afterwards, the training.

In order to make model training and selection of single hidden layer feedfor-
ward neural networks faster, OP-ELM [2] (based on ELM [3]) and OP-KNN [4]
have been proposed recently. In this paper, is proposed a different model struc-
ture selection criterion (inside the OP-ELM/KNN algorithm) to replace the pre-
viously used Leave-One-Out; it is just as efficient and faster for large datasets.
The next section presents the OP-ELM/KNN shortly, while section 3 details the
Hannan-Quinn criterion used for complexity selection. Experiments and results
using this improved methodology are presented in section 4.

2 OP-ELM and OP-KNN

The Otimally Pruned Extreme Learning Machine [2] (OP-ELM, based on orig-
inal ELM [3]) and Optimally Pruned KNN [4] (OP-KNN) are based on similar



first steps which Figure 1 summarizes.
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Fig. 1: OP-ELM/KNN methodology: first steps are similar. Last step of se-
lection of neurons is performed using a criterion: Leave-One-Out (LOO) in the
original algorithms.

A priori variable selection is first performed on the data. Then, the Mul-
tiLayer Perceptron (MLP), which is actually a single hidden layer feedforward
network, is initialized, either by ELM (for OP-ELM) or by KNN (for OP-KNN).
In the OP-ELM case, by a random initialization of the weights and biases of the
MLP, while for OP-KNN, deterministic initialization using K-NN is used.

Neurons are then ranked using a MRSR [5] technique, which main idea is:
Denote by X = {x1, . . . ,xM} the N × M matrix of inputs, the MRSR adds
each column of the regressor matrix one by one to the model Ŷk = XWk where
Ŷk = [ŷk

1 , . . . , ŷk
p ] is the target approximation of the model. The Wk weight

matrix has k nonzero rows at k-th step of the MRSR. With each new step a new
nonzero row and a new column of the regressor matrix is added to the model.
An important fact is that the obtained ranking by MRSR is exact in the case of
a linear problem, as here since the neural network is linear between the hidden
layer and output.

Finally, a criterion is used to decide which number of neurons will be retained
(ranked neurons, so only the best ones are kept). This criterion is a Leave-One-
Out, for the original OP-ELM/KNN.

The Leave-One-out (LOO) is usually a costly way of estimating a model’s
fit to the data, since it requires to go through all points of the data separately
to estimate the model’s output for each. In order to keep the OP-ELM/KNN
fast, the PRESS Statistics [6] formula is used in order to compute this validation
error, as in Eq. 1.

εPRESS
i =

yi − xib
1 − xiPx′

i

, (1)

where P = (X′X)−1, and b are the output weights of the MLP. While
this formula makes it possible to evaluate the LOO error with simple matrix
calculations, it still requires a matrix inversion and various matrix products,
which can still be long. The goal of this paper is to present another criterion
for the complexity selection (by the selection of the number of neurons to keep)
which is much faster for it does not requires these matrix operations.



3 The Hannan-Quinn criterion

In order to perform complexity selection (by selecting the neurons to retain in
the OP-ELM/KNN model), the classical LOO was used in the original versions
of the two algorithms OP-ELM/KNN.

There are many possible criteria for complexity selection in machine learning.
Typical examples are Akaike’s information criterion (AIC) [7] or the Bayesian
Information Criterion (BIC) [8]. Their expression is based on the residual sum of
squares (Res) of the considered model (first term of the criterion) plus a penalty
term (second term). Differences between criteria mostly occur on the penalty
term. AIC penalizes only with the number of parameters p of the model (so that
not too many free parameters are used to obtain a good fit by the model), Eq. 3;
BIC takes into account the number of samples N used for the model training,
in Eq. 2.

BIC = N × log
(

Res

N

)
+ p × log N (2)

AIC = N ×
(

log
(

2πRes

N

)
+ 1

)
+ 2 × p (3)

The AIC is known to have consistency problems: while minimizing AIC, it is
not guaranteed that complexity selection will converge toward an optima if the
number of samples goes to infinity [9]. The main problem using such criteria is
in trying to balance underfitting and overfitting knowing that convergence might
never be achieved. One solution is through the penalty term, for example, by
having a log N term in the penalty (with N the number of samples), which the
BIC has. Unfortunately, for the experiments conducted in this paper, the BIC
criterion did not give proper complexity selection (most likely due to the too
fast increase of the penalty term with the number of samples).

The Hannan-Quinn Information Criterion [10] is close to these other criteria,
as can be seen from the expressions of the AIC and BIC below (Eq. 2 and Eq. 3).
The idea behind the design of this criterion is to provide a consistent criterion
(regarding for example AIC which is not consistent in its standard definition) in
which the second term (the penalty) 2 × p × log log N grows but at a very slow
rate, regarding the number of samples.

