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Abstract. Prediction of time series is an important problem in many
areas of science and engineering. Extending the horizon of predictions
further to the future is the challenging and difficult task of long-term
prediction. In this paper, we investigate the problem of selecting non-
contiguous input variables for an autoregressive prediction model in order
to improve the prediction ability. We present an algorithm in the spirit
of backward selection which removes variables sequentially from the pre-
diction models based on the significance of the individual regressors. We
successfully test the algorithm with a non-linear system by selecting in-
puts with a linear model and finally train a non-linear predictor with the
selected variables on Santa Fe laser data set.

1 Introduction

Time series prediction plays an important role in analysis of many problems
encountered in science and engineering, for instance in climatology [1], ecology
[2], electricity production [3], and economics [4].

Long-term prediction is difficult and time-consuming, since it extends the hori-
zon of prediction further to the future, adding significant uncertainty in the pre-
diction task. We address the problem of input selection for the purpose of long-
term prediction. We present an algorithm for input variable selection in the spirit
of backward selection, in which variables are progressively removed from the au-
toregressive prediction model. The removal of variables is based on a median and
a standard deviation of parameter distributions sampled with a bootstrap resam-
pling procedure [5]. These statistics reflect the uncertainty for a variable to play
an important role in the prediction task. We apply the algorithm in a long-term
prediction setting, where input selection is performed for different k-step-ahead
prediction models. Whereas the input selection is accomplished with the linear
autoregressive models, the final model is a non-linear predictor used in the pre-
diction of a prominent non-linear benchmark (Santa Fe laser data set [6]).

2 Resampling Using Bootstrap

The bootstrap is a statistical resampling method represented by Efron et al.
in [5]. The idea of bootstrap is to sample original data and to estimate some
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statistics from these resampled sets. No assumptions are made about the forms
of probability distributions in the bootstrap method. The statistic of interest and
its distribution are computed by resampling the original data with replacement.

In this article the bootstrap is applied in context of the linear autoregressive
process AR(l). It can be represented by the following equation

yt =
l∑

i=1

αiyt−i + εt . (1)

It is assumed that εt is a sequence of independently normally distributed random
noise with zero mean and common finite variance. Let us assume that N + l
observations are available. Equation (1) can be written in the matrix form as
follows

y = Y α + ε , (2)

where y = (yl+1, . . . , yl+N )T , ε = (εl+1, . . . , εl+N )T , α = (α1, . . . , αl)T and

Y (N×l) =

⎡

⎢⎢⎢⎣

yl yl−1 . . . y1

yl+1 yl . . . y2

...
...

. . .
...

yl+N−1 yl+N−2 . . . yN

⎤

⎥⎥⎥⎦ . (3)

The parameters α are estimated by minimizing the mean square error (MSE),
i.e., (1/N)‖y − ŷ‖2 = (1/N)‖y − Y α̂‖2 where ‖.‖ is the L2-norm. The least
squares estimates of parameters are α̂ = (Y T Y )−1Y T y. Here we assume that
the data are normalized to zero mean and unit variance and, thus there is no
need for the constant term in Equations (1) and (2). Due to the normalization
the upper limit for the MSE is 1, which is obtained by the mean predictor.

Bootstrapping the regression model can be done in two different ways and
both could also be applied in this case. The methods are bootstrapping residuals
and bootstrapping pairs [5]. The regressors i.e. the columns of the design matrix
Y are treated as fixed quantities in the bootstrapping residuals approach. That
assumption is strong and it can fail even if Equation (2) for the AR(l) process is
correct. In the bootstrapping pairs approach weaker assumptions about validity
of Equation (2) are made.

