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In this paper, bounds on the mean power-weighted nearest neighbor distance are
derived. Previous work concentrates mainly on the infinite sample limit, whereas
our bounds hold for any sample size. The results are expected to be of importance
for example in statistical physics, nonparametric statistics and computational ge-
ometry, where they are related to the structure of matter as well as properties of
statistical estimators and random graphs.
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1. Introduction

Let (Xi)
M
i=1 be a set of random variables sampled from a probability distribution P

on ℜn with a density q on a bounded set C (with respect to the Lebesgue measure
λ). The k-th nearest neighbor distance of the point Xi in the lp-norm is denoted by
di,k. In this paper we examine the expected power-weighted distance E[dα

i,k] with
α > 0. This quantity plays a significant role in many fields including nonparametric
statistics (see Kohler et al. (2006) and Evans & Jones (2002)), physics (Torquato
(1995)) and geometric probability (Penrose & Yukich (2003)). Nearest neighbor
distances have turned out to be important in such tasks as convergence analysis
of statistical estimators and theoretical analysis of particle systems in statistical
physics; furthermore, nearest neighbor graphs are a fundamental class of graphs in
computational geometry.

A large part of the previous work on the topic concentrates on the asymptotic
form of Mα/nE[dα

i,k]; for example, denoting by Vn,p the volume of the unit ball,
defining Γ(·) as the Gamma function and taking p = 2, it is shown in Evans et al.

(2002) that

Mα/nE[dα
i,k] → V

−α/n
n,2

Γ(k + α/n)

Γ(k)

∫

C
q(x)1−α/ndx (1.1)

as M → ∞ assuming that q is smooth and positive on a convex and compact
set C. Moreover, similar asymptotic results can also be derived for more general
random structures than the nearest neighbor graph, see for example Penrose &
Yukich (2003).

In this paper, instead of the forementioned asymptotic analysis, we derive non-
asymptotic lower and upper bounds for E[dα

i,k]. Denoting by Bp(0, r) the open

ball of radius r and center at the origin, we assume that C ⊂ Bp(0,
√

n/2) to
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ensure that all nearest neighbor distances are smaller than
√

n. In the special case
C = [−1/2, 1/2]n, our main result can be summarized as follows (with the notation
‖ · ‖p for the function Lp-norm w.r.t. λ):

Theorem 1.1. The inequalities

δM,k,α =
1

M

M
∑

i=1

dα
i,k ≤ (

2nk

Vn,pM
)α/n + o(M−α/n) ≤ (

nn/22nk

M
)α/n (1.2)

hold almost surely when 0 < α < n. The latter inequality is valid also for α = n.

A remarkable fact about Theorem 1.1 is its universality as the upper bounds
hold for (almost) any combination of points in C being based on purely deterministic
arguments.

Previous upper bounds on the average power-weighted k-nearest neighbor dis-
tances include Kohler et al. (2006), Kulkarni & Posner (1995) and Torquato (1995).
Compared to our bounds, the proof technique used in Kulkarni & Posner (1995)
gives much higher constants when α is close to n; actually for α = n, the bound
contains an additional logarithmic factor. The probabilistic upper bounds in Kohler
et al. (2006) on the other hand do not yield the explicit form of the constants, while
Torquato (2005) concentrates on hard sphere systems.

In the special case k = 1, an essentially similar upper bound as ours has been
derived by Tewari & Gokhale (2004). However, the bound is not rigorously derived
as analysis of the boundary effect is excluded. While the authors discuss a physical
model where taking the limit M → ∞ is realistic, for a moderate sample size the
points close to the boundary tend to have a significant effect and should be taken
into account.

Our lower bound differs from (1.2) by being based on a measure theoretic ar-
gument. To our knowledge, there is no previous work on non-asymptotic lower
bounds.

Theorem 1.2. The inequality

E[dα
i,k] ≥ 3−α/22−α/ne−α/2n‖q‖−2α/n

2 V −α/n
n,p

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

holds for α > 0 and 1 ≤ i ≤ M .

It is worth noticing that by Lemma 5.1 in Evans et al. (2002),

Γ(M)

Γ(M + α/n)
= M−α/n(1 + O(

1

M
)) as M → ∞.

2. A Geometric Upper Bound

The formal definition of the nearest neighbor of the point Xi in the lp-norm is

N [i, 1] = argmin1≤j≤M,j 6=i‖Xi − Xj‖p.

