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ABSTRACT

Estimating entropies is important in many fields including

statistical physics, machine learning and statistics. While

the Shannon logarithmic entropy is the most fundamental,

other Rényi entropies are also of importance. In this paper,

we derive a bias corrected estimator for a subset of Rényi

entropies. The advantage of the estimator is demonstrated

via theoretical and experimental considerations.

1. INTRODUCTION

Entropy is a measure of randomness originating from in-

formation theory [1]. While many possible definitions of

entropy exist, it is well-known that the so-called Shannon

logarithmic entropy is the only one that satisfies a set of

rather intuitive axioms [1, 2]. Consequently, Shannon en-

tropy is the most natural from information theoretic point

of view and it has turned out to be an important concept

for science in general [3]. However, it was shown in [2]

that if one of the underlying axioms is relaxed, entropy is

no longer uniquely defined and a whole family of possible

measures of randomness exist. Such quantities are called

Rényi entropies.

While Rényi entropies do not necessarily have as strong

a theoretical background as the Shannon entropy, they have

nevertheless turned out to be useful in many fields (e.g.

[4, 5, 6]). If deep information theoretic properties are not

needed, a Rényi entropy is usually a valid choice for appli-

cations. Moreover, there exists many situations where the

Shannon entropy is not the only one with an intuitive inter-

pretation.

In this paper, we consider estimating Rényi entropies

from an independent identically (i.i.d) distributed sample

(Xi)
M
i=1. Denoting the common density by p, this amounts

to estimating
1

1 − β
log

∫

p(x)βdx

for some β > 0. We will first restrict ourselves to 0 < β <
1 and the Shannon entropy β = 1 (understood as the limit

β → 1) is discussed in the last section. This is due to the

fact that β > 1 is currently not covered by the theory behind

our approach (even if an extension seems possible).

While various approaches for the estimation of Rényi

entropies exist, the work closest to ours are estimators based

on random graphs [4, 7]. Our proposal relies heavily on the

well-known connection between nearest neighbor distances

and information theory [7]. The estimator is based on our

theoretical work on the boundary effect [8], which allows

removing the error term caused by the boundary cut-off.

The paper is divided into three major parts. In Sections

2-4 we discuss the theory behind our proposal for 0 < β <
1 and relation to earlier work. After that, simulations are

made to demonstrate the practical usefulness of the theoret-

ical considerations. Interestingly, the experiments indicate

that the boundary corrected estimator is accurate even in

cases, where our theoretical assumptions do not hold.

In Section 6, we consider extending the technique to

estimating the Shannon entropy (β = 1) using a similar

boundary correction as the one employed for Rényi entropies.

We will show that a straightforward extension is possible,

even though its practical validity is not clear. Unfortunately,

a boundary correction for logarithmic distances does not

currently exist in the literature (albeit it is straightforward

to derive) and thus the discussion at this part is not yet on a

completely rigorous basis.

2. RÉNYI ENTROPY

Many learning and data-analysis problems involve an ob-

served independent identically (i.i.d) distributed sample

(Xi)
M
i=1

with the common probability density p on a state-spaceX ⊂
ℜn. In this paper, we consider estimating information the-

oretic properties of the density p using the sample (Xi)
M
i=1.

More specifically, we consider finite sample approximations

to the Rényi entropy

Hβ(p) =
1

1 − β
log

∫

X

p(x)βdx (1)



for β > 0. Moreover, even though it is possible to choose

β > 1, we have to restrict ourselves to the case β < 1 (for

β = 1 see Section 6) because of the assumptionsmade by us

in [8]. As a remark, the case β > 1 is definitely of interest

too (see e.g. [6]), but to handle it a slight extension to the

results in [8] would be needed. Possibly the most important

entropy (except for the Shannon entropy β = 1) is the one
with β = 0.5 as H0.5(p) has a straightforward connection

to the Hellinger distance between p and the uniform density.