In the bootstrapping pairs, P̂ is assumed to be an empirical distribution
of the observed data pairs (yl+t; yl+t−1, yl+t−2, . . . , yt) = (yl+t;Y l+t), where
t = 1, . . . , N and yl+t and Y l+t = [yl+t−1, yl+t−2, . . . , yt] are values of the target
and the regressors, respectively. In other words, yl+t is one element of the vector
y and Y l+t is the corresponding row from the matrix Y . P̂ puts probability
mass of 1/N on each pair (yl+t;Y l+t). A bootstrap sample is a random sample
of size N drawn with replacement from the population of N pairs (yl+t;Y l+t).
B independent bootstrap samples (y∗j ,Y ∗j), j = 1, . . . , B, of size N are drawn
with replacement from the distribution P̂ . Therefore, some data pairs from the
original data (y,Y ) can appear zero times or once or twice etc. in the bootstrap
sample (y∗j ,Y ∗j).
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The bootstrap replications α̂∗j of the estimates of parameters α̂ are α̂∗j =
(Y ∗jT

Y ∗j)−1Y ∗jT
y∗j . B bootstrap replications α̂∗j

i form a distribution of the
estimates of parameters α̂i. This distribution of the bootstrap replications can
be used in an evaluation of the significance of parameters. In this paper, the
evaluation is based on medians and standard deviations of the distributions.

3 Input Selection

The usual task is to define the order l in Equation (1) and use all the inputs
yt−i, i = 1, . . . , l in the prediction of yt. This kind of solution is referred to
ordinary least squares (OLS) solution later on. The OLS solution is not always
satisfactory. The OLS estimates have low bias but a large variance, which may
diminish the prediction accuracy. The prediction accuracy can sometimes be
improved by shrinking some estimates of parameters toward zero or setting them
exactly to zero [7].

In this paper, we present a methodology to select a subset of inputs that
have the strongest explanatory power in the AR process. This also makes the
interpretation of the dependencies in time series easier.

First, the maximum number of inputs have to be set, i.e., to define the value
of l. It can be selected to be a relatively large to ensure that the final order
of the estimated AR process can be large enough. The procedure continues by
estimating AR process using all the inputs yt−i, i = 1, . . . , l that is calculating
the OLS estimates of parameters α̂i. The distributions of parameters α̂i and the
standard deviation s of the training MSE are estimated using the bootstrapping
pairs method. In addition, the validation error is calculated using the parameters
α̂i. The validation error is the MSE for the validation set, i.e., for data that are
not used in the training phase.

The next step is to delete the least significant regressor. The median value mi

and the standard deviation σi of parameter α̂i are calculated from the bootstrap
replications α̂∗j

i . The ratio |mi|/σi is used as a measure of significance of the
corresponding parameter. The parameter or regressor with the smallest ratio is
pruned from the set of possible inputs. After that, the bootstrapping using the
remaining inputs and pruning is repeated as long as there are variables left in
the set of inputs.

The quantity di = (
∑B

j=1(mi − α̂∗j
i )2)

1
2 /(B − 1) could be used instead of the

standard deviation as a measure of the width of the distribution of the estimates
of parameters. Another alternative is to estimate the width of the distribution
using the difference ∆i = α̂j∗

i,high − α̂j∗
i,low , where α̂j∗

i,high is B · (1 − q)th and
α̂j∗

i,low is B · qth value in the ordered list of the B replications of α̂∗j
i and q could

be for instance 0.165.
The Algorithm 1 produces sequentially l different models. The computational

complexity of the proposed algorithm is O(l) whereas a backward selection type
of algorithm would be of complexity O(l2) and the full, exhaustive (brute-force)
search of all possible variable configurations would take O(2l). The purpose is to
select a model which is as sparse as possible in the sense that it includes only a
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Algorithm 1 Algorithm for input selection
1: Let L be the set of indices of the inputs. In the beginning, L includes all the indices

i, yt−i, i = 1, . . . , l.
2: if i ∈ L estimate B bootstrap replications α̂j∗

i , j = 1, . . . B of the parameters α̂i by
minimizing MSE using the training data, otherwise set α̂i = 0, i /∈ L

3: Compute the mean and the standard deviation sL of the bootstrap replications of
the training MSEs.

4: Estimate parameters α̂i using the training data and compute the validation error
Ev using the estimated model.

