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The importance of variable selection procedures in non-linear regression analysis
is becoming increasingly important as the size of data sets which can be gathered
and handled continues to grow. In addition to reducing the size of the problem,
variable selection can improve the performance of regression models by discarding
noisy data. Furthermore, variable selection provides valuable interpretability of
the data by specifying which variables are more relevant than others. This thesis
assesses some of the currently available state-of-the-art methods and presents the
use of the “Delta test” noise variance estimator for input variable selection.

The use of the Delta test for variable selection is studied in a theoretical frame-
work, and a theorem is derived which shows that, under reasonable assumptions,
the expectation of the Delta test is minimised by the optimal selection of vari-
ables. The method is also analysed from a practical standpoint, including some
simulated experiments to investigate its behaviour under specific conditions.

The Delta test is compared to two alternative methods for variable selection: mu-
tual information and least angle regression. The performance of each method
when used with a Least Squares Support Vector Machines non-linear regression
model is evaluated on a total of five real world data sets, and it is found that the
Delta test excels on average. The conceptually simple and computationally effi-
cient method outputs a good, model-independent selection of variables, and can
consequently be considered a viable competitor among the currently commonly
used methods.
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Betydelsen av att välja rätta variabler inom icke-linjär regressionsanalys har bliv-
it allt väsentligare då storleken på datamängder som kan samlas in och hanteras
fortsätter att öka. Förutom att minska problemets storlek, kan valet av variabler
förbättra resultaten för regressionsmodeller genom att avlägsna meningslös da-
ta (brus). Dessutom tillför variabelvalet en värdefull tolkning av datamängden
genom att ange vilka variabler som kan anses vara mer relevanta än andra. I detta
diplomarbete analyseras några moderna metoder och användingen av brusvarians-
estimatorn “Delta-testet” presenteras som ett alternativ för val av variabler.

Användningen av Delta-testet för val av variabler undersöks från en teoretisk
synvinkel, och det härleds en sats som visar att under vissa rimliga antaganden
minimerar det optimala valet av variablerna Delta-testets väntevärde. Metoden
analyseras också ur ett praktiskt perspektiv, med hjälp av några konstgjorda ex-
periment som åskådliggör dess beteende under säskilda förhållanden

Delta-testet jämförs med två andra metoder för val av variabler: gemensam in-
formation (mutual information) och minsta-vinkelsregression (least angle regres-
sion). Prestationen av varje metod i samband med en minsta-kvadrats-stödvektor-
maskiners (Least Squares Support Vector Machines) icke-linjär regressionsmodell
utvärderas på sammanlagt fem datamängder som baserar sig på praktiska tillämp-
ningar. Resultaten visar att Delta-testet utmärker sig i genomsnitt. Den lättbe-
gripliga och beräkningsmässigt effektiva metoden ger ut ett lämpligt och modell-
oberoende val av variabler, och kan därmed anses vara en kraftig konkurrent bland
de oftast använda metoderna.

Nyckelord: Delta-test, val av variabler, brusvariansestimation, närmaste-
grannemetod, icke-linjär regression

Språk: Engelska
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Muuttujien valinnan tärkeys epälineaarisessa regressioanalyysissä on korostunut
kerättävissä ja käsiteltävissä olevan mittaustiedon koon kasvaessa. Mallintamis-
tehtävän pelkistämisen lisäksi muuttujien valinta voi parantaa tehokkuutta erot-
tamalla datasta kohinaa sisältäviä komponentteja. Lisäksi muuttujien valinta aut-
taa tulkitsemaan tietomäärää erittelemällä mitkä syötemuuttujat vaikuttavat tär-
keimmiltä. Tässä diplomityössä katsastetaan alan kehityksen nykytasoa vastaavia
menetelmiä, sekä esitellään kohinan varianssin estimointiin perustuvan “Delta-
testi” -menetelmän soveltuvuutta muuttujien valintaan.

Delta-testin käyttöä muuttujien valinnassa tutkitaan teoreettisella tasolla, ja joh-
detaan lause, joka kohtuullisten olettamusten alla osoittaa, että Delta-testin odo-
tusarvon minimi saavutetaan optimaalisella valikoimalla muuttujia. Menetelmää
tarkastetaan myös käytännön näkökulmasta, ja työssä esitellään simuloituja ko-
keita jotka havainnollistavat sen käyttäytymistä tietynlaisissa tilanteissa.

Delta-testiä verrataan kahteen vaihtoehtoiseen menetelmään: keskinäinen infor-
maatio (mutual information) sekä pienimmän kulman regressio (least angle regres-
sion). Menetelmien toimintaa vertaillaan viidessä eri mittauksiin perustuvassa
mallinnusongelmassa käyttämällä epälineaarista pienimmän neliösumman tuki-
vektorikoneiden (Least Squares Support Vector Machines) mallia. Tulosten perus-
teella Delta-testi suoriutuu keskimäärin parhaiten. Käsittellisesti yksinkertaista
sekä laskennallisesti kevyttä menetelmää voidaan siten pitää varteenotettavana
kilpailijana nykyisille yleisessä käytössä oleville menetelmille.

Avainsanat: Delta-testi, muuttujien valinta, kohinan varianssin estimointi,
lähimmän naapurin menetelmä, epälineaarinen regressio
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Chapter 1

Introduction

1.1 Scope

With evolving technology and the continuing development of more efficient data
mechanisms, the size and complexity of interesting regression modelling tasks has
grown considerably. The number of input variables which can be measured might
be large, and it may be difficult to recognise which variables are important for
the task at hand. Occasionally variables are irrelevant for the output, and at other
times they contain redundant information already available in other variables. Hence
the concept of variable selection has become increasingly important. Being able to
discard the unnecessary ones is beneficial for performance and stability of the model.
Identifying the most essential variables also provides a better understanding of the
problem and interpetability of the data. In a sense, variable selection improves the
effective signal-to-noise ratio by getting rid of some of the noisy components of the
data.

For linear problems, the issue can be solved by simple covariance or correlation-
based methods. In the case of non-linear problems, the situation is less straight-
forward, and there are several specialised methods to pick from, many of which
require parameters which are non-trivial to tune. Other methods only rank variables,
but cannot tell you how many to choose. Such ranking schemes may also easily fail to
identify situations where some variables are useful only in combination with others.
There appears to be a unfilled need for a simple and entirely non-parametric, model-
independent alternative. A method based on a noise variance estimator known as
the Delta test is one such method, however, it has not seen extensive use since its
properties have not been carefully analysed until now.

This thesis investigates the use of Delta test for variable selection both from a

1



CHAPTER 1. INTRODUCTION 2

theoretical as well as an experimental perspective. Its advantages and disadvantages
are studied, and the current state-of-the-art of variable selection for regression is
explored by comparing the Delta test to other methods.

The Delta test itself is based on a nearest-neighbour approach which is generally
applicable and in its purest form has no parameters to tune, making it robust and
easy to use. Essentially, a noise variance estimation procedure is applied to each
nonempty subset of variables, and that subset which minimise the estimate is chosen.
The estimate given by the method in a sense represents the lowest attainable mean
squared error (MSE) by quantifying the extent of the “random” component of the
data. Although the method has been successfully used in situations as [1, 2]—and
in an adapted form in [3]—little theoretical basis for its use has been established. In
other words, while the method itself is not entirely new, this thesis presents a more
formal and explicit treatment of the Delta test for variable selection than what has
been seen before.

Before reaching the main matter of the thesis work, Chapter 2 reviews the con-
cept of regression analysis in order to establish some notation and conventions, and
introduces the problem of variable selection. Some popular methods are presented,
including variable selection by mutual information, and least angle regression.

Chapter 3 discusses noise variance estimation and describes the Delta test algo-
rithm in its original context, including some important convergence properties of the
estimator.