The k-th nearest neighbor is defined recursively as

N [i, k] = argmin1≤j≤M,j 6=i,N [i,1],...,N [i,k−1]‖Xi − Xj‖p,
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that is, the closest point after removal of the preceeding neighbors. The correspond-
ing distances are defined as

di,k = ‖Xi − XN [i,k]‖p.

Notice that the definition of N [i, k] is not necessarily unique if there are two points
at the same distance from Xi. However, the probability of such an event is zero and
consequently it can be be neglected as Theorem 1.1 is stated to hold almost surely.
Moreover, the conclusion of Theorem 1.1 holds for all configurations of points in
C with an arbitrary method of tie-breaking. For example, N [i, k] can be chosen as
the smallest index among the alternatives.

To fix some notation, let us define

Cr = {x ∈ ℜn : ∃y ∈ C s.t. ‖x − y‖p ≤ r}.

Next we prove a geometric upper bound for the average k-nearest neighbor
distance. The proof is based on showing that any point x ∈ C belongs to at most k
balls Bp(Xi, di,k/2).

Theorem 2.1. For any 0 < α ≤ n and r > 0,

1

M

M
∑

i=1

dα
i,kI(di,k ≤ r) ≤ (

2nkλ(Cr/2)

Vn,pM
)α/n (2.1)

almost surely.

Proof. Choose any x ∈ ℜn. Let us make the counterassumption that there exists
k + 1 points, denoted by Xi1 , . . . , Xik+1

(the indices being distinct), such that x ∈
Bp(Xij , dij ,k/2) for j = 1, . . . , k + 1. Let (ij , ij′) be the pair that maximizes the
distance ‖Xij − Xij′

‖p. Under these conditions the triangle inequality yields

‖Xij − Xij′
‖p <

1

2
dij ,k +

1

2
dij′ ,k.

The strict inequality holds because Bp(x, r) is an open ball. On the other hand,

‖Xij − Xij′
‖p =

1

2
‖Xij − Xij′

‖p +
1

2
‖Xij − Xij′

‖p

=
1

2
max

1≤j′≤k+1
‖Xij − Xij′

‖p +
1

2
max

1≤j≤k+1
‖Xij − Xij′

‖p

≥ 1

2
dij ,k +

1

2
dij′ ,k

leading to a contradiction. Thus we have for the sum of indicator functions

M
∑

i=1

∫

ℜn

I(x ∈ Bp(Xi, di,k/2), di,k ≤ r)dx

=
M
∑

i=1

∫

Cr/2

I(x ∈ Bp(Xi, di,k/2), di,k ≤ r)dx

≤ λ(Cr/2)k.
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On the other hand,

M
∑

i=1

∫

ℜn

I(x ∈ Bp(Xi, di,k/2), di,k ≤ r)dx = 2−nVn,p

M
∑

i=1

dn
i,kI(di,k ≤ r)

implies that

1

M

M
∑

i=1

dn
i,kI(di,k ≤ r) ≤ 2nkV −1

n,p λ(Cr/2)M
−1.

By Jensen’s inequality,

1

M

M
∑

i=1

dα
i,kI(di,k ≤ r) ≤ (

1

M

M
∑

i=1

dn
i,kI(di,k ≤ r))α/n,

which implies Equation (2.1).

As stated in the following corollary, the last inequality in Theorem 1.1 follows
straightforwardly by choosing r =

√
n because C ⊂ Bp(0,

√
n/2) implies that all

nearest neighbor distances are smaller than
√

n and λ(C√n/2) ≤ Vn,pn
n/2.

Corollary 2.2. For 0 < α ≤ n we have

δM,k,α ≤ (
2nknn/2

M
)α/n.

3. The Boundary Effect

In this section we show that the bound in Theorem 2.1 can be improved by dividing
the nearest neighbor distances into two different sets corresponding to small and
large values. We will show that the volume of the set ∪M

i=1Bp(Xi, di,k/2) \ C is
asymptotically neglible, which consequently implies the first inequality in (1.2).