5: Compute the median mi and the standard deviation σi for all the estimates α̂i, i ∈
L from the bootstrap replications α̂j∗

i .
6: Compute the ratio |mi|/σi, ∀i ∈ L and delete the index with the smallest ratio

from the set L.
7: if L �= ∅ go to step 2, otherwise go to step 8
8: Find the minimum validation error Emin

v . Sum Emin
v and corresponding smin

L . Find
the smallest set of indices Lf i.e. the least complex model whose validation error
is under the previous sum. The inputs corresponding to the indices in the set Lf

are included to the final model.

few input variables. Goals of this approach are to avoid the curse of dimension-
ality, over-parameterization, and overfitting for the non-linear modeling phase.
On the other hand, the prediction accuracy should not decrease significantly.
The initial model is selected based on the minimum validation error Emin

v . The
corresponding standard deviation smin of training error is also used as the esti-
mate of standard deviation of Emin

v . The final model is the least complex model
whose validation error is under the sum Emin

v + smin. The procedure is listed
step by step in detail in Algorithm 1.

The ratio |mi|/σi can be seen as a Z-score test statistic to test the hypothe-
sis [8] that a parameter α̂i = 0. The statistics are estimated using bootstrap, so
there are not made any assumptions about the probability distributions of pa-
rameters. This applies especially when the median and the difference ∆i would
be used. We use the median instead of the mean as the location parameter of
the distribution, since it is a reasonable estimate for skewed distributions, and
distributions with outliers. Furthermore, median is the same as the mean, if the
distribution is symmetric. The standard deviation and deviation based on the
median are reasonable measures for the symmetric distributions, whereas the
difference ∆i describes better the width of an asymmetric distribution. In the
case of a symmetric distribution, for instance a Gaussian distribution, σi, di,
and ∆i produce equal estimates of the width of the distributions.

In addition, the ratio can be considered as a signal-to-noise ratio. If the ratio
is small then the bootstrap replications of parameters vary strongly around the
median and the importance of the corresponding input in the prediction is in-
significant. The idea of proposed algorithm is similar to the traditional backward
stepwise selection, which sequentially deletes inputs based on the F -statistics [8].

Algorithm 1 can also be applied to long-term prediction. In that case the
target is yt+k, k > 0 in the Equation (1).
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4 Long-Term Prediction

In the literature, two techniques are used for long-term prediction [6]. In recur-
rent prediction — the first of the two approaches — only one model is built,
that is, ŷt = f(yt−1, . . . , yt−l). The same model is used repeatedly to obtain
the long-term prediction. For instance, for the two-step-prediction the model
ŷt+1 = f(ŷt, yt−1, . . . , yt−l+1) is used [9]. The main advantage of this method
is that only one model has to be built, the disadvantage being that the qual-
ity of predictions is rapidly decreasing with respect to the increasing horizon of
prediction. Therefore, in the context of long-term prediction, we focus on the
models of the form ŷt+k = fk(yt−1, . . . , yt−l), which is known as the direct pre-
dictor. Because the computational load of this method, i.e., building different
models up to the maximum prediction horizon K, we need a fast method for
input selection. Moreover, we want to select inputs in a non-contiguous manner,
for instance, allowing for the inputs such as ŷt+k = fk(yt−1, yt−3, yt−8, yt−12).

5 Experiments on the Santa Fe Laser Data Set

The data set used in the experiments is the Santa Fe laser data set described
in [6]. The training set size Ntr = 1000 is selected to be the same as in the
Santa Fe time-series competition [6] (see Figure 1). The validation set used for
the selection of the model-orders is chosen to be large (Nval = 4546) in order to
perform well on structure selection, and a large testing set (Ntest = 4547) should
ensure realistic statistical estimate of the performances of the results.

0 100 200 300 400 500 600 700 800 900 1000
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y t

Fig. 1. The first thousand samples Ntr from Santa Fe laser time series

5.1 Linear Models and Input Selection

Input selection Algorithm 1 has been used to yield input variables with a max-
imum number of inputs l = 20 and the maximum prediction horizon being
K = 19 corresponding to 20 models. The number of bootstrap resamples has
been chosen to be B = 1000, which is considered to be large enough for reliably
estimating the distribution of the parameters in the linear model.