The main contribution of this thesis is in Chapter 4, which contains some intuitive
as well as theoretical—mathematically sound—justification for the use of the Delta
test for variable selection. Another issue investigated is why in particular the Delta
test is an appropriate estimator to use for this task, when it is well known that there
are more sophisticated methods for actual noise estimation—such as those presented
in [4, 5, 6, 7].

In Chapter 5, the use of the method from a practical point of view is considered.
As the computational load increases exponentially with the number of variables, the
method can become impractical with huge datasets, and hence some efficient search
schemes have been developed for finding near-optimal solutions. Experiments which
illustrate the behaviour of the Delta test in different situations are included, and the
performances of the different methods are compared on several publicly available
real world data sets.
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1.2 Publications

This thesis is based on the research originally published in the following articles:

1. [8], where the Delta test was first explicitly introduced as a method for variable
selection at the European Symposium on Artificial Neural Networks 2008 in
Bruges, Belgium.

2. [9], the journal article which expands on the theoretical and experimental
arguments—currently under review for the IEEE Transactions on Neural Net-
works.



Chapter 2

Problem Definition

2.1 Regression Analysis

Regression analysis refers to the process of modelling the dependencies between
a response variable (or output) y and one or more explanatory variables (or in-
puts) x(k) from a limited set of data (measurements). The goal is to build a model
f(x(1), . . . , x(d)), based on the inputs, which follows y as accurately as possible. For
statistical processing, the available output data yi and corresponding input data xi

are generally arranged in a column vector y and matrix X:

y =



y1

y2

...

yM


and X =



xT
1

xT
2

...

xT
M


=



x
(1)
1 x

(2)
1 . . . x

(d)
1

x
(1)
2 x

(2)
2 . . . x

(d)
2

...
...

. . .
...

x
(1)
M x

(2)
M . . . x

(d)
M


.

Here M is the number of data points (samples) available, and d is the number of
input variables.

After a model has been built on the available measurements, the goal is to use
it to predict the output for new data by applying the model f to values of x not
present in the initial set.

4



CHAPTER 2. PROBLEM DEFINITION 5

2.1.1 Linear Regression

The simplest form of regression is linear regression, where the relationship between
the output and inputs is assumer to follow the form

yi = α0 +
d∑

k=1

αkx
(k)
i =

[
1 xT

i

]
α .

This can be described as a linear system

y = χα ,

where χ = [1 X]. The optimal values of αk in the least-squares sense are found
by solving the linear system using the Moore-Penrose pseudoinverse:

α =
(
χT χ

)−1
χT y ,

provided there is no collinearity between the inputs, and the matrix χ is of full rank.
Most interesting regression problems include more intricate dependencies between

the variables, and hence the scope of situations where a linear model is applicable is
limited. Consequently, a variety of more sophisticated models have been devised.

2.1.2 Least Squares Support Vector Machines

One widely used non-linear model is Least Squares Support Vector Machines (LS-
SVM) [10]. It is a variation of the original support vector machines [11], designed
to be computationally lighter without sacrificing accuracy. The technique is closely
related to that of Gaussian processes [12]. The LS-SVM is of particular interest in
the context of this thesis, since my experience has shown that it benefits greatly from
appropriate selection of input variables, and hence this is the model which is used
in the experimental part of the thesis to evaluate the performance of the different
variable selection methods.

This section presents a brief summary of the method, see [10] for a detailed expo-
sition. The model can be represented in its primal space as

f(x) = wT ϕ(x) + b ,

where ϕ : Rd → Rnh is a mapping to a higher dimensional feature space (possibly
even infinite dimensional), w is a corresponding weight vector, and b a bias term.
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Training of the model is performed by the minimisation problem

min
w,b,e

J(w, e) =
1
2
wT w +

1
2
γ ‖e‖2

s.t. yi = wT ϕ(xi) + b + ei i ∈ {1, . . . ,M}

The function J is the sum of a regularisation term and the fitting error. The relative
weights of the two terms, and the extent of the regularisation, is determined by the
positive, real parameter γ. The problem is impractical in the primal space, since
ϕ(x) and w are potentially infinite dimensional, and for this reason it is studied in
the dual space, where ϕ(x) does not have to be explicitly constructed. Instead, it
suffices to define a kernel K such that

K(xi, xj) = ϕ(xi)T ϕ(xj) ∀i, j ∈ {1, . . . ,M}

The most common choice for K is the radial basis function (Gaussian) kernel:

K(xi,xj) = exp

{
−‖xi − xj‖2

σ2

}
,

where the parameter σ determines the kernel width. The model can eventually be
written as

f(x) =
M∑
i=1

αiK(x,xi) + b

and the parameters b and α can be solved from a linear system. Using LS-SVM with
the RBF kernel then requires the user to choose two real valued parameters: γ and
σ. The selection of these is non-trivial, and the parameters can not be optimised
separately from each other. One suggested method to perform this tuning is by a
grid search to minimise the random k-fold cross-validation error (see Section 2.1.3)
of the resulting model.

2.1.3 Validation

The crucial step of evaluating the performance of a model is not an obvious issue.
For many models, it is sensible to examine the output error yk − f(xk) for each
sample, and take the average of the square of these to obtain the mean squared error
(MSE). When the same data is used both for building the model and evaluation,
this is known as training error.

The truly interesting measure would still be the error that the model produces
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for such hypothetical data that is not in the training data, but distributed similarly
(in some sense). As the number of such independent samples tends to infinity, the
limiting MSE is called the generalisation error. In many cases, the training error
significantly underestimates the generalisation error, as the model is optimised on
the same data as it is evaluated on. This is an example of overfitting.

To recognise and avoid overfitting, the samples which are used for training and
evaluation must be separated. The available data can be split into two complemen-
tary sets, the training and test (or validation) sets. If the model is trained on the
training set and evaluated on the test set, the resulting MSE is likely to be a better
indicator of the generalisation error. The process can be performed repeatedly to
increase the confidence on the estimate.

One way to structure the repetition is k-fold cross-validation, where the data
is (usually randomly) partitioned into k equally sized sets. Each of the k sets is
sequentially chosen to be the test set, and the model is trained on the union of the
remaining k − 1 sets. Averaging these test MSEs then provides a nice estimate for
the generalisation error, as every sample has been used for testing exactly once.

A special case of k-fold cross-validation is called leave-one-out (LOO) cross-valida-
tion, when k = M . As the name implies, here each single sample is sequentially left
for the test set while the model is trained on the remaining samples, and the squared
errors are averaged. As this generally requires the training of M models, it is often
too inefficient to be practical, but for certain methods (such as the LS-SVM) it is
possible to obtain the LOO error exactly without explicitly performing the repeated
training of the model [13].

2.2 Variable Selection

In modern modelling problems it is not uncommon to have an overwhelming number
of input variables. Many of them may turn out to be irrelevant for the task at hand,
but without external information it is often difficult to identify these variables. Vari-
able selection (also known as feature extraction, subset selection, or attribute selection
[3]) is the process of automating this task of choosing the most representative subset
of variables for some modelling task.

Variable selection is a special case of dimensionality reduction. It can be used
to simplify models by refining the data through discarding insignificant variables.
As many regression models and other popular data analysis algorithms suffer from
the so-called curse of dimensionality [14, 15, 16] to some degree it is necessary to
perform some kind of dimensionality reduction to facilitate their effective use.
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In contrast to general dimensional reduction techniques, variable selection provides
additional value by distinctly specifying which variables are important and which are
not [17]. This leads to a better intuitive insight into the relationship between the
inputs and outputs, and assigns interpretability to the input variables. In cases where
the user has control over some inputs, variable selection emphasises which variables
to focus on and which are likely to be less relevant. Furthermore, discarding the less
important inputs may result in cost savings in cases where measuring some properties
would be expensive (such as chemical properties of a substance).