Theorem 3.1. Assume that λ(Cr) ≤ λ(C) + c1r when r ≤ c2 for some constants

c1, c2 > 0. Then for any 0 < α < n,

1

M

M
∑

i=1

dα
i,k ≤ sup

0≤r≤
√

n

(2αkα/nλ(Cr/2)
α/nV −α/n

n,p M−α/n + 2nnn/2krα−nM−1)

= 2αkα/nλ(C)α/nV −α/n
n,p M−α/n + O(M

−αn−α2+n

n2
−αn+n ). (3.1)

Proof. Let us define the set of indices

Ir = {1 ≤ i ≤ M : di,k > r}

corresponding to points with the k-th nearest neighbor distance larger than r. If the
number of elements |Ir| is bigger than one, we may define the subsample (Xi)i∈Ii

Article submitted to Royal Society



Nearest Neighbor Distances 5

and the corresponding nearest neighbor distances di,k,Ir . Because excluding points
can only increase the distances between a point and its nearest neighbors, we obtain

1

M

M
∑

i=1

I(di,k > r)dα
i,k ≤ 1

M

∑

i∈Ir

dα
i,k,Ir

.

A straightforward application of theorem 2.1 yields

1

M

∑

i∈Ir

dα
i,k,Ir

≤ 2αkα/nnα/2|Ir|1−α/nM−1.

The first inequality in (3.1) follows now by Chebyshev’s inequality:

|Ir| =

M
∑

i=1

I(di,k > r) ≤ 2nr−nnn/2k.

One should also take in the account the case |Ir| = 1 which, however, does not pose
any problems as r ≤ √

n.
To see the second result, choose

r = M
− n−α

n2
−αn+n

and use the approximation (1 + x)α/n ≈ 1 + αn−1x valid for small x.

The condition λ(Cr) ≤ λ(C) + c1r requires some regularity of the boundary of
C. It is similar to condition C.2 in Evans et al. (2002). Such a bound holds for most
sets encountered in practice; for example, if C = [−1/2, 1/2]n we have

λ(Cr/2) − λ(C) ≤ (1 + r)n − 1 = nr + O(r2).

It is clear that the influence of points close to the boundary grows once the
dimensionality of the space becomes bigger. To demonstrate the improvement ob-
tained compared to the straight application of theorem 2.1 with r =

√
n, both

bounds are plotted in figure 1 for n = 3, k = 1, p = 2, α = 1 and C = [−1/2, 1/2]3

using the estimate λ(Cr/2) ≤ (r + 1)3 in (3.1).

4. A Probabilistic Lower Bound

(a) The Small Ball Probability

In this section the lower bound in theorem 1.2 is derived. The proof is based on
the properties of the random variable

ωXi(di,k) = P (Bp(Xi, di,k)).

It is interesting that ωXi(di,k) has a distribution that is independent of the proba-
bility measure P as shown in the following well-known lemma. The proof is given
here for completeness, but it can also be found for example in Evans & Jones (2002).
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Figure 1. A demonstration of the bounds in Corollary 2.2 (the solid line) and Theorem
3.1.

Lemma 4.1. For any i, α > 0,

E[ωXi(di,k)α|Xi] =
Γ(k + α)Γ(M)

Γ(k)Γ(M + α)
.

Proof. Choose 0 < z < 1 and set t = inf{s > 0 : ωXi(s) > z}. Then ωXi(t) = z
and ωXi(di,k) > z if and only if there are at most k − 1 points in the set Bp(Xi, t).
Thus a combinatorial argument yields almost surely

P (ωXi(di,k) > z|Xi) =

k−1
∑

j=0

(

M − 1

j

)

ωXi(t)
j(1 − ωXi(t))

M−j−1

=

k−1
∑

j=0

(

M − 1

j

)

zj(1 − z)M−j−1. (4.1)

Uxsing the formula

(

M − 1

j

)

=
Γ(M)

Γ(M − j)Γ(j + 1)
,

Theorem 8.16 in Rudin (1986) and, for example, an induction argument together
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with the properties of the Beta function we obtain

E[ωXi(di,k)α|Xi] = α

∫ 1

0

zα−1P (ωXi(di,k) > z|Xi)dz

= α

k−1
∑

j=0

∫ 1

0

(

M − 1

j

)

zj+α−1(1 − z)M−j−1dz

= α
k−1
∑

j=0

(

M − 1

j

)

Γ(j + α)Γ(M − j)

Γ(M + α)

= α

k−1
∑

j=0

Γ(M)Γ(j + α)

Γ(j + 1)Γ(M + α)
=

Γ(k + α)Γ(M)

Γ(k)Γ(M + α)
.