Figure 2 (a) presents an example of input selection in the case of two-step-
ahead prediction (k = +1). In this case, Algorithm 1 selected the model with
6 inputs. Compared to the model with 18 inputs with the minimum validation
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Fig. 2. (left) An example of input selection, training error (solid line), validation er-

ror (dashed line), vertical line marks the minimum validation error (18 inputs) and a

standard deviation of training error, the final model is chosen to be the least complex

model (6 inputs) within the standard error (dash-dotted line). (right) number of se-

lected inputs for each 20 models according to the minimum validation error (solid line)

and the standard error (dash-dotted line)
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Fig. 3. The final models. The targets yt+k, k = 0, +1, . . . , +19 are in the horizontal

axis and the possible regressors yt+l, l = −1,−2, . . . ,−20 are in the vertical axis. The

selected inputs are denoted by black rectangles in each column

error the number of parameters has decreased considerably (by 12). At the same
time the validation error has only increased less than one standard deviation
of the minimum validation error. In Figure 2 (b), the number of inputs for
each 20 models according to the minimum validation error and the final number
of selected inputs are shown. The reduction in the number of parameters is
on average 12. In Figure 3, the selected inputs for all long-term models are
visualized. Parsimonious models are selected based on the proposed algorithm,
on average 5 inputs are selected. For instance, the 12-step-ahead model has 5
inputs, marked by 5 black rectangles on the vertical axis at column k = +11
(ŷt+11 = f(yt−1, yt−4, yt−5, yt−9, yt−13)).

The final models were obtained using the median mi and the standard devi-
ation σi in the input selection. The final models were exactly same as in Figure
3, when the input selection was repeated using di and ∆i instead of σi. This
might indicate that the distributions are approximately normal distributions.
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Fig. 4. (left) An example of the selection of number of neurons p (the target is yt+1),

training error (solid line), validation error (dashed line), circle represents minimum val-

idation error. (right) the number of neurons p (solid line) and the number of parameters

(dash-dotted line) in each 20 MLP network
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Fig. 5. MSE for MLP networks (solid line), linear models (dash-dotted line) and recur-

rent prediction (dashed line) for both validation (left panel) and test sets (right panel),

respectively

5.2 Non-linear, Non-contiguous Regressor Model

Based on the results from the previous section, we train a non-linear model. Here,
we have used a multi-layer perceptron (MLP) network [10]. The output of the
network is ŷt = µ +

∑p
j=1 βj tanh

(∑l
i=1 wjiyt−i + bj

)
, where p is the number

of neurons in the hidden layer. The network is trained using the Levenberg-
Marquardt optimization method by back-propagating the error gradients [10].
Hundred different initializations are used in the training of the models in order
to avoid local minima of the training error, and the best model is chosen (for
each model-order). The minimum training error (among different initializations)
is a monotonically decreasing function with respect to p. Validation error is
evaluated for the best non-linear model to choose the final number of neurons
p. The maximum number of tested neurons was 20. An example is shown in
Figure 4 (a). The selected number of neurons p, which is less than 20 in each
network, and the corresponding number of parameters in each 20 MLP networks
are shown in Figure 4 (b). The maximum number of parameters in the non-linear
models is 109. Because of the parsimony of the selected input set, it is possible
to train the model from a small training sample such as ours (Ntr = 1000).
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Figure 5 illustrates the differences between the recurrent and direct prediction
for the validation (left panel) and the test (right panel) set up to the maximum
prediction horizon K. The direct non-linear predictions (solid line) clearly out-
perform the recurrent approach (dashed line). The direct predictions calculated
using the linear models (dash-dotted line) are also better than the recurrent
non-linear predictions in the long-term.

6 Conclusions

The proposed algorithm selected parsimonious sets of inputs for all long-term
prediction models. The non-linear models built using the corresponding inputs
led to good prediction performance. Direct long-term prediction is superior to
recurrent prediction for the whole prediction horizon. The main advantage of the
proposed approach is that it combines fast input selection with accurate but com-
putationally demanding non-linear prediction. Linear complexity of the input
selection makes this approach viable for input selection in large-scale problems.
Further research include experiments with different data sets and comparisons
to different input selection methodologies, e.g. the use of mutual information, to
achieve accurate comprehension of the performance of the proposed algorithm.
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