Variable selection techniques are generally based on either variable ranking or
subset selection. While subset selection methods attempt to return a single optimal
subset of variables, the ranking methods only provide an ordering of the variables’
estimated relevance for predicting the output. For regressions tasks, it is then left
up to the user to select how many of the top ranked variables to choose. Due to their
nature, ranking methods often fail to recognise situations where certain variables are
useful only when combined with specific other variables.

2.2.1 Correlation

The simplest effective variable ranking method is to calculate and rank each input
x(k) by the Pearson product-moment correlation coefficient between it and the output
y:

ρk =
cov(x(k), y)

σx(k)σy
=

∑M
i=1

(
x

(k)
i − x(k)

)(
yi − y

)
σx(k)σy

.

Here x(k) and σx(k) are the sample mean and sample standard deviation, respectively.
The measure can only account for linear dependence of the output on the inputs,
and is unable recognise more intricate connections between the variables.

Correlation can also be used to evaluate subset selections [18], based on the idea
that

A good feature subset is one that contains features highly correlated with
(predictive of) the class, yet uncorrelated with (not predictive of) each
other.

leading to the expression
kryi√

k + k(k − 1)rii

,

where k is the number of selected variables, ryi is the mean of the correlation co-
efficients between the selected variables and the output, and rii is the mean of the
correlation coefficients among the selected variables. Although the simplicity of the
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method is appealing, it has not been widely used and [18] finds several notable
concerns and lacking performance.

2.2.2 Least Angle Regression

A recent improvement to the method of variable ranking by correlation is least angle
regression (LARS) [19]. While the first variable is still selected based on the corre-
lation coefficient alone, this method instead proceeds to consider the residual of the
output and a linear model based on the selected variable, and studies the correlation
of the variables with this residual. More precisely, the method moves in the direction
of the highest correlated variable (say, x(i)) until some other variable (x(j)) has as
much correlation with the current residual. Interpreting y and the x(i)’s as vectors
in RM , the method then continues equiangularly between x(i) and x(j) until some
third variable has the same correlation. At that stage, it proceeds equiangularly
(along the “least angle” direction) between the three vectors, and so on.

The order in which the variables are selected provides a ranking of their usefulness
for predicting the output. Compared to the simple ranking by correlation, LARS is
better as it specifically chooses the variables based on how much of the residual they
can explain, i.e., how much new information they bring. This avoids the selection
of an undesired variable in situations were a variable is highly correlated with the
output only because it is highly correlated with some of the other highly correlated
inputs.

As the method only ranks the input variables, it does not explicitly specify the
number of top-ranked variables to select for optimal results, and this must somehow
be chosen by the user.

2.2.3 Mutual Information

One popular method specifically for variable subset selection is evaluation by mutual
information (MI) [20, 21]. Assuming that the input and output points originate from
random variables X and Y , the mutual information is a quantity that measures the
mutual dependence of the two random variables. If they have a joint probability
distribution function µ(x, y), the MI between X and Y is defined by

I(X,Y ) =
∫ ∫

µ(x, y) log
µ(x, y)

µx(x)µy(y)
dx dy ,

where µx(x) =
∫

µ(x, y) dy and µy(y) =
∫

µ(x, y) dx are the respective marginal
probability densities of X and Y . The subset selection then amounts to choosing that
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subset of input variables which maximises the mutual information with the output.
As µ(x, y) is generally unknown, the value of I(X,Y ) can not be explicitly calculated.
Instead, methods have been developed to estimate the mutual information from a
limited data set. One of these is Kraskov’s method [22], which will be used in the
experimental part of thesis. Kraskov’s method is based on the concept of nearest
neighbours, and it is not entirely automatic, since it involves a parameter p which
must be selected by the user to specify the number of neighbours to take into account.



Chapter 3

The Delta Test

3.1 Noise Variance Estimation

The Delta test is traditionally considered a method for residual noise variance esti-
mation. In the kind of regression tasks considered here, the data generally consist
of M input points (xi)

M
i=1 and associated scalar outputs (yi)

M
i=1 [4]. The assumption

is that there is a functional dependence between them with an additive noise term:

yi = f(xi) + εi .

The function f is assumed to be smooth, and the residual variance—or noise—
terms εi are independent and identically distributed with zero mean. Noise variance
estimation is the study of how to give an a priori estimate for Var(ε) = σ2 given
some data without considering any specifics of the shape of f . Having a reliable
estimate of the amount of noise is useful for choosing and building an appropriate
regression model as well as determining when a model may be overfitting.

The original formulation [23] of the Delta test was based on the concept of variable-
sized neighbourhoods, but an alternative formulation [24, 5] with a first-nearest-
neighbour (NN) approach has later surfaced. In this treatment, specifically this
1-NN formulation will be used. Its advantages are that it is entirely non-parametric,
conceptually simple, and computationally efficient.

The nearest neighbour of a point is defined as the unique point which minimises
a distance metric to that point in the input space:

N(i) := arg min
j 6=i

‖xi − xj‖2 .

11
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Theoretically—or due to limited machine precision—it may occur that the nearest
neighbour is not unique, but in most practical situations this is rare, and if it does
happen it is sufficient to merely pick one from the set of nearest neighbours, for
instance, randomly or by choosing whichever is indexed first.

In this context, the Euclidean distance is used, but other metrics can also be
applied. As the Euclidean metric considers each variable with equal importance it is
often recommended to normalise the input variables for best results when using the
Delta test. In some cases it may be justified to use other metrics to get better results
if some input variables are known to have specific characteristics that the Euclidean
metric fails to account for appropriately.

The Delta test itself is usually written as

δ =
1

2M

M∑
i=1

(
yi − yN(i)

)2 ≈ Var(ε) ,

i.e., the differences in the outputs associated with neighboring (in the input space)
points are considered. This is a well-known estimator and it has been shown—e.g.,
in [25]—that the estimate converges to the true value of the noise variance in the
limit M → ∞. Although it is not considered to be the most accurate noise variance
estimator, its advantages include robustness, simplicity, and computational efficiency
[5].

3.2 Properties of the Delta test

The properties of the estimator have been extensively studied. In [25], it is shown
that under reasonable assumptions, the Delta test is asymptotically unbiased in the
sense that

lim
M→∞

∣∣E [δ] − σ2
∣∣ = 0 .

For a finite M , however, there is a positive bias which depends mostly on the gradient
of the underlying function and the distribution of samples in the input space. In
[26], the bias is calculated to be of order O(M−2/d). The implications of the strictly
positive bias are explored further in Chapter 4.

The variance is shown to be of order O(M−1/2) in [25], and as such it converges to
0, implying that the estimator converges to the variance of the noise with probability
1.



CHAPTER 3. THE DELTA TEST 13

3.3 The Delta Test for Variable Selection

The Delta test was originally intended to be used for estimating the residual variance.
Following [1, 2, 27] this thesis examines a different use: to use it for variable selection
by choosing that selection of variables which minimises the Delta test. That is, the
estimate would be calculated on each subset of variables, and the selection resulting
in the lowest estimate is chosen. More specifically:

1. Assuming d input variables, consider the 2d−1 non-empty subsets of variables.

2. For each such subset, calculate the Delta test in the subspace spanned by
the selected variables (i.e., so that the nearest neighbours are determined by
considering only those variables).

3. Select that subset which provides the lowest Delta test.

The remainder of this thesis intends to investigate whether this constitutes an effec-
tive variable selection procedure for regression modelling. Note that it is not always
necessary to search all 2d − 1 candidates, as is discussed in Chapter 5.



