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1 INTRODUCTION

In many real-life problems it is convenient to reduce the
number of involved features (variables) in order to reduce
the complexity, especially when the number of features is
large compared to the number of observations (e.g. fi-
nance problems, weather forecast, electricity load predic-
tion, medical or chemometric information, etc.). There are
several criteria to tackle this variable reduction problem.
Three of the most common are: maximization of the mu-
tual information (MI) between the inputs and the outputs,
minimization of the k-nearest neighbors (k-NN) leave-one-
out generalization error estimate and minimization of a
nonparametric noise estimator (NNE).

The problem of regression or function approximation
consists in, given a set of input vectors with their corre-
sponding output, it is desired to build a model that learns
the relationship between the input variables and the out-
put variable. The designed model should also have the
ability to generalize, so when new input vectors that were
not in the original training data set are given to the model,
it is able to generate the correct output for those values.
Formally this problem can be enunciated as, given a set of
observations {(~xj ; yj); j = 1, ..., N} with yj = F (~xj) ∈ R

and ~xj ∈ R
d, it is desired to obtain a function G so yj = G

(~xj) ∈ R with ~xj ∈ R
d.

There exists a wide variety of models that are able to
approximate any function such as Radial Basis Function
Neural Networks (Poggio and Girosi, 1989), Multilayer
Perceptrons (Rosenblatt, 1958), Fuzzy Systems (Kosko,
1994), Gaussian Process (Rasmussen, 2004), Support Vec-
tor Machines (SVM) and Least Square SVM (Lee and
Verri, 2002), etc. however, they all suffer from the Curse
of Dimensionality (Herrera et al., 2006). As the number of
dimensions d grows, the number of input values required
to sample the solution space increases exponentially, this
means that the models will not be able to set their param-
eters correctly if there are not enough input vectors in the
training set. Many real life problems present this draw-
back since they have a considerable amount of variables
to be selected in comparison to the few number of obser-
vations. Thus, efficient and effective algorithms to reduce
the dimensionality of the data sets are required. Another
aspect that is improved by selecting a subset of variables is
the interpretability of the designed systems (Guyon et al.,
2006).

The literature presents a wide number of methodologies
for feature or variable selection ((Punch et al., 1993; Oh
et al., 2004, 2002; Raymer et al., 2000; Saeys et al., 2007))
although they have been focused on classification prob-
lems. Regression problems differ from classification since:

• the output of the problem is continuous, not like
in classification, where a finite number of classes is
defined a priori. For example, the output of the
function could be in the interval [0,1] meanwhile a
classification could consist in the distinction between
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(table, chair, library).

• There is a proximity between different outputs, not
like in classification, where classes (in general) cannot
be related. For example, it is possible to determine
that the output value 0.45 is closer to 0.5 than the
value 0.35 but it is not possible to determine a prox-
imity between the class table and the class chair or
library.

Therefore, specific algorithms for this kind of problem
must be designed. Recently, it has been demonstrated in
(Eirola et al., 2008) how the Delta Test (DT) is a quite
powerful tool to determine the quality of a subset of vari-
ables. The latest work related to feature selection using the
DT consisted in the employment of a local search technique
such as Forward-Backward. However, there are other alter-
natives that allow to perform a global optimization of the
variable selection like Genetic Algorithms (GA) (Holland,
1975) and Tabu Search (TS) (Glover and Laguna, 1997).
One of the main drawbacks of using global optimization
techniques is their computational cost. Nevertheless, the
latest advances in computer architecture provide powerful
clusters without requiring a large budget, so an adequate
parallelization of these techniques might ameliorate this
problem. This is quite important in real life applications
where the response time of the algorithm must be accept-
able from the perspective of a human operator. This pa-
per presents several new approaches to perform variable
selection using the DT as criterion to decide if a subset
of variables is adequate or not. The new approaches are
based in local search methodologies, global optimization
techniques and the hybridization of both. The rest of the
paper is structured as follows: Section 2 introduces the DT
and its theoretical framework, then, Section 3 describes the
previous methodology to perform the variable selection as
well as the new developed algorithms. Section 4 presents
a complete experimental study analyzing the behavior of
the algorithms and, in Section 5, conclusions are drawn.

2 THE DELTA TEST

The Delta Test (DT), firstly introduced by Pi and Peter-
son for time series (Pi and Peterson, 1994) and proposed
for variable selection in (Eirola et al., 2008), is a tech-
nique to estimate the variance of the noise, or the mean
squared error (MSE), that can be achieved without over-
fitting. Given N input-output pairs (xi, yi) ∈ R

d × R, the
relationship between xi and yi can be expressed as

yi = f(xi) + ri, i = 1, ..., N

where f is the unknown function and r is the noise. The
DT estimates the variance of the noise r.

