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Gaussian basis functions for chemometrics
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High-dimensional data are becoming more andmore common, especially in the field of chemometrics. Nevertheless,
it is generally known that most of the commonly used prediction models suffer from curse of dimensionality that is
the prediction performance degrades as data dimension grows. Therefore it is important to develop methodology
for reliable dimensionality reduction. In this paper, we propose a method that is based on functional approximation
using Gaussian basis functions. The basis functions are optimised to accurately fit the spectral data using nonlinear
Gauss–Newton algorithm. The fitting weights are then used as training data to build a least-squares support vector
machine (LS