Chapter 4

Theory

In this section, a theoretical treatment is provided to support the claim that the
Delta test is able to identify the best subset of input variables for modelling under
certain conditions. As the purpose of the Delta test is to deal with noisy data, it
is impossible to formulate a mathematically solid statement showing that the Delta
test could always choose the appropriate variables. Hence the assertions presented
here consider the expectation of the Delta test, and show that the expectation is
minimised for the best selection of variables when the number M of data points is
finite and sufficiently large.

Some assumptions concerning the distribution of the data are required in order for
the results to hold true. These continuity assumptions detailed below are designed
to be similar to and compatible with the assumptions many popular non-linear mod-
elling techniques make about the data. This enhances the usability of the Delta test
as a preprocessing step for practically any non-linear regression task.

Assume a set {Xi}M
i=1 of random variables which are independent and identically

distributed according to some probability density function p(x) for 1 ≤ i ≤ M .
Here p(x) is a continuous probability density on some open, bounded C ⊂ Rd and
p(x) > 0 for x ∈ C.

Let f : C → R be differentiable and the random variables Yi = f(Xi) + εi, where
εi are independently distributed according to some distribution with mean 0 and
Var[εi] = σ2. Denote by xi a realisation of Xi and by yi a realisation of Yi. A
component k of x is denoted by x(k).

Let I = {1, . . . , d} denote the full set of input variables, and consider subsets Ĩ

of I corresponding to possible selections of input variables. Define the Delta test

14
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δ : P (I) → R as

δ(Ĩ) :=
1

2M

M∑
i=1

(
yi − yNĨ(i)

)2

where
NĨ(i) := arg min

j 6=i
‖xi − xj‖2

Ĩ
,

and the seminorm
‖xi − xj‖2

Ĩ
:=

∑
k∈Ĩ

(
x

(k)
i − x

(k)
j

)2
.

4.1 Linear Study

As the Delta test is based on a nearest neighbour search, which is a local phenomenon,
the method can be analysed locally to give an intuitive overview of its behaviour.
On a sufficiently small scale, any differentiable function is linear, and any continuous
probability distribution is flat.

First assume that the data xi ∈ (0, 1)d for i ∈ {1, . . . ,M} are i.i.d. uniformly dis-
tributed on the unit hypercube (sans boundary). Consequently the components x

(k)
i

of each xi are i.i.d. on the open interval (0, 1). Let yi = f(xi)+εi for i ∈ {1, . . . ,M},
where f(xi) = a0 +

∑d
k=1 akx

(k)
i . The points (xi)

M
i=1 and (yi)

M
i=1 comprise the imi-

tation data set.
In general, there will be some inputs for f which are not significant, so denote by

D ∈ P ({1, ..., d}) the set of variables which truly affect the output:

D = {k | ∂kf is non-zero somewhere} = {k | ak 6= 0}

Lemma 1. The correct selection of variables uniquely minimises the expected value
of the Delta test.

S 6= D =⇒ E [δ(S)] > E [δ(D)]

Proof.

E [δ(S)] =E

[
1

2M

M∑
i=1

(
yi − yNS(i)

)2

]
=

1
2

E
[(

yi − yNS(i)

)2
]

=
1
2

E
[(

f(xi) − f(xNS(i)) + εi − εNS(i)

)2
]

=
1
2

E
[(

f(xi) − f(xNS(i))
)2

]
+ σ2,

since the ε terms are independent from the xi’s and each other. It then suffices to
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show that

S 6= D =⇒ E
[(

f(xi) − f(xNS(i))
)2

]
> E

[(
f(xi) − f(xND(i))

)2
]
.

With the linear f ,

E
[(

f(xi) − f(xNS(i))
)2

]
= E

[(∑
k∈D

ak

(
x

(k)
i − x

(k)
NS(i)

))2 ]

and since the components are uncorrelated:

= E

[∑
k∈D

a2
k

(
x

(k)
i − x

(k)
NS(i)

)2
]

=
∑
k∈D

a2
k E

[(
x

(k)
i − x

(k)
NS(i)

)2
]

=
∑

k∈D∩S

a2
k E

[(
x

(k)
i − x

(k)
NS(i)

)2
]

︸ ︷︷ ︸
=g(#S)

+
∑

k∈D\S

a2
k E

[(
x

(k)
i − x

(k)
NS(i)

)2
]

︸ ︷︷ ︸
=1/6

Here the second term is 1/6 because x
(k)
i and x

(k)
NS(i) are independent and uniformly

distributed on (0, 1) when k 6∈ S. The function g(#S)—which measures the expected
distance (squared) along one component in S from a point to its nearest neighbour
in the subspace of S—however, should clearly be far less than 1/6, as long as M is
large enough so that nearest neighbours can be expected to be considerably closer
than randomly chosen points.

Still, g(#S) is an increasing function of the number of variables in S, since the
distance to the nearest neighbour naturally increases with dimensionality [28]. This
means that the expression is minimised by the smallest selection which includes D,
so it is minimised by S = D.

The spirit of the above treatment can be extended to differentiable functions and
continuous distributions. Apply the mean-value theorem to give a point x̂i on the
line segment between xi and xNS(i) for which

f(xi) − f(xNS(i)) = ∇f (x̂i)
(
xi − xNS(i)

)
.
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Since the components are uncorrelated, it is possible to proceed as in the linear case.

E
[(

f(xi) − f(xNS(i))
)2

]
= E

[(
∇f (x̂i)

(
xi − xNS(i)

))2
]

= E

[(∑
k∈D

∂kf (x̂i)
(
x

(k)
i − x

(k)
NS(i)

))2 ]
=

∑
k∈D

E
[
(∂kf (x̂i))

2
(
x

(k)
i − x

(k)
NS(i)

)2
]

=
∑

k∈D∩S

E
[
(∂kf (x̂i))

2
(
x

(k)
i − x

(k)
NS(i)

)2
]

+
∑

k∈D\S

E
[
(∂kf (x̂i))

2
(
x

(k)
i − x

(k)
NS(i)

)2
]

As above, the second term here will be considerably large if D \ S 6= ∅, since those
particular variables are not considered in the minimisation but do affect the output.
Hence we need S ⊃ D for S to minimise the expression. As for the first term, the
differences x

(k)
i − x

(k)
NS(i) will on average grow slightly with the size of S as there are

more variables to take into account in the nearest neighbour search. So again, the
minimising selection is the smallest set which contains D.

4.2 Analysis of the Delta Test

As the previous section only presented a simplistic argument justifying the use of the
Delta test, this section provides the more solid treatment for a more general class of
functions and distributions.

If Ĩ ⊂ I is a candidate selection of variables, then x̃i = (x(Ĩ1)
i , x

(Ĩ2)
i , . . . ) is the

projection of each point to the subspace corresponding to the selected variables.
Similarly, x̃′

i includes the components not in Ĩ and is the projection onto the subspace
corresponding to I \ Ĩ. Define

f̃(x̃) =
∫

C
f(x̃, x̃′)p̃(x̃′) dx̃′

where p̃(x̃′) is the marginal density

p̃(x̃′) =
∫

C
p(x̃, x̃′) dx̃.

Now f̃(x̃i) can be thought of as the best possible approximation of yi when using
only the variables in Ĩ. In particular, if Ĩ holds all the information for determining
the noiseless part of y, it holds that f̃(x̃i) = f(xi) for all i. In other words, f̃(x̃i) is
the conditional expectation with partial information:

f̃(x̃i) = E
[
Yi | X̃i = x̃

]
.
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The argument is split into two lemmas which together imply the main result.

Lemma 2. If Ĩ is such that ∃x0 ∈ C for which f̃(x̃0) 6= f(x0) (i.e., the variables
in Ĩ are not sufficient to explain f) then for any sufficiently large M

E
[
δ
(
Ĩ
)]

> E [δ (I)] .