The DT is useful for evaluating the nonlinear correlation
between two random variables, namely, input and output
pairs. The DT can be also applied to input variable selec-
tion: the set of input variables that minimizes the DT is
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the one that is selected. Indeed, according to the DT, the
selected set of input variables is the one that represents
the relationship between input variables and the output
variable in the most deterministic way. DT is based on
hypothesis coming from the continuity of the regression
function. If two points x and x′ are close in the input
variable space, the continuity of regression function im-
plies the outputs f(x) and f(x′) will be close enough in
the output space. Alternatively, if the corresponding out-
put values are not close in the output space, this is due to
the influence of the noise.

The DT can be interpreted as a particularization of the
Gamma Test (Jones, 2004) considering only the first near-
est neighbor. Let us denote the first nearest neighbor of a
point xi in the R

d space as xNN(i). The nearest neighbor
formulation of the DT estimates Var[r] by

Var[r] ≈ δ =
1

2N

N∑

i=1

(yi − yNN(i))
2,

with Var[δ] → 0 for N → ∞

where yNN(i) is the output of xNN(i).

3 VARIABLE SELECTION METHODOLOGIES

This Section presents the previous methodology proposed
to compute the minimum value for the DT, the Forward-
Backward search. Then, it presents an adaptation of the
Tabu search for the minimization of the DT. Finally, a new
algorithm that combines the Tabu Search and the global
optimization capabilities of GA is introduced.

The methodologies described below are applied to the
problem of variable selection from two perspectives: binary
and scaled. The binary approach considers a solution as a
set of binary values that indicate if that variable is relevant
or not. The scaled approach assigns a weighting factor
to each variable according to its importance. The scaling
problem is more challenging because the solution space
grows considerably.

3.1 Forward-backward search

To overcome the difficulties and the high computational
time that an exhaustive search would entail (i.e. 2d − 1
input variable combinations, being d the number of vari-
ables), there are several other search strategies. These
strategies are affected by local optima because they do not
test every input variable combination, but they are pre-
ferred over an exhaustive search if the number of variables
is too large.

Among the typical search strategies, there are three that
share similarities:

• Forward search

• Backward search (or pruning)

• Forward-backward search

The difference between the first two is that the forward
search starts from an empty set of selected variables and
adds variables to it according to the optimization of a
search criterion, while the backward search starts from a
set containing all the variables and removes those for which
the elimination optimizes the search criterion.

Both forward and backward search suffer from incom-
plete search. The Forward-Backward Search (FBS) is a
combination of them. It is more flexible in the sense that
a variable is able to return to the selected set once it has
been dropped, and vice versa, a previously selected vari-
able can be discarded later. This method can start from
any initial input variable set: empty set, full set, custom
set or randomly initialized set. If we consider a set of N
input-output pairs (xi, yi) ∈ R

d×R, the forward-backward
search algorithm can be described as follows

1. Initialization:

Let S be the selected input variable set, which can
contain any input variables, and F the unselected
input variable set, which contains the variables not
present in S. Compute Var[r] using Delta Test on the
set S.

2. Forward-Backward selection step:

Find the variable xS to include or to remove from the
set S to minimize Var[r]:

xS = arg minxi,xj{(Var[r]|S ∪ xj) ∪ (Var[r]|S \ xi)},

xi ∈ S, xj ∈ F

3. If the old value of Var[r] on the set S is lower than
the new result, stop; otherwise, update set S and save
the new Var[r]. Repeat step 2 until S is equal to any
former selected S.

4. The selected input variable set is S

3.2 Tabu search

Tabu Search (TS) is a metaheuristic method designed to
guide local search methods to explore the solution space
beyond local optimality. The first most successful usage
was by Glover (Glover, 1986, 1989, 1990) for combinatorial
optimization. Later TS was successfully used in schedul-
ing (DellÁmico and Trubian, 1993; Mantawy et al., 2002;
Zhang et al., 2007), design (Xu et al., 1996a,b), routing
(Brandao, 2004; Scheuerer, 2006) and general optimiza-
tion problems (Glover, 2006; Hedar and Fukushima, 2006;
Al-Sultan and Al-Fawzan, 1997). The TS has become a
powerful method with different components tied together,
that is able to obtain excellent results in different problem
domains.

In general, the problem is in form of an objective or
cost function f(v), given the set of solutions v ∈ V . In
the context of TS, the neighborhood relationship between
solutions, denoted Ne(v), plays the central role. While
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there are other neighborhood based methods, such as de-
scent/ascent methods widely used, the difference is that
tabu uses memory in order to influence which parts of the
neighborhood are going to be explored. A memory is used
to record various aspects of the search process and the
solutions encountered, such as recency, frequency, qual-
ity and influence of moves. Instead of storing whole solu-
tions in memory, which is impractical in some problems,
the common thing is to store attributes of solutions or
moves/operations used to transition from one solution to
the next one.