(b) A Derivation of the Lower Bound

Let us define the Hardy-Littlewood maximal function

L(x) = sup
t>0

ωx(t)

Vn,ptn
.

As a consequence of basic properties of maximal functions, we may bound the L1

norm of L(x) by

Lemma 4.2. Choose s > 1 and let s′ = s
s−1 . For any i > 0,

E[L(Xi)] ≤ 3n/se1/s(
s2

s − 1
)1/s‖q‖s‖q‖s′ . (4.2)

Proof. By Holder’s inequality,

E[L(Xi)] ≤ ‖L‖s‖q‖s′ . (4.3)

By a classical result for maximal functions, see for example theorem 8.18 in Rudin
(1986), ‖L(x)‖s is finite if the density q belongs to the space Ls. In fact, the proof
of Theorem 8.18 in the aforementioned reference gives us the well-known bound

‖L‖s ≤ 3n/se1/s(
s2

s − 1
)1/s‖q‖s,

which can be substituted into Equation (4.3) to obtain Equation (4.2).

Given lemmas 4.1 and 4.2, the main result of the section follows rather easily:

Theorem 4.3. For α, i > 0 and s > 1,

E[dα
i,k] ≥ 3−α/se−α/ns(

s2

s − 1
)−α/ns‖q‖−α/n

s ‖q‖−α/n
s′ V −α/n

n,p

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
.
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Proof. By lemma 4.1,

E[dα
i,k|Xi] ≥ V −α/n

n,p L(Xi)
−α/nE[ωXi(di,k)α/n|Xi]

= V −α/n
n,p L(Xi)

−α/n Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)
.

The proof is completed by observing the fact that by Jensen’s inequality

E[L(Xi)
−α/n] ≥ E[L(Xi)]

−α/n

and applying lemma 4.2.

Theorem 1.2 follows now as a corollary.

Corollary 4.4. The inequality

E[di,k] ≥ 3−α/22−α/ne−α/2n‖q‖−2α/n
2 V −α/n

n,p

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

holds for α > 0 and 1 ≤ i ≤ M .

5. Discussion

(a) Possible Improvements

A comparison between Theorem 1.1 and Equation (1.1) reveals that our upper
bound is approximately 2α times higher than the asymptotic moments in (1.1). An
interesting question is, whether one can actually improve theorem 3.1 by taking
into account that the samples are independent and identically distributed. On the
other hand, the geometric bounds are strong in the sense that they hold for any
combination of points.

Theorem 4.3 requires that

∫

ℜn

q(x)sdx < ∞

for some s ≥ 2. Possibly such a condition could be avoided to obtain a similar result
with weaker conditions. Another direction of considerable interest is the extension
to the non-i.i.d. case, which occurs especially in physics.

(b) Applications

In general, nearest neighbor distances arise as a basic quantity in many fields.
One specific application of particular interest is analyzing finite spherical packings,
where the centers of non-overlapping hard spheres are chosen in a random way. Such
packings arise for example via random sequential adsorption (RSA) (see Talbot et

al. (2000)) or in equilibrium statistical physics (see for example Torquato (1995)).
The main challenge in hard sphere systems is the possibility of long-range depen-
dencies, which hamper the theoretical analysis. Thus Theorem 1.1 is an interesting
tool for analysis of packing fractions and other important quantities, as it is based
on a non-probabilistic argument and holds for any configuration of points. It is also
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of interest to ask, whether an analogue of Theorem 1.2 could be proven for hard-
sphere systems and how tight such bounds would be. The potential of bounds on
nearest neighbor distances has already been noted by Torquato (1995), who found
rather deep connections between physical and geometric quantities.

Many estimators in nonparametric statistics are based on the use of nearest
neighbor distances. Thus nonparametric statistics is another interesting application
area for the theory of nearest neighbor distributions. For some recent work we refer
to Kohler et al. (2002), where a probabilistic nearest neighbor bound plays an
important role in the convergence analysis of nonparametric regressions estimators
for unbounded data. Apart from regression, similar techniques are useful in the
analysis of nonparametric classifiers as demonstrated by Kulkarni & Posner (1995).
The advantage of our bounds is that they take a concrete form without unknown
constants while being rather tight and general.
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