Proof. According to [25], the estimate when using an incomplete selection of variables
converges to the residual noise

E
[
δ
(
Ĩ
)]

→ E
[(

Yi − f̃
(
X̃i

))2
]

and, correspondingly,

E [δ (I)] → E
[
(Yi − f (Xi))

2
]

.

Furthermore,

E
[(

Yi − f̃
(
X̃i

))2
]

= E
[(

Yi − f(Xi) + f(Xi) − f̃(X̃i)
)2

]
= E

[
(Yi − f(Xi))

2
]

+ E
[(

f(Xi) − f̃(X̃i)
)2

]
since the cross terms cancel due to independence of the noise:

E
[
(Yi − f(Xi))

(
f(Xi) − f̃(X̃i)

)]
= E

[
εi

(
f(Xi) − f̃(X̃i)

)]
= 0 .

Now

E
[(

f(Xi) − f̃(X̃i)
)2

]
=

∫
C

(
f(x) − f̃(x̃)

)2
p(x) dx > 0

where the integral is positive because the continuity of f , f̃ and p means there is an
open subset of C around x0 where f̃(x̃) 6= f(x) and p(x) > 0. Since the term is
independent of M , the difference

E
[
δ
(
Ĩ
)]

− E [δ (I)] →
∫

C

(
f(x) − f̃(x̃)

)2
p(x) dx > 0

is strictly positive even in the limit M → ∞, implying there exists an M0 such that
the expression is positive for any M ≥ M0. Hence, for sufficiently large M , the first
term is larger, proving the lemma.
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Lemma 3. If Ĩ and Î are such that ∀i : f̃(x̃i) = f̂(x̂i) = f(xi)—i.e., they are both
sufficient to explain f—and #Ĩ < #Î, then for any finite and sufficiently large M

E
[
δ
(
Ĩ
)]

< E
[
δ
(
Î
)]

.

Proof.

E
[
δ
(
Ĩ
)]

=
1
2

E
[(

Yi − YNĨ(i)

)2
]

=
1
2

E
[(

f (Xi) + εi − f
(
XNĨ(i)

)
− εNĨ(i)

)2
]

and further, as f = f̃ and the noise is independent,

= σ2 +
1
2

E
[(

f̃
(
X̃i

)
− f̃

(
X̃NĨ(i)

))2
]

where the first term is obviously identical for Ĩ and Î. According to [29] the second
term is of order M−2/#Ĩ . So, for a sufficiently large M , this will be the dominat-
ing term, implying that a smaller selection produces a smaller Delta test estimate,
proving the lemma.

Theorem 1. Assuming a finite but sufficiently large number of points, the expecta-
tion of the Delta test is minimised by the smallest subset of I which can fully explain
f on C.

Proof. Provided the number of points is sufficiently large, by Lemma 2 the minimis-
ing selection must be able to fully explain f , and by Lemma 3 it must be the smallest
such selection.

It is shown in [25] that the variance of the Delta test converges to 0 with increasing
M . As the expectation of the Delta Test under the above assumptions is strictly
minimised by the “best” selection, this means that the probability of the method
choosing this selection generally increases by increasing the number of available
samples.

4.3 On other noise estimators

On some level, it is intuitively sensible to optimise a model by “minimising the noise”,
but it is far from obvious whether the proposed scheme is justified beyond that. In
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Section 4.2, it is shown to hold for the Delta test, but it is worth investigating which
kinds of noise estimators can be used in this way.

As in the proof of Lemma 3 previously, the expectation of the Delta test can be
expanded as

E
[
δ
(
Ĩ
)]

= σ2 +
1
2

E
[(

f (Xi) − f
(
XNĨ(i)

))2
]

.

Here it is clearly seen that unless f is constant, the Delta Test has a positive bias
(for a finite M ; the bias converges to 0 in the limit M → ∞). This makes the
estimator relatively poor for estimating noise variance compared to more optimised
alternatives. However, the proposed method works for variable selection effectively
by exploiting this bias. All noise estimators should be able to identify the important
variables (since excluding one would inflate the noise estimate) but the Delta test
has the unique ability to also prune unnecessary variables. This is because other—
better—noise estimators are generally designed to be unbiased, so they do not have
the property that the bias increases with the number of selected variables.



Chapter 5

Experiments

This chapter demonstrates the performance of the Delta test variable selection
method on a variety of different data sets. After some practical details of implement-
ing the method, a synthetic experiment is presented to show how the probability of
choosing the best selection increases with the number of data points. Section 5.3 ex-
amines the behaviour of the method in certain corner cases by way of toy examples.
Some real world data examples are studied in Section 5.4, where a regression model
is trained with the selected variables, and the performance is compared to that of
other variable selection methods.

5.1 Practical Considerations

When using the Delta test, it is important to normalise the data beforehand. In
particular, the variances of the input variables need to be of the same order for the
method to be effective. Otherwise, the variables with larger variance will have an
artificially inflated significance in the selection. The standard normalisation process
of whitening (scaling to unit variance and zero mean) the inputs is often a good idea,
although changing the mean has no effect on the nearest neighbour search.

The naïve implementation of the Delta test is to separately find the nearest neigh-
bour of each point, leading to a complexity of O(M2) per evaluation. However, this
can be improved to O(M log M) by using k-d trees [30] to determine the nearest
neighbours. Still, performing an exhaustive search over the space of all possible se-
lections requires 2d − 1 evaluations. Our rule of thumb is that on a conventional,
reasonably modern, desktop computer an exhaustive search takes 5–60 s for a data
set with M = 1000 points and d = 10 variables, depending on the implementation
and hardware. The exhaustive search is then practical in situations with up to 10

21
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or 20 variables. However, many interesting problems are much larger than this.
Due to the nature of the noise variance estimator, it is often not necessary to find

the selection providing the global minimum test value. Rather, a pragmatic approach
is that, in general, reducing the estimate results in a better selection. Based on this
notion it is generally beneficial to use different heuristics for searching the space of
all possible selections:

• The sequential forward selection [31, 1] method, which starts from the empty
selection and proceeds by sequentially adding that variable which results in
the best improvement of the Delta test. Similarly, the sequential backward
elimination (or pruning) method starts from the full selection and iteratively
removes variables. Each method requires at most d evaluations of the Delta
test.

• The forward-backward (or stepwise) search [1], which if started from an empty
initialisation is like the forward search, but in addition to adding variables, it
also considers the option of removing each of the previously selected variables,
and makes the change which improves the target metric the most. This addi-
tion/removal of single variables is continued until convergence. The search can
also be started from the full selection, or any number of random initialisation,
to more extensively explore the search space. The method appears to converge
in O(d) steps, requiring a total of O(d2) evaluations, and has been found to
often give good results.

• Tabu search [32], which is similar to the forward-backward search, but with
additional conditions allowing it to efficiently get out of local minima, leading
to better results. This search methodology has been successfully applied to
optimising the Delta test for variable selection in [33, 34].

As the Delta test is an estimate of the residual noise, it represents the lowest
generalisation error that a model is expected to be able to reach. Alternatively, it
can be seen as the lowest possible training error without resorting to overfitting. In
fact, as the Delta test has a bias which is always very slightly positive, it can be
considered a safe choice to train a model until its training error matches the Delta
test estimate. Consequently, it is often useful to store the final value of the Delta
test in addition to the set of selected variables when using the method. Another
interpretation of the Delta test is that it is half of the leave-one-out error of the
1-NN regression model. This provides another useful metric to compare to when
performing model structure selection, since any sophisticated model should be able
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to perform better than the simple 1-NN model. Essentially, if Ĩ is the set of variables
that are selected, and δ(Ĩ) is the respective value of the Delta test, the leave-one-out
or generalisation error of a good non-linear model using the variables Ĩ should be
between δ(Ĩ) and 2δ(Ĩ), and preferably close to the lower limit.