The most important aspect of the memory is to forbid
some moves to be applied, or in other words, to prevent the
search to go back to solutions that were already visited.
This also allows the search to focus on such moves that
guide the search toward unexplored areas of the solutions
space. This part of the memory is called a tabu list, and
the moves in this list are then considered tabu, and thus
forbidden to use. The size of the tabu list as well as the
time each move is kept in the list are important issues in
TS. These parameters should be set up so that the search
is able to go through two distinct, but equally important
phases: intensification and diversification.

As far as we know, no implementation of the TS to min-
imize the DT has ever been done, so it was implemented
in this work as an improvement over the FBS, which does
not have any memory enhancement. Due to the fact that
this paper considers the variable selection and the scal-
ing problem, two different algorithms had to be designed.
Both algorithms use only short-term recency based mem-
ory to store reverse moves instead of solutions to speedup
the exploration of the search space.

3.2.1 TS for pure variable selection

In the case of variable selection, a move was defined as a flip
of the status of exactly one variable in the data set. The
status is excluded (0) or included (1) from the selection.
For a data set of dimensionality d, a solution is then a
vector of zeros and ones v = (v1, v2, . . . , vd), where vk ∈
{0, 1} , k = 1, ..., d, are indicator variables representing the
selection status of k-th dimension.

The neighborhood of a selection (solution) v is a set
of selections u which have exactly one variable that has
different status. This can be written as

Ne(v) = {u | ∃1q ∈ {1, . . . , d} vq 6= uq ∧ vi = ui, i 6= q}

With this setup, each solution has exactly the same
amount of neighbors, which will be equal to d.

3.2.2 TS for the scaling problem

The first modification that requires the adaptation to the
scaling problem is the definition of the neighborhood of a
solution. A solution v is now a vector with scaling val-
ues from a discretized set vk ∈ H = {0, 1/k, 2/k, . . . , 1},
where k is discretization parameter. Two solutions are
neighbors if they disagree on exactly one variable, same as

for variable selection, but the disagreement is the small-
est possible value. Ne(v) is defined in a same way as
for variable selection, but with an additional constraint
of |vq − uq| = 1/k. For example, for k = 10 and d = 3, the
solutions v1 = (0.4, 0.2, 0.8) and v2 = (0.3, 0.2, 0.8) would
be neighbors, but not the solution v3 = (0.1, 0.2, 0.8). The
move between solutions is defined as a change of value for
one dimension, which can be written as a vector (dimen-
sion, old value, new value).

3.2.3 Setting the tabu conditions

The tenure for a move is defined as the number of iter-
ations that it is considered as tabu. This value is deter-
mined empirically when the TS is applied to solve a con-
crete problem. For the variable selection problem, this
paper proposes a value which is dependent on the num-
ber of dimensions so it can be applied to several problems.
In the experiments, two tabu lists, and thus two tenures,
were used. The first list is responsible for preventing the
change along certain dimension for d/4 iterations. The sec-
ond one prevents the change along the same dimension and
for specified scaling value for d/4 + 2 iterations. The com-
bination of these two lists gave better results than when
each of the conditions was used alone.

For example, for k = 10, if a move is performed along
dimension 3 from value 0.1 to 0.2, which can be writ-
ten as a vector m = (3; 0.1, 0.2), then its reverse move
m−1 = (3; 0.2, 0.1) is stored in the list. The search will be
forbidden to use any move along dimension 3 for d/4 + 2
iterations, and after that time, it will be further 2 itera-
tions restricted to use the move m−1, or in other words to
go back from 0.2 to 0.1.

With these settings, in the case of variable selection, two
conditions are then implicitly merged into one condition:
restrict a flip of the variable for d/4 + 2 iterations. This is
because there are only two values 0,1 as possible choices.

3.3 Hybrid Parallel Genetic Algorithm

The benefits and advantages of the global optimization and
local search techniques have been hybridized in the pro-
posed algorithm. The idea is to be able to have a global
optimization, using a GA, but still being able to make
a fine tune of the solution, using the TS. The following
paragraphs describe the different elements that define the
algorithm.

3.3.1 Encoding of the individuals and initial pop-

ulation

Deciding how a chromosome encodes a solution is one of
the most decisive design steps since it will influence the
rest of the design (De Jong, 1996; Mitchell and Forrest,
1995; Michalewicz, 1996). The classical encoding used for
variable selection has been a vector of binary values where
1 represents that the variable is selected and 0 that the
variable is not selected. As it has been commented above,
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this paper is considering the variable selection using scal-
ing in order to determine the importance of a variable.
Therefore, instead of using binary values, other encoding
must be chosen. If instead of using 0 and 1, the algorithm
uses real numbers to determine the weight of a variable,
the GA could fall into the category of Real Coded Genetic
Algorithms (RCGA). However, the number of scales has
been discretized in order to bound the number of possible
solutions making the algorithm a classical GA where the
cardinality of the alphabet for the solutions is increased in
k values. For the sake of simplicity in the implementation,
an individual is a vector of integers where the number 1
represents that the variable was selected and k + 1 means
that the variable is not selected.