3. THE CONNECTION OF RÉNYI ENTROPY AND

NEAREST NEIGHBOR DISTANCES

The definition of the nearest neighbor of a point is based

on the use of a proximity measure to determine similarity

between points. The index of the nearest neighbor of the

point Xi in Euclidean metric is

N [i, 1] = argmin1≤j≤M,j 6=i‖Xi − Xj‖.

The k-th nearest neighbor is defined recursively by

N [i, k] = argmin1≤j≤M,j /∈{i,N [i,1],...,N [i,k−1]}‖Xi − Xj‖,

that is, the closest point after removal of the preceeding

neighbors. The corresponding distances are defined as di,k,M =
‖Xi − XN [i,k]‖. We also set

δM,k,α =
1

M

M
∑

i=1

dα
i,k,M , (2)

which is the empirical α-moment for the distances to the

k-th nearest neighbor. A well-known result in random ge-

ometry [9, 10, 11, 12] states that asymptotically δM,k,α has

a rather simple form for large M :

Theorem 1. Under appropriate regularity conditions (see

[10, 12]), we have the convergence (α > 0)

Mα/nE[δM,k,α] → V −α/n
n

Γ(k + α/n)

Γ(k)

∫

X

p(x)1−α/ndx

(3)

when M → ∞ with everything else fixed. Here Vn denotes

the volume of the unit ball in ℜn and Γ refers to the Gamma

function.

An elegant aspect of Equation (3) is its connection to the

Rényi entropy (1):

H1−α/n(p) ≈ Ĥ1,1−α/n(p)

=
n

α
log(

Mα/nV
α/n
n

Γ(1 + α/n)
δM,1,α), (4)

where the substitution of Mα/nδM,1,α to E[Mα/nδM,1,α]
is known to be accurate for a large M [7, 13]. This simple

estimate is essentially the state of the art in nearest neigh-

bor entropy estimation [7]. While there exists various works

on the consistency of the estimator, the systematic error was

not well-understood until the following theoremwas proven

by us in [8] characterizing the difference of the left and right

hand side in the limit (3). For information on technicalities

related to the proof, see [8]. Some basic knowledge of man-

ifolds is required, as the second term involves an integral

over the boundary manifold ∂X .

Theorem 2. Suppose that X is an open and bounded set

and the boundary∂X is a twice differentiable compact man-

ifold. Moreover, assume that the density function p is twice

continuously differentiable on X and strictly above zero.

Then we have for large M (with k ≥ 1, n ≥ 2 and α > 0
fixed)

E[δM,k,α] = V −α/n
n

Γ(k + α/n)Γ(M)

Γ(k)Γ(M + α/n)

∫

X

p(x)1−α/ndx+

+ (D − V −α/n−1/n
n )

Γ(k + α/n + 1/n)Γ(M)

Γ(k)Γ(M + α/n + 1/n)
×

×

∫

∂X

p(x)1−α/n−1/ndS + o(M−α/n−1/n), (5)

where the second term in the right hand side contains the

integral of p(x)1−α/n−1/n over the boundary ∂X . The con-

stant D does not depend on k or M . The remainder term

o(M−α/n−1/n) approaches zero faster than M−α/n−1/n

and thus it is neglible for large M .

To understand the result properly, it is essential to ob-

serve that (γ > 0)

Γ(M)

Γ(M + γ)
= M−γ + O(M−γ−1);

in practice the approximation is usually very accurate.

The derivation of our novel Rényi entropy estimator in

the next section relies on Theorem 2. For practical purposes,

the conditions of Theorem 2 are restrictive, even though

in [8] the theorem is shown to hold also if X is a poly-

tope. However, it is necessary for a good estimator to han-

dle probability distributions with boundaries as otherwise

it does not perform well even for simple models like uni-

formly distributed points.