5.2 Synthetic Experiment

To illustrate the effectiveness of the procedure, an artificial experiment is conducted
to compare the Delta test to variable selection by mutual information. A synthetic
experiment is appropriate as it allows repeatable instances of identical setups, which
can be used to illustrate how the accuracy of the methods improves with increasing
sample sizes. Here, and in the subsequent experiments, the Kraskov method [22]
is used for estimating the mutual information. The method contains a parameter p

which must be chosen, and in this case a medium value of p = 6 is used, in accordance
with the author’s general suggestions.

For this synthetic test, a very non-linear function is intentionally chosen:

f(x(1), x(2), x(3), x(4), x(5), x(6)) = cos(2πx(1)) cos(4πx(2)) exp(x(2)) exp(2x(3))

with x distributed uniformly on the unit cube [0, 1]6 ⊂ R6. Obviously, the optimal
selection of variables for modelling is I = {1, 2, 3}. To make the task challenging,
the signal-to-noise ratio of the data is made to be 1:1 by choosing the variance of
the noise to be equal to the variance of f(x):

Var [ε] = Var [f(x)] =
(8π2 + 1)(e2 − 1)(e4 − 1)

16(16π2 + 1)
≈ 10.77 .

The estimators are given all 26 − 1 = 63 non-empty selections of variables, and
evaluated on each of these. The subset which minimises the Delta test or maximises
the mutual information estimate is returned as the result for the respective method.
Comparing the selections of each method to the known answer gives an idea of the
accuracy of each method. The results are presented in Figure 5.1, where the vertical
axis represents the fraction of cases where the correct selection was chosen. The
experiment was performed as a Monte Carlo simulation with 1000 repetitions for
each value of the data set size M .

It is clear that with increasing data size, the Delta test is eventually able to very
reliably choose the correct selection, as the curve tends towards 1. The necessary
size of about 1000 points in this case might seem high, but recall that the situation
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Figure 5.1: Comparison of the Delta test (DT) and mutual information (MI) on
synthetic data. The vertical axis represents the ratio of cases where each method
correctly identified the optimal selection from a total of 1000 tests for each point.
Note the logarithmic scale for M .

was deliberately chosen to be problematic with the high amount of noise.
The mutual information method is less successful. Although the success rate does

increase with M , the accuracy is much lower for smaller values of M when compared
to the Delta test. The method also requires a significantly larger number of points
to converge towards 1.

5.3 Toy Examples

This section presents how the Delta test behaves in corner cases where the input
variables are correlated in inconvenient ways. Assume there is a latent variable x on
R, and the output is a direct function y = f(x) with no additional noise. The inputs
for regression are “measurements” of x.

It may appear that the theoretical framework of Chapter 4 does not apply here
as some of the assumptions are not strictly fulfilled. However, the treatment still
largely holds when interpreting the conditional expectation of the output

g(x1, x2) = E [f(x) | X1 = x1, X2 = x2]

to be the function one is trying to model, and the Delta test as a measure of the
residual error of this function.
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5.3.1 Perfectly correlated variables

If x1 = x and x2 = 2x the Delta test will not discriminate between the different
selections. The selections {x1}, {x2}, and {x1, x2} all give the same nearest neigh-
bours for every point, and so the noise estimates are also equal. The user is then free
to select the smallest selection of these. In the presence of other variables, however,
the different selections regarding perfectly correlated ones will effectively alter the
weighting between the variables, and would affect the value of the Delta test in a
manner which is not generally predictable.

5.3.2 Perfect vs noisy variable

If x1 = x and x2 = x+ε the Delta test will choose the desired result {x1}, with high
probability. To illustrate, a simple experiment was performed where y = sin

(
20πx2

)
with x ∈ [0, 1] distributed uniformly, M = 100 points and noise Var[ε] = 0.0001.
The simulations showed that the Delta test chooses {x1} in 99% of cases, even with
this relatively low amount of noise to discriminate between x1 and x2.

5.3.3 Several noisy variables (measurements)

If x1 = x + ε1 and x2 = x + ε2 the optimal selection for regression is to choose both
x1 and x2, as this allows one to minimise the effect of the noise by averaging.

An experiment is conducted similar to the above: y = sin
(
20πx2

)
, x ∈ [0, 1] dis-

tributed uniformly with M = 100 points, and a noise variance of Var[ε1] = Var[ε2] =
0.0001. Now the Delta test chooses the desired selection {x1, x2} in 80% of cases.
When the number of points was increased to 1000, {x1, x2} was chosen every time
of 1000 repetitions.

5.4 Real World Data

In this section, the Delta test is benchmarked on some known datasets consisting of
real-world measurements. The method is compared to variable selection by mutual
information [20, 21], and variable ranking by least angle regression (LARS) [19].
The resulting selections are evaluated by training a least squares support vector
machine (LS-SVM) [10] non-linear model and calculating the leave-one-out error.
This provides a fair and unbiased method to compare the methods’ performance for
modelling.

The mutual information is, again, estimated by Kraskov’s method [22] using a
parameter value of p = 6. The Delta test and mutual information estimate are
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optimised by exhaustively searching the selection space in all experiments except
Section 5.4.4, where the number of inputs is prohibitively large, and the forward-
backward scheme is used instead.

The LARS rankings are calculated using the implementation of [35]. As the
method only gives a ranking, without any hint of how many variables to choose,
the LS-SVM is here sequentially evaluated for each number of variables, successively
choosing the top ranked ones until all variables are selected.

The LS-SVM models are obtained by the implementation [36]. The model has
two parameters which need to be specified: the width σ of the Gaussian kernel and
the regularisation parameter γ. Here these hyper-parameters for each model are
obtained by running the toolbox function tunelssvm with initial values σ2 = 1 and
γ = 1. These initial values are sensible, as the datasets were all normalised as a
preprocessing step. The function performs a sequence of two 10 × 10 grid searches
to optimise a (random) 10-fold cross-validation in order to tune the parameters.
The random component unfortunately introduces a certain degree of variability to
the hyperparameters, and further, the model output. To eliminate discrepancies
caused by this random effect, all the LS-SVM models were tuned and evaluated 12
times, and the mean LOO error is reported. The leave-one-out error of the LS-SVM
is chosen as the performance criterion since the LS-SVM provides an efficient and
exact method to calculate it, and it is a fair measure of the suitability of the selected
variables for modelling.

5.4.1 Boston Housing

The Boston housing data set [37] is a set with 14 attributes for 506 objects, and the
modelling task is to predict the (median) value of a house or apartment from the
13 other properties. The variables selected by the Delta test, mutual information,
and LARS, as well as the LOO errors of the LS-SVM are all presented in Table
5.1. There are no obviously redundant variables in the data set, as is evidenced by
the constantly decreasing error when successively choosing the variables ranked by
LARS. The Delta test, also, selects all but three of the available variables. Observing
the leave-one-out errors still reveals that the selection by the Delta test provides a
solid improvement in the model accuracy compared to the mutual information or
any of the LARS selections.

The final value of the Delta test is δ(Ĩ) = 0.0710 here. The resulting mean LOO
error of 0.0909 falls appropriately between δ(Ĩ) and 2δ(Ĩ), while being close to the
lower value.
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mean
LOO

DT • • • • • • • • • • 0.0909

MI • • • • 0.1485

LARS 1 0.3248

2 1 0.2333

2 3 1 0.2054

2 3 4 1 0.1920

5 2 3 4 1 0.1798

6 5 2 3 4 1 0.1553

6 5 2 7 3 4 1 0.1456

6 5 8 2 7 3 4 1 0.1347

6 9 5 8 2 7 3 4 1 0.1379

6 9 10 5 8 2 7 3 4 1 0.1301

6 9 10 5 8 2 7 11 3 4 1 0.1177

6 9 10 5 8 2 7 11 12 3 4 1 0.1058

6 9 10 5 8 2 13 7 11 12 3 4 1 0.0944

Table 5.1: The variables selected by each method for predicting the median value in
the Boston housing data set and the mean leave-one-out error of an LS-SVM model
built using the specified variables.