Regarding the initial population, some individuals are
included in the population deterministically to ensure that
each scaling value for each variable exists in the population.
These individuals are required if the classical GA crossover
operators (one/two-points, uniform) are applied so all the
possible combinations can be reached. For example, if the
number of scales is 4 in a problem with 3 variables, the
individuals that are always included in the population are:
1 1 1, 2 2 2, 3 3 3, and 4 4 4.

3.3.2 Selection, crossover and mutation operators

The algorithm was designed in order to be as fast as pos-
sible so when several design options appeared, the fastest
one (in terms of computation time) was selected, as long
as it was reasonable. The selection operator chosen was
the binary tournament selection as presented by Goldberg
in (Goldberg, 1989) instead of the Baker’s roulette wheel
operator (Baker, 1987) or other more complex operators
existing in the literature (Chakraborty et al., 1996). The
reason for this is because the binary tournament does not
require the computation of any probability for each in-
dividual, thus, a considerable amount of operations are
saved on each iteration. This is specially important for
large populations. Furthermore, the fact that the binary
tournament does not introduce a high selective pressure is
not as traumatic as it might seem. The reason is because
the huge solution space, that arises as soon as the number
of scales increases, should be deeply explored to avoid lo-
cal minima. Nevertheless, the algorithm incorporates the
elitism mechanism, keeping the 10% of the best individuals
of the population, so the convergence is still feasible.

Regarding the crossover operator, the algorithm imple-
mented the classical operators for a binary coded GA, these
are: one-point and two-point crossovers and the uniform
crossover (De Jong, 1975; Holland, 1975; Sywerda, 1989).
The behavior of the algorithm using these crossovers was
quite similar and acceptable. Nonetheless, since the algo-
rithm could be included into the Real Coded GA class, an
adaptation of the BLX-α (Eshelman and Schaffer, 1993)
was implemented as well. The operator consists in, given
two individuals I1 = (i11, i

1
2, ...i

1
d) and I2 = (i21, i

2
2, ...i

2
d)

with (i ∈ R), a new offspring O = (o1, ..., oj , ..., od)
can be generated where oj , j = 1...d is a random value

chosen from an uniform distribution within the interval
[imin − α · B, imax + α · B] where imin = min(i1j , i

2
j),

imax = max(i1j , i
2
j), B = imax − imin and α ∈ R. The

adaptation only required to round the absolute value as-
signed to each gene and also the modification of the value
in case it is out of the bounds of the solution space.

The mutation operates at a gene level, so a gene has the
chance to get any value of the alphabet.

3.3.3 Parallelization

The algorithm has been parallelized so it is able to take ad-
vantage of the parallel architectures, like clusters of com-
puters, that are easy available anywhere. The main rea-
son to parallelize the algorithm is to be able to explore
more solutions in the same time, allowing the population
to reach a better solution. There is a wide variety of possi-
bilities when parallelizing a GA (Cantu-Paz, 2000; Alba
and Tomassini, 2002; Alba et al., 2004), however, as a
first approach, the classical master/slave topology has been
chosen (Grefenstette, 1981).

As the previous subsection commented, the algorithm
was designed to be as fast as possible, nonetheless, the fit-
ness function still remains expensive in comparison with
the other stages of the algorithm (selection, crossover, mu-
tation, etc.). At first, all the stages of the GA were par-
allelized, but the results showed that the communication
and synchronization operations could be more expensive
than performing the stages synchronously and separately
on each processor 1. Hence, only the computation of the
DT for each individual is distributed between the differ-
ent processors. As it is proposed in the literature (Cantu-
Paz, 2000), the master/slave topology uses one processor
to perform the sequential part of the GA and then, sends
the individuals to different processors that will compute
the fitness function. Some questions might arise at this
point like: Are the processors homogeneous?, How many
individuals are sent at a time?, Is the fitness computation
time constant?

The algorithm assumes that all processors are equal with
the same amount of memory and speed. If they were not,
it should be considered to send the individuals iteratively
to each processors as soon as they were finished with the
computation of the fitness of an individual. This is equiv-
alent to the case where the fitness function computational
time might change from one individual to another. How-
ever, the computation of the DT does not significantly vary
from one individual to another, despite the number of vari-
ables they have selected. Thus, using homogeneous pro-
cessors and constant time consuming fitness function, the
amount of individuals that each processor should evaluate
is size of population/number of processors.

The algorithm has been implemented so the number of
communications (and their number of packets) is mini-
mized. To achieve this, all the processors execute exactly

1This paper considers that a processor will execute one process of
the algorithm.
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the same code so, when each one of them has to evalu-
ate its part of the population, it does not require to get
the data from the master because it already has the cur-
rent population. The only communications that have to be
done during the execution of the GA are, after the eval-
uation of the individuals, to send and receive the values
of the DT, but not the individuals themselves. To make
possible that all processors have the same population all
the time considering that there are random elements, at
the beginning of the algorithm the master processor sends
to all the others the seed for their random number gener-
ators. This implies that they all produce the same values
when calling the function to obtain a random number. In
this way, when the processors have to communicate, only
the value of the DT computed will be sent, saving the com-
munications that would require to send each individual to
be evaluated. This is specially important since some prob-
lems require large individuals, increasing the traffic in the
network and retarding the execution of the algorithm.

3.3.4 Hybridization

The combination of local optimization techniques with GA
has been studied in several papers (Ishibuchi et al., 2003;
Deb and Goel, 2001; Guillén et al., 2008). Furthermore,
the inclusion of a FBS in a stage of an algorithm for vari-
able selection was recently proposed in (Oh et al., 2004)
but, the algorithm was oriented to classification problems.
The new approach that this paper proposes is to perform a
local search at the beginning and at the end of the GA. The
local search will be done by using the TS described in the
Section 3.2, so it does not stop when it finds a local min-
imum. Using a good initialization as a start point for the
GA, it is possible to find good solutions with smaller pop-
ulations (Reeves, 1993). This is quite important because
the smaller the population is, the faster the algorithm will
complete a generation. Therefore, the algorithm incorpo-
rates an individual generated using the TS, so there is a
potential solution which has a good fitness. Since the algo-
rithm i s able to use several processors, several TSs can be
run on each processor. The processors will communicate
sending each other the final individual once the TS is over.
Afterwards, they will start the GA using the same random
seed. Thus, if there are p processors, p individuals of the
population will be generated using the TS. Thanks to the
use of the binary tournament selection, there is no need to
worry about converging too fast to a local minimum near
these individuals. The GA will then explore the solution
space and when it finishes, each processor will take an in-
dividual using it as the starting point for a new TS. In this
way, the exploitation of a good solution is guaranteed. The
first processor takes the best individual, the second, takes
the second best individual and so on. As the GA maintains
diversity in the population, the best result after applying
the TS does not always come from the best individual in
the population. This fact shows how important is to ke
ep exploring the solution space instead of letting the GA
converge too fast.

Figure 1: Algorithm scheme. Dashed line represents one to
one communication, dotted lines represent collective com-
munications.

Figure 1 shows how the algorithm is structured as well
as the communications that are necessary to obtain the
final solution.

4 EXPERIMENTS AND RESULTS

This Section will show empirically that all the elements de-
scribed in the previous Section, when they are combined
together, could improve the performance. First, the data
sets that have been used are introduced. Then, the effect of
the parallelism applied over the GA will be analyzed. Af-
terwards, more experiments with the parallel version will
be done in order to show how the addition of the BLX-
α crossover and the TS can improve the results. Finally,
the new proposed algorithm will be compared against the
local search technique used so far, demonstrating how the
global optimization, in combination with the local search,
leads to better solutions. Nothing was commented so far
about the stopping criterion of the algorithm. In the exper-
iments, a time limit of 600 seconds for all the algorithms
was used. The decision to set this time limit is because
the experience when working with industries says that 10
minutes is the maximum amount of time that an operator
is willing to wait. Furthermore, this value has been widely
used in the literature as time limit (Wang and Kazmierski,
2005; Zhang et al., 2006). Two different clusters were used
in the experiments but, due to the lack of space, only the
results of the better one will be showed. Nonetheless, the
algorithms had a similar performance in both of them. A
remarkable fact was that the size of the cache was crucial
by the time of computing the DT. Due to the large size of
the distances matrix, the faster computer had a worse per-
formance because it did not have as much cache memory
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as the other. Further research must be done regarding the
distribution of the samples between the processors so less
memory accesses have to be done. The processors in the
cluster used had the following characteristics:

Cpu family : 6
Model : 15
Model name : Intel(R) Xeon(R) CPU E5320 @ 1.86GHz
Stepping : 7
Cpu MHz : 1595.931
Cache size : 4096 KB
Cpu cores : 2
Bogomips : 3723.87
Clflush size : 64
Cache alignment : 64
Address sizes : 40 bits physical, 48 bits virtual

The algorithms were implemented in MATLAB and, in
order to communicate the different processes, the MPImex
ToolBox presented in (Guillen et al., 2008) was used.

4.1 Data sets used in the experiments

To assess the presented methods, several experiments were
performed, using the following data sets:

1. The Housing data set2: The housing data set is re-
lated to the estimation of housing values in suburbs
of Boston. The value to predict is the median value of
owner-occupied homes in $1000’s. The data set con-
tains 506 instances, with 13 input variables and one
output.

2. The Tecator data set3: The Tecator data set aims at
performing the task of predicting the fat content of
a meat sample on the basis of its near infrared ab-
sorbance spectrum. The data set contains 215 useful
instances for interpolation problems, with 100 input
channels, 22 principal components (which will remain
unused) and 3 outputs, although only one is going to
be used (fat content).

3. The Anthrokids data set4: This data set represents
the results of a three-year study on 3900 infants and
children representative of the U.S. population of year
1977, ranging in age from newborn to 12 years of age.
The data set comprises 121 variables and the target
variable to predict is children’s weight. As this data
set presented many missing values, a prior sample and
variable discrimination had to be performed to build
a robust and reliable data set. The final set5 without
missing values contains 1019 instances, 53 input vari-
ables and one output (weight). More information on
this data set reduction methodology can be found in
(Mateo and Lendasse, 2008).

2http://archive.ics.uci.edu/ml/data sets/Housing.
3http://lib.stat.cmu.edu/data sets/tecator.
4http://ovrt.nist.gov/projects/anthrokids.
5http://www.cis.hut.fi/projects/tsp/index.php?page=timeseries.

4. The Finance data set5: This data set contains infor-
mation of 200 French industries during a period of
5 years. The number of samples is 650. It contains
35 input variables, related to balance sheet, income
statement and market data, and one output variable,
called ”return on assets” (ROA). This is an indicator
of how profitable a company is relative to its total as-
sets. It is usually calculated by dividing a company’s
annual earnings by its total assets.

5. The Santa Fe time series competition data set6: The
Santa Fe data set is a time series recorded from labora-
tory measurements of a Far-Infrared-Laser in a chaotic
state, and proposed for a time series competition in
1994. The set contains 1000 samples, and it was re-
shaped for its application to time series prediction us-
ing regressors of 12 samples. Thus, the set used in
this work contains 987 instances, 12 inputs and one
output.

6. The ESTSP 2007 competition data set5: This time
series was proposed for the European Symposium on
Time Series Prediction 2007. It is an univariate set
containing 875 samples but has been reshaped using a
regressor of 55 variables, producing a final set of 819
samples, 55 variables and one output.

All the data sets were normalized to zero mean and unit
variance, so the DT values obtained are normalized by the
variance of the output.

4.2 Parallelization of the GA

This subsection will show the benefits that are obtained by
adding parallel programming to the sequential GA. The
sequential version was designed exactly in the same way
that was described in Section 3, using the same operators,
however, the evaluation of the individuals was performed
uniquely in one processor. For these experiments, the TS
was not incorporated to the algorithms so the benefits of
the parallelism could be more easily appreciated.

For these initial tests, the GA parameters were adjusted
to the following values:

• Crossover Type: One point crossover

• Crossover Rate: 0.85

• Mutation Rate: 0.1 7.

• Generational elitism: 10%

The results were obtained from three of the data sets,
namely Anthrokids, Tecator and ESTSP competition data
set. The performances are presented in Table 1, including
a statistical analysis of the values of DT and the num-
ber of generations evaluated. Figures 2, 3, 4, 5, 6 and

6http://www-psych.stanford.edu/∼andreas/Time-
Series/SantaFe.html

7This is the same rate used in (Oh et al., 2004), also for a feature
selection application
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7 show the effect of increasing the number of processors
in the number of generations done by the algorithms for
a constant number of individuals. As it was expected, if
the number of individuals increases, the number of gen-
erations is smaller. This effect is compensated with the
introduction of more processors that increase almost lin-
early the number of generations completed. The linearity
is not that clear for small populations with 50 individuals
since the communication overheads start to be significant.
However, larger population sizes guarantee a quite good
scalability for the algorithm.

Once the superiority of the parallel approach was proved,
the next sections will only consider the parallel implemen-
tations of the GA.

4.3 Hybridization of the pGA with the TS and

using the BLX-α crossover

Once it has been demonstrated how important is the par-
allelization of the algorithm, the benefits of adapting the
BLX-α operator to the parallel version used in the previ-
ous subsection will be shown. Furthermore, the compari-
son will also consider the hybridization with the TS at the
beginning and at the end of the algorithm to make a fine
tune of the solution provided by the GA. This hybrid algo-
rithm has received the name of pTBGA. The time limit of
600 seconds was divided into three time slices that were as-
signed to the three different stages of the algorithm: tabu
initialization, GA, and tabu refinament.

The goal was to find the best trade-off in terms of time
dedicated to explore the solution space and to exploit it.
When assigning the time slices to each part it was con-
sidered that, for the initialization using the TS, just a
few evaluations were willed in order to improve slightly
the starting point for the GA. Several combinations where
tried but always keeping the time for the first TS smaller
than the GA and the second TS.

The results are listed in Table 2. The Tables present
a comparison between pRCGA, pTBGA using only TS at
the end, and pTBGA using TS at the beginning and at
the end, both with and without scaling. The population
size was fixed to 150 individuals based on previous exper-
iments where no significant difference was observed over
200 individuals if the number of processors is fixed to 8.
The configuration of pTBGA is indicated in Table 2 as
tTS1

/tGA/tTS2
where tGA is the time (in seconds) dedi-

cated to the GA, tTS1
is the time dedicated to the first

tabu step, and tTS2
the time dedicated to the last.

The values of DT obtained show how the application
of the adapted BLX-α crossover improves the results for
pRCGA. Regarding the hybridization, there is no doubt
that introducing the TS to the algorithm improves the re-
sults significantly. The effect of introducing the TS before
the start of the GA improves the results in some cases,
although the improvement is not too significant. However,
it is possible to appreciate how the application of the TS
at the beginning and at the end reduces the standard de-
viation making the algorithm more robust.

4.4 Comparison against the classical methodolo-

gies

This last Subsection performs a comparison of the final
version of the proposed algorithm in this paper with the
classical local search methodology already proposed in the
literature to minimize the value of the DT. The pTBGA
with optimal settings running on 8 processors was com-
pared in terms of performance (minimum Delta Test and
number of solutions evaluated) with other widely used se-
quential search methods such as FBS and the TS presented
in this paper, both running on single processors of the grid.
As FBS converged rather quickly (always before the time
limit of 10 minutes), the algorithm was run with several
initializations, until the time limit was reached. The re-
sults of these tests appear listed in Table 3.

For the pTBGA, a fixed population of 150 individuals
was selected. The crossover probability was 0.85 in all
cases.

When comparing the two local search techniques, this
is, TS and FBS, it is remarkable the good behavior of FBS
against the TS. This is not surprising since the FBS, as
soon as it converged, it was reinitialized starting from an-
other random position. On the other hand, the TS started
at one random point and explored the neighborhood of it
during the time frame specified, making it more difficult
to explore other areas. The new hybrid approach improves
the results of the FBS in average for both pure selection
and scaling, being more robust than the FBS which does
not always provide a good result.

5 CONCLUSIONS

This paper has presented a new approach to solve the prob-
lem of simple and scaled variable selection. The major
contributions of the paper are:

• The development of a TS algorithm for both, pure
selection and scaling, based on the Delta Test. A first
initialization of the parameters required by the short
time memory was proposed as well

• The design of a Genetic Algorithm whose fitness func-
tion is the Delta Test and that makes a successful
adaptation of the BLX-α crossover to adapt the dis-
cretized scaling problem as well as the pure variable
selection.

• The parallel hybridization of the two previous algo-
rithms that allows to keep the compromise between
the exploration/exploitation allowing the algorithm to
find smaller values for the Delta Test than the previ-
ous methodology does.

The results showed how the synergy of different paradigms
can lead to obtain better results. It is also important to
notice how necessary is the addition of parallelism in the
methodologies since the increasing size of the data sets will

8



Table 1: Performance of RCGA vs pRCGA for three different data sets. Values of the DT and number of generations
completed.

Data set Population Measurement
RCGA pRCGA (np=2) pRCGA (np=4) pRCGA (np=8)

k=1 k=10 k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids

50
Mean (DT) 0.01278 0.01527 0.01269 0.01425 0.01204 0.01408 0.01347 0.0142

Mean (Gen.) 35.5 16.7 74.8 35.3 137.8 70 169.3 86

100
Mean (DT) 0.01351 0.01705 0.01266 0.01449 0.01202 0.0127 0.0111 0.01285

Mean (Gen.) 17.2 8.5 35.4 17.3 68.8 35 104 44.5

150
Mean (DT) 0.01475 0.01743 0.01318 0.0151 0.01148 0.01328 0.01105 0.01375

Mean (Gen.) 11 5.7 22.7 11.2 45.6 23.2 61 31

Tecator

50
Mean (DT) 0.13158 0.14151 0.14297 0.147 0.13976 0.14558 0.1365 0.1525

Mean (Gen.) 627 298.1 1129.4 569.5 2099.2 1126.6 3369.5 1778.5

100
Mean (DT) 0.13321 0.14507 0.13587 0.14926 0.13914 0.14542 0.13525 0.1466

Mean (Gen.) 310.8 154.4 579.6 299.9 1110.4 583 1731 926.5

150
Mean (DT) 0.13146 0.14089 0.1345 0.15065 0.13522 0.14456 0.1303 0.1404

Mean (Gen.) 195 98.3 388.1 197.8 741.2 377 1288 634.5

ESTSP

50
Mean (DT) 0.01422 0.01401 0.01452 0.01413 0.01444 0.014 0.01403 0.0142

Mean (Gen.) 51 29.1 99.2 57.6 190.8 113.8 229 126.7

100
Mean (DT) 0.01457 0.01445 0.01419 0.01414 0.01406 0.01382 0.01393 0.01393

Mean (Gen.) 24.8 14 50.5 27.9 93 57.8 128.7 67.7

150
Mean (DT) 0.01464 0.01467 0.01429 0.01409 0.01402 0.01382 0.0141 0.01325

Mean (Gen.) 16.6 9.1 33.6 18.7 63.2 37.6 82.5 49.5

Table 2: Performance of pRCGA vs pTBGA, with the BLX-α crossover operator

Data set Measurement
pRCGA (np=8) pTBGA (np=8) 0/400/200 pTBGA (np=8) 50/325/225

k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids
Mean (DT) 0.0113 0.0116 0.0084 0.0103 0.0083 0.0101

StDev (DT) 11.5e-4 14.7e-4 17.3e-5 53.1e-5 5.8e-5 83.3e-5

Tecator
Mean (DT) 0.13052 0.1322 0.1180 0.1303 0.1113 0.1309

StDev (DT) 25.8e-4 27.2e-4 12.1e-3 20.7e-4 88.9e-4 10.6e-4

ESTSP
Mean (DT) 0.01468 0.01408 0.01302 0.01308 0.01303 0.0132

StDev (DT) 16.4e-5 13e-5 8.4e-5 37.7e-5 5.8e-5 17.3e-5

Housing
Mean (DT) 0.0710 0.0584 0.0710 0.0556 0.0710 0.0563

StDev (DT) 0 9.2e-4 0 8.5e-4 0 6.2e-4

Santa Fe
Mean(DT) 0.0165 0.0094 0.0165 0.0092 0.0165 0.0092

StDev (DT) 0 9.8e-5 0 11.5e-5 0 11.5e-5

Finance
Mean(DT) 0.1498 0.1371 0.1406 0.1244 0.1406 0.1235

StDev (DT) 3.4e-4 3.7e-4 7.9e-4 6.1e-3 1.2e-4 6.2e-4

Table 3: Performance comparison of FBS, TS and the best pTBGA configuration

Data set Measurement
FBS TS pTBGA (np=8)*

k=1 k=10 k=1 k=10 k=1 k=10

Anthrokids
Mean (DT) 0.00851 0.01132 0.00881 0.01927 0.00833 0.0101

StDev (DT) 17.3e-5 19.1e-4 27.3e-5 36.5e-4 5.8e-5 83.3e-5

Tecator
Mean (DT) 0.13507 0.14954 0.12799 0.18873 0.1113 0.1309

StDev (DT) 37.7e-4 10.6e-3 24.7e-4 10.4e-3 88.9e-4 10.6e-4

ESTSP
Mean (DT) 0.01331 0.01415 0.01296 0.01556 0.01302 0.01308

StDev (DT) 28.8e-5 44e-5 26.3e-5 16.4e-4 8.4e-5 37.7e-5

Housing
Mean (DT) 0.0710 0.0586 0.0711 0.0602 0.0710 0.0556

StDev (DT) 0 44.7e-5 35.4e-5 87.3e-4 0 8.5e-4

Santa Fe
Mean (DT) 0.0165 0.00942 0.0178 0.0258 0.0165 0.0092

StDev (DT) 0 7.1e-5 24.6e-4 18.5e-3 0.0165 0.0091

Finance
Mean (DT) 0.1411 0.1377 0.1420 0.4381 0.1406 0.1235

StDev (DT) 12.7e-4 46.6e-4 32.8e-4 0.1337 16.2e-4 64.2e-4
* The best pTBGA configuration among the tested for each data set.

not be able to be processed by monoprocessor architec-
tures. Regarding future research, this paper has addressed
the problem of the cache memory limitation that seems
quite relevant for large data sets. Also, further work on

the study of distributed demes genetic algorithms must be
done.
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Figure 2: Generations evaluated by the GA vs the number
of processors used. Anthrokids without scaling.
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Figure 3: Generations evaluated by the GA vs the number
of processors used. Tecator without scaling.
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Figure 4: Generations evaluated by the GA vs the number
of processors used. ESTSP without scaling.
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Figure 5: Generations evaluated by the GA vs the number
of processors used. Anthrokids with scaling.

����

����

����

����

����

����

G
e
n

e
ra

ti
o

n
s

Tecator (k=10)

�

���

���

���

���

����

� � � � � � 	 �

G
e
n

e
ra

ti
o

n
s

Number of processors

Population=50 Population=100 Population=150

Figure 6: Generations evaluated by the GA vs the number
of processors used. Tecator with scaling.
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Figure 7: Generations evaluated by the GA vs the number
of processors used. ESTSP with scaling.
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