To demonstrate the need for improvement, we state that

Theorem 2 applied to Equation (4) together with a Taylor

expansion yields for a fixed 0 < α < n,

E[Ĥ1,1−α/n(p)] = H1−α/n(p) + cM−1/n + o(M−1/n),
(6)

where the constant c does not depend on M . The term

o(M−1/n) approaches zero faster than M−1/n and thus it

is neglible for a large M . Consequently, on expectation the

estimator Ĥ1,1−α/n(p) has an error term which depends on



M−1/n and it can be verified that when n ≥ 3 such a term

converges very slowly to zero with respect to M . This im-

plies that the estimator Ĥ1,1−α/n(p) is sensitive to the curse
of dimensionality.

4. THE NOVEL BOUNDARY CORRECTED

ESTIMATOR

The theoretical result in Equation (5) is not only useful in

the bias analysis of existing nearest neighbor estimators, but

it also suggests an elegant bias correction to improve the

rate of convergence with respect to M . To see how such

a correction can be implemented, let us choose the scalar

weights (wk)l
k=1 in such a way that

l
∑

k=1

wkΓ(k + α/n)

Γ(k)
= V α/n

n (7)

and
l

∑

k=1

wkΓ(k + α/n + 1/n)

Γ(k)
= 0. (8)

Such weights can always be chosen if l > 2. Now with this

choice, we have (keeping everything except M fixed) by an

application of the expansion (5),

Γ(M + α/n)

Γ(M)
E[

l
∑

k=1

wkδM,k,α]

=

∫

X

p(x)1−α/ndx + o(M−1/n).

The boundary term vanishes in the weighted average. This

motivates our proposal for the estimation of Rényi entropies:

Ĥ2,1−α/n(p) =
n

α
log(

l
∑

k=1

wkδM,k,α) (for n ≥ 2).

The advantage compared to Ĥ1,1−α/n(p) is characterized

by

Theorem 3. With weights satisfying Equations (7) and (8),

we have under the conditions of Theorem 2

E[Ĥ2,1−α/n(p)] = H1−α/n(p) + o(M−1/n).

The error term o(M−1/n) goes to zero faster than M−1/n.

The proof of Theorem 3 is a straightforward application

of Theorem 2 and linearization of logarithm at 1. A compar-

ison to Equation (6) reveals that our estimator Ĥ2,1−α/n(p)
will have a lower bias for large M for a large class of den-

sities, while it shares the same consistency properties as the

k-nearest neighbor estimator [7].

Our considerations hold only for expectation values of

the estimators. Obviously to analyze consistency and rate

of convergence, it is necessary to examine the variance too.

However, the variance of local random variables is rather

well-understood due to [13] and [14], where a law of large

numbers is proven in a generality which covers the estima-

tors analyzed in this paper. Based on those results, we can

state that

E[Ĥ2,1−α/n(p)2] − E[Ĥ2,1−α/n(p)]2 ≤ cM−1

for a constant cwhich does not depend onM . A comparison

to Equation (6) reveals that the standard deviation is asymp-

totically neglible compared to the bias of Ĥ1,1−α/n(p)when
n ≥ 3. Even though it is outside the scope of this paper,

it would be of significant interest to characterize the vari-

ance of Ĥ2,1−α/n more accurately, because that would al-

low choosing (wk)l
k=1 in an optimal way.

5. SIMULATIONS

In our simulations, we compare our weighted estimator

Ĥ2,1−1/n(p)

to the original estimator

Ĥ1,1−1/n(p).

The goal is to show that the theoretical considerations have a

practical significance and performance in the class of prob-

ability distributions with boundaries is improved.

When l > 2, the weights (wk)l
k=1 are not uniquely de-

termined by Equations (7) and (8). Of the possible solu-

tions, we simply choose the one with the smallest norm

√

√

√

√

l
∑

k=1

w2
k . (9)

As the choice of the weights (wk)l
k=1 depends on l as well,

there is another degree of freedom that needs to be addressed.

Based on some initial experimentation and the magnitude of

the norm (9), we decided to set l = n + 2 in our implemen-

tation, as it was found to be a good value when estimating

the 1 − 1/n entropy with n ≤ 6. The intuition behind ex-

amining the norm is that if the weights take large values, the

estimator is bound to have a high variance.

5.1. Uniform Distribution

In the first experiment, we analyze uniformly distributed

points in the cube [0, 1]n, where n increases from 3 to 6
(the case n ≤ 2 was not of interest to us, as we believe that
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Fig. 1. Rényi entropy: RMSE and standard deviations for

the experiment with uniform data. The solid lines corre-

spond to the RMSE axis, while the two dashed lines present

the standard deviations of the estimators using the second

y-axis. In both cases, the lines with dots point to the bias

corrected estimator.

Ĥ1,1−1/n(p) works usually just fine in that case) and M
grows up to 9000 in steps of 300. As can be easily verified

H1−1/n(p) = 0.

The uniform distribution can be viewed as the distribution

with maximal randomness in the unit cube. The results of

the simulations are drawn in Figure 1. We have computed

estimates for the root mean square error (RMSE)

√

E[(H1−1/n(p) − Ĥi,1−1/n(p))2] (i = 1, 2)

by averaging over 1000 realizations to estimate the expec-

tation inside the square root. In addition, Figure 1 includes

estimates of the standard deviations
√

E[Ĥi,1−α/n(p)2] − E[Ĥi,1−α/n(p)]2 (i = 1, 2).

We can see that the proposed method is more accurate, even

though there is a clear increase in standard deviation.

5.2. Truncated Gaussian

The experiment involves both boundaries and correlation

between components introducing an additional degree of

difficulty. In this case, the variables (Xi)
M
i=1 are samples

from the multivariate normal distribution restricted to the

unit ball. Again, the true value of the entropy is rather

straightforwardly computable. In Figure 2, we have drawn

the standard deviations and RMSEs averaged over 1000 re-

alizations. Again, the bias corrected estimator is signifi-

cantly more accurate.
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Fig. 2. Rényi entropy: RMSE and standard deviations for

the experiment with truncated Gaussian data. Similarly as

in Figure 1, solid lines point to RMSE and dots to the bias

corrected estimator.

5.3. The Gaussian Distribution

In the last experiment, we experimented with normally dis-

tributed data. Because normal distribution is invariant with

respect to orthonormal rotations, there is no point in includ-

ing correlations between the components of the random vec-

tors. However, we wanted to test how the estimators behave

when different components of Xi have different variances.

To achieve this goal, the components were scaled so as to

set the variance of the first to 0.5, the second to 0.75, third
to 1 and so on (in total n components with 3 ≤ n ≤ 6).

Interestingly, the Gaussian distribution is not covered by

our theoretical analysis as it does not have boundaries. From

Figure 3, we can see that both Ĥ1,1−1/n(p) and Ĥ2,1−1/n(p)
are accurate, which is expected as the estimation problem is

significantly easier in the absence of cut-offs. However, for

large sample sizes Ĥ2,1−1/n(p) is more accurate whereas

for smaller sample sizes it is actually worse due to the in-

crease in variance (in practice, normalization as a prepro-

cessing step might alleviate the problem). The result is in-

teresting as a faster rate of convergence for Ĥ2,1−1/n(p) has
not been theoretically established in this case.

6. ON THE EXTENSION TO THE SHANNON

ENTROPY

It is natural to ask, whether a boundary correction exists for

the Shannon entropy

−

∫

X

p(x) log p(x)dx
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Fig. 3. Rényi entropy: RMSE and standard deviations for

the experiment with Gaussian data. Solid lines point to

RMSE and dots to the bias corrected estimator.

as well. As stated earlier, the logarithmic entropy is related

to the Rényi entropies by the limit

−

∫

X

p(x) log p(x)dx = lim
β→1

Hβ(p).

The following theorem shows that in principle an analogous

boundary correction is possible. The proof is rather compli-

cated and it is omitted here, but the reader can informally

verify that the result is obtained by taking the derivative of

Equation (5) with respect to α, even though such an obser-

vation is by no means valid as a rigorous proof. The actual

proof is essentially the same as that of Theorem 2 with the

exception that the α-moment is replaced by logarithm.

Theorem 4. Under the assumptions of Theorem 2, we have

E[ log d1,k] = C1
Γ(M)

Γ(M + 1/n)

∫

∂X

p(x)1−1/ndS−

− n−1

∫

X

p(x) log p(x)dx + C2 + o(M−1/n).

The variables C1 and C2 are functions of M and k:

C1(M, k) =
V

−1/n
n Γ(k + 1/n) logVn

nΓ(k)
+

+
V

−1/n
n φ(M + 1/n)Γ(k + 1/n)

nΓ(k)
+ D1(φ(k + 1/n)−

−
Γ(k + 1/n)φ(M + 1/n)

Γ(k)
) −

V
−1/n
n φ(k + 1/n)

n
+

+
D2Γ(k + 1/n)

Γ(k)

C2(M, k) =
1

n
(φ(k) − φ(M) − log Vn),

where the constants D1 and D2 depend only on n. φ refers

to the digamma function.

Now if we choose the weights (wk)l
k=1 in such a way

that

l
∑

k=1

wk = n

l
∑

k=1

wk
Γ(k + 1/n)

Γ(k)
= 0

l
∑

k=1

wkφ(k + 1/n) = 0,

then Theorem 4 implies that

l
∑

k=1

wkE[log d1,k] = −

∫

X

p(x) log p(x) dx + o(M−1/n)

and terms of order M−1/n disappear. Thus the estimator

−

∫

X

p(x) log p(x) dx ≈
1

M

M
∑

i=1

l
∑

k=1

wk log di,k−

−
l

∑

k=1

wkC2(M, k) (10)

would seem to have a similar speed of convergence with

respect to M as the Rényi entropy estimators Ĥ2,1−α/n.

Even if the extension seems theoretically straightforward,

some practical difficulties arise due to the fact that the norm

√

√

√

√

l
∑

k=1

w2
k (11)

tends to be large. Intuitively, this may lead to high variance

unless l is large. To assess the validity of the estimate (10),

the experiment in Section 5.2 was repeated for the logarith-

mic entropy with the heuristic choice l = 20 for n = 3, 4
and l = 30 for n = 5, 6; similarly as before, among possible

choices for the weights (wk)l
k=1, the ones with the minimal

norm (11) are chosen. The result is drawn in Figure 4

As expected, an asymptotic improvement is obtained.

On the other hand, especially when n > 4, the small sample

behavior of (10) is not very good. Moreover, the increase

in standard devitation has a significant impact on accuracy

even for large M .

7. CONCLUSIONS

A bias-corrected method for the estimation of Rényi en-

tropies was proposed. The estimators are based on weight-

ing k-nearest neighbor estimators with the choice of weights
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Fig. 4. Shannon entropy: RMSE and standard deviations

for the experiment with truncated Gaussian data. Solid lines

point to RMSE and dots to the bias corrected estimator (10).

based on theoretical considerations. The simulations show

that in practice, an improvement in accuracy is obtained es-

pecially for large sample sizes. Because the theoretical as-

sumptions were rather restrictive, further theoretical work is

still needed to understand the properties of the method.

As a topic of future research, we state examining the

asymptotic variance of the proposed estimators. It is possi-

ble that the weights should be chosen so as to minimize the

asymptotic variance. This seems to be especially relevant

for the estimation of the Shannon entropy. Finally, possibly

the most important contribution of this work is the possibil-

ity for higher order bias corrections.
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