5.4.2 Forest Fires

The variable selection methods are compared on a data set related to the spread of
forest fires [37, 38] with 517 samples and 12 variables. The set includes some general
variables (location as X-, Y-coordinates, the month and weekday of the fire), some
physical measurements concerning the weather conditions (temperature, humidity,
wind, rain), as well as a few variables called Fire Weather Index components (la-
belled as Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), Drought
Code (DC), and Initial Spread Index (ISI)) derived from the weather conditions. The
originators of the data suggest building a model using only the actual weather mea-
surements [38]. As the output is heavily biased towards small values, the logarithm
transform ŷ = log(y + 1) is used instead of the original values, as also suggested in
the paper.

Some of the variables here are integers, and others happen to be equal for several
samples (apparently there had been several fires between the update intervals of
the weather measurements). As this could cause issues in the nearest-neighbour
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LS-SVM
mean
LOO

DT • • • 0.9924

MI • • • • • 1.0002

LARS 1 1.0108

1 2 0.9964

3 1 2 0.9939

3 1 4 2 0.9937

3 1 5 4 2 0.9911

3 1 5 6 4 2 0.9939

3 7 1 5 6 4 2 1.0016

3 7 1 5 6 4 2 8 0.9898

3 7 1 9 5 6 4 2 8 1.0007

3 7 1 9 5 10 6 4 2 8 0.9892

3 7 1 9 5 10 6 11 4 2 8 0.9899

3 7 1 12 9 5 10 6 11 4 2 8 0.9923

From [38] • • • • 0.9848

Table 5.2: The variables selected by each method for predicting the burned forest
area in the Forest fires data set and the resulting mean leave-one-out error of the
LS-SVM.

search due to cases where several candidates are exactly at the same distance, a very
slight perturbation is added in the variable selection phase to the inputs in order to
randomise and even out the effect of this phenomenon.

As the month and weekday variables are cyclic in nature, directly using the Eu-
clidean measure for these is not sensible. Instead, they are mapped to points on a
circle, and the distance between points is measured through the circle. This may
seem somewhat heuristic, but is still sufficiently accurate to be appropriate for a
nearest-neighbour search. The mapping is done in this way to still allow the use
of highly optimised functions for performing the nearest-neighbour search with the
Euclidean metric.

The variables chosen by each method and resulting LOO errors can be seen in
Table 5.2. As all of the LOO errors are close to the variance of the data, it is safe to
say this is a very difficult problem; in fact, none of the methods perform satisfactorily.
The set of variables suggested in [38] does provide the lowest error metric, but by
a small margin. As the MSE is nearly as large as the variance of the noise, it may
appear that the models are useless, but all hope is not lost. This phenomenon was
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LS-SVM
mean
LOO

DT • • • • • • 0.1183

MI • • • 0.1331

LARS 1 0.2893

1 2 0.1349

1 2 3 0.1282

4 1 2 3 0.1119

4 1 5 2 3 0.1128

4 1 5 2 3 6 0.1133

7 4 1 5 2 3 6 0.1113

8 7 4 1 5 2 3 6 0.1111

8 7 4 1 5 2 3 9 6 0.1109

Table 5.3: The variables selected by each method for predicting the MPG usage in
the auto MPG data set and the resulting mean leave-one-out error of the LS-SVM.

recognised in [38], and appears to be related to the extreme difficulty of accurately
predicting the spread of large fires. The small fires still tend to be predicted with
reasonable accuracy.

The final value of the Delta test is 0.7447, and the reported leave-one-out errors
are squarely inside the 1–2 times bracket.

5.4.3 Auto MPG

Here the methods are compared on a data set for predicting the fuel consumption
(miles per gallon) of a number of car models [37] with 398 samples. The 7 variables
include other performance measures of the models, as well as the year and a discrete
“origin” variable. The horsepower information is missing for 6 samples, and for this
experiment these are replaced by the mean of the horsepowers of the other models.
The origin variable is a class representing the source of the car with three possible
values: American, European, or Japanese (all of the models included in the data
fall into one of these categories). For this experiment, the information was divided
into three binary variables, each representing whether a samples is included in the
respective class. Again, as some of the variables are discrete, a slight perturbation
is added to the inputs for the variable selection.

The results are shown in table 5.3. As the smallest error is obtained by the
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full selection, it seems clear that all of the input variables are relevant. It can be
seen that the Delta test fares better than the mutual information, but LARS does
manage to get an even smaller LOO error by fewer selected variables, reaching 0.1119
by choosing the 4 top-ranked variables.

The optimal value of the Delta test is 0.0710, and while the leave-one-out error is
between one and two times this, there is a significant difference between the noise
estimate and the resulting LOO error. In this case, the LS-SVM model is not able
to reach close to the smallest generalisation error as predicted by the Delta test.
Hence, either the Delta test estimate is over-optimistic—which could be caused by
the several discrete variables in the data—or the LS-SVM that is used is not able to
capture all the information that could be extracted from the data.

5.4.4 AnthroKids

The AnthroKids data set consists of anthropological measurements of children con-
ducted in the USA in 1977 [39]. The full original data included a total 122 mea-
surements of 3900 individuals. As that data contains several missing values, it has
been converted to a regression problem in [40] by assigning the weight to be the tar-
get, and retaining 53 variables and 1019 samples without missing values. See Table
A.1 of Appendix A for the full list of variables which were retained in this pruning.
In addition to physical attributes, the data contains general information about the
individuals and the measurement event. It is clear that there are several entirely
redundant variables, and variable selection should prove effective.

As 53 variables is far too many to perform an exhaustive search over the selection
space, the forward-backward search (starting from the empty selection) method was
used instead to optimise the Delta test as well as the mutual information estimator.
The selected variables with resulting mean LOO errors are presented in Table 5.4.
For LARS, only the results for the first 20 variables are included, as the addition of
any further variables did not notably decrease the LOO error.

The Delta test chooses 9 out of the 53 variables, resulting in a better model than
by any of the other selection methods. The value returned by the Delta test is
0.0096, which is a reasonably accurate estimate of the resultant mean leave-one-out
error of 0.0109. The lowest mean LOO provided by the LARS selections is very
close, 0.0115, which is obtained by using the 11 top ranked variables. However, as
the method does not specify how many variables to use, actually reaching this level
of accuracy would require the tuning, training, and evaluating of up to 53 models in
order to consider the different possibilities. The Delta test, on the other hand, gives
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The selected variables:

LS-SVM
mean
LOO

DT 1 2 4 18 20 35 36 37 39 0.0109

MI 1 35 37 39 0.0130

LARS 35 0.0475

35 39 0.0285

35 39 21 0.0277

35 39 21 37 0.0193

35 39 21 37 17 0.0181

35 39 21 37 17 2 0.0149

35 39 21 37 17 2 3 0.0149

35 39 21 37 17 2 3 36 0.0140

35 39 21 37 17 2 3 36 19 0.0140

35 39 21 37 17 2 3 36 19 33 0.0141

35 39 21 37 17 2 3 36 19 33 20 0.0115

35 39 21 37 17 2 3 36 19 33 20 48 0.0119

35 39 21 37 17 2 3 36 19 33 20 48 44 0.0120

35 39 21 37 17 2 3 36 19 33 20 48 44 49 0.0122

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 0.0130

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 53 0.0139

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 53 52 0.0154

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 53 52 46 0.0162

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 53 52 46 16 0.0166

35 39 21 37 17 2 3 36 19 33 20 48 44 49 51 53 52 46 16 40 0.0169
...

All all 1–53 0.0355

Table 5.4: The variables selected by each method in the AnthroKids data set, and
the resulting mean LOO errors for the LS-SVM. See Table A.1 for the descriptions
of the variables.

a one-shot result, which is still slightly better in this case.

5.4.5 Time Series Prediction: Santa Fe A Laser Data

One interesting application where variable selection is often required is in auto-
regressive time series prediction, and hence the methods are also tested on a well
known time series problem selected from the Santa Fe Time Series Competition: the
laser data known as Santa Fe A [41, 42] (Figure 5.2). The data consists of 1000
samples of intensity data of a Far-Infrared-Laser in a chaotic state, and it features
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Figure 5.2: The Santa Fe A Laser time series data.

a clear periodicity. The amplitude of the oscillation varies by time, and appears
to collapse at irregular intervals. The task is to perform one-step-ahead prediction,
and it has been shown that a regressor size of 12 should suffice to train an efficient
model. The variable selection then pertains to which of the delayed regressors (up
to a delay of 12) should be used to build the model.

The results are shown in Table 5.5. The Delta test performs very well, leading to
the best model by a significant margin, while choosing only three of the regressor
variables.

The final value of the Delta test is 0.0165. As the LOO error is slightly smaller,
this could suggest that overfitting might be occurring. However, it appears more
likely that the discrepancy would be caused by behaviour around the rare events in
the time series where the collapses occur.
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1 2 3 4 5 6 7 8 9 10 11 12

LS-SVM
mean
LOO

DT • • • 0.0144

MI • • • 0.0837

LARS 1 0.3774

2 1 0.1329

3 2 1 0.1123

4 3 2 1 0.0279

4 5 3 2 1 0.0206

4 5 3 6 2 1 0.0205

4 5 3 6 7 2 1 0.0200

4 5 3 6 7 8 2 1 0.0209

4 5 3 6 7 8 2 1 9 0.0250

4 5 3 6 7 8 2 1 9 10 0.0332

4 5 3 6 7 8 2 1 9 10 11 0.0341

4 5 3 6 7 8 2 1 9 10 12 11 0.0361

Table 5.5: The regressor variables selected by each method for predicting the next
value in the Santa Fe Data A Laser data, and the resulting mean LOO errors for
the LS-SVM. The indexes represent the delay in the auto-regressive model relative
to the sample to be predicted.
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Conclusions

The importance of variable selection procedures in non-linear regression analysis
is becoming increasingly important as the size of data sets which can be gathered
and handled continues to grow. In addition to reducing the size of the problem,
variable selection can improve the performance of regression models by discarding
noisy data. Additionally, variable selection provides valuable interpretability of the
data by specifying which variables are more relevant than others. This thesis assesses
some of the currently available state-of-the-art methods and presents the use of the
“Delta test” noise variance estimator for input variable selection.

The theoretical claims presented in Section 4 show that, under reasonable assump-
tions, the expectation of the Delta test is minimised by the smallest input subset
which can optimally explain the variation in the output. Minimising the expecta-
tion of the algorithm may seem insufficient considering that data often consists of
a single realisation of some random process. However, as has been shown in [25],
the variance becomes sufficiently small with a sufficient number of data points so
this still implies that a near-minimal Delta test value corresponds to a near-optimal
selection of variables.

The method is compared to two alternative methods on five real-world data sets,
and the performances of the resulting models are summarised in Table 6.1. The
Delta test beats the competition in three out of five cases, and provides comparable
results in the remaining two. The method can consequently be considered a viable
competitor among the current state-of-the-art.

One particular strength of the Delta test is that it is entirely non-parametric, i.e.,
it can output an optimal subset of variables without asking the user for parameter
values or having to infer them from the data. This is particularly important in the
field of machine learning, where entirely automatic processes are valued.

34
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Housing Forest Fires Auto MPG AnthroKids Santa Fe

Delta test 0.0909 (10) 0.9924 (3) 0.1183 (6) 0.0109 (9) 0.0144 (3)

Mutual information 0.1485 (4) 1.0002 (5) 0.1331 (3) 0.0130 (4) 0.0837 (3)

LARS — 0.9892 (10) — 0.0115 (11) 0.1123 (3)

No variable selection 0.0944 (13) 0.9923 (12) 0.1109 (9) 0.0355 (53) 0.0361 (12)

Table 6.1: The best leave-one-out errors achieved by each method on each data set.
The integers in parenthesis denote the number of selected variables for the achieved
result. The dashes indicate situations where using any subset of top-ranked LARS
variables resulted in worse performance than by selecting all the variables.

As the Delta test is based on a nearest-neighbour approach, the idea scales well
to high-dimensional situations. However, for large problems, the computational cost
of the method may become intractable with a naïve implementation. Hence, care
should be taken to appropriately implement both the evaluation of the nearest-
neighbour search as well as how to explore the search space efficiently.

In light of the experimental results, the Delta test is apparently most suitable
for data where both the inputs and output are continuous. Both of the data sets
where the method was outperformed by another method included discretised input
variables. The possible extension from regression to classification problems is also
interesting, but far from obvious. Another appealing future development is if and
how the idea can be extended to encompass other forms of dimensionality reduction,
such as scaling or linear projection.

The main limitation for the method’s use is currently a practical one of size. An
exhaustive survey of the search space is insurmountable if the number of variables
is much beyond 20. Although there are some tried and true search methods, they
appear sub-optimal, and research is ongoing on new, more efficient, algorithms.

The theoretical and experimental results support the notion that the method can
provide desirable results in a wide variety of regression modelling problems. As
the technique is both simple and robust it can be recommended as a suggested
preprocessing step for nearly any regression task.
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Appendix A

AnthroKids Variables

This appendix presents the complete list of measured variables included from the
AnthroKids data set after pruning some variables and samples with missing values,
and the ranking by the LARS algorithm.

41
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Selected by
Index DT MI LARS ranking Description

1 • • 50 Stature
2 • 6 Erect sitting height
3 7 Maximum hip breadth, sitting
4 • 47 Buttock-knee length
5 52 Head circumference
6 36 Head breadth
7 45 Bizygomatic breadth
8 33 Frontal breadth
9 26 Lower face height
10 23 Face height
11 49 Tragion to back of head
12 31 Tragion to top of head
13 34 Ear-sellion depth
14 22 Bitragion breadth
15 21 Mouth breadth
16 19 Nose length
17 5 Shoulder breadth
18 • 44 Shoulder-elbow length
19 9 Upper arm circumference
20 • 11 Elbow-hand length (lower arm length)
21 3 Forearm circumference
22 39 Hand length
23 37 Hand breadth
24 53 Minimum hand clearance
25 46 Thumb length
26 30 Thumb diameter
27 28 Index finger length
28 41 Index finger diameter
29 48 Middle finger length
30 42 Middle finger diameter
31 43 Middle finger-thumb grip length
32 38 Maximum fist circumference
33 10 Maximum fist breadth
34 40 Maximum fist depth
35 • • 1 Chest circumference at axilla
36 • 8 Waist circumference
37 • • 4 Hip circumference at buttocks
38 24 Upper thigh circumference
39 • • 2 Calf circumference
40 20 Foot length
41 25 Foot breadth
42 27 Age in years
43 29 Sex
44 13 Location
45 51 Age in months
46 18 Birth date
47 35 Measurement date
48 12 Measurer number
49 14 Computer number
50 32 Race
51 15 Handedness
52 17 Twin
53 16 Birth order

Table A.1: The full list of AnthroKids variables.