HQ = N × log
(

Res

N

)
+ 2 × p × log log N (4)

From Figure 2, it can be seen that both criteria have very similar convergence
regarding the number of neurons used for building the model. In this particular
case, the HQ criterion is consistent since it enables a stable convergence. Hence,
and from the following experiments, it can be considered that the HQ criterion
is as good as the original LOO.
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Fig. 2: Plot of the criterion value for both LOO and HQ versions of the OP-ELM
(for the Bank dataset from UCI [11]): red squares for HQ and blue circles for
LOO. Plots have been scaled to fit on same scale (HQ and LOO criteria have
very different values). Convergence is very similar.

4 Experiments and results

Experiments for testing the effect of the HQ criterion on both OP-ELM and OP-
KNN, have been conducted using seven different data sets from UCI machine
learning repository [11]. The choice of these datasets has been made so that
their variety in terms of number of samples and variables, covers usual ”real
life” datasets. Table 1 summarizes the characteristics of theses datasets.

Samples

Regression # of Variables Train Test

Ailerons (D.A.) 5 4752 2377

Elevators (D.E.) 6 6344 3173

Auto price (A.P.) 15 106 53

Servo 4 111 56

Breast Cancer (B.C.) 32 129 65

Bank 8 2999 1500

Stocks 9 633 317

Table 1: Selected datasets: Number of variables and number of samples for
training and testing (two thirds and one third respectively).

The datasets have been divided in two parts: training and test sets. Two
thirds of the whole dataset for training and the remaining third for testing.

The original OP-ELM/KNN and their HQ modified versions have both been
tested on these datasets, and results for test mean square errors and computa-
tional times are presented in Tables 2 and 3. It can be seen from Table 2 that the
HQ version of the algorithms perform just as good, on average, as the original
LOO-based version (or even slightly better). Results are within close range with
SVM values (from LS-SVM [12]).

Computational times are highly reduced, when using the HQ criterion in-
stead of the LOO, as expected (Table 3). A factor of four to five between the
computational times, can be observed for OP-ELM, and up to 24 for the OP-



A.P. Bank B.C. D.A. D.E. Servo Stocks
SVM 3.8E+06 2.2E-03 8.9E+02 2.6E-08 2.8E-06 4.2E-01 2.2E-01

OP-ELM 4.5E+06 1.1E-03 6.7E+02 2.7E-08 1.9E-06 5.8E-1 6.1E-1

OP-ELM-HQ 1.4E+06 1.1E-03 9.2E+02 2.6E-08 1.9E-06 5.7E-1 5.8E-1

# Neur. (HQ) 20 (50) 98 (98) 8 (4) 55 (95) 36 (26) 39 (100) 99 (99)

OP-KNN 2.7E+06 1.3E-03 1.1E+03 3.4E-08 2.5E-06 4.0E-01 4.8E-01

OP-KNN-HQ 3.1E+06 1.3E-03 1.1E+03 3.4E-08 2.4E-06 3.8E-01 4.8E-01

# Neur. (HQ) 46 (100) 45 (15) 2 (6) 23 (20) 17 (17) 59 (59) 11 (11)

Table 2: Test Mean Square errors comparisons for OP-ELM/KNN and HQ
criterion version. Number of neurons for each are given: standard version in
plain and HQ in parenthesis. 100 neurons used for OP-ELM and maximum 100-
nearest neighbours for OP-KNN. SVM values for reference (using LS-SVM [12]).

KNN. It can also be seen that this difference is mostly noticeable when using
large datasets (Ailerons, Elevators, Bank, here). While the difference is smaller
for smaller datasets, it remains important enough to be considered when the OP-
ELM/KNN is used many times, for variable selection with a Forward-Backward
algorithm, for example. In these case, the small difference in computational time
makes a clear difference on the many iterations.

A.P. Bank B.C. D.A. D.E. Servo Stocks
SVM 492 6.5E+05 645 8.7E+04 7.7E+05 863 2188

OP-ELM 0.14 5.37 0.29 18.99 21.89 0.42 1.33

OP-ELM-HQ 0.13 1.88 0.24 4.59 5.42 0.40 0.84

Ratio 1.08 2.86 1.21 4.14 4.04 1.05 1.58

OP-KNN 1.6 17.7 0.09 43.16 67.04 0.08 0.91

OP-KNN-HQ 0.09 1.02 0.06 1.78 2.47 0.05 0.19

Ratio 17.78 17.35 1.5 24.25 27.14 1.6 4.79

Table 3: Computational times (seconds) when using OP-ELM/KNN and the
HQ criterion version. Ratios between standard and HQ versions are given. Im-
provement with HQ criterion is visible when working with large datasets (matrix
products for classical PRESS LOO need to be consequent for the HQ based ver-
sion to take advantage). SVM values for reference (using LS-SVM [12]).

5 Conclusion

This paper presents a modification of the original OP-ELM/KNN algorithms in
the place of the model structure selection criterion. The classical Leave-One-Out
criterion is replaced by the Hannan-Quinn (HQ) criterion, which performances
match the ones of the LOO (or perform actually slightly better, on average).
The main advantage of this other criterion over the LOO one is to decrease the



computational times by a factor of four to five for OP-ELM and up to 24 for OP-
KNN, for the conducted experiments. It seems very likely that for much larger
datasets than the ones used for the experiments, the gain in computational time
could be even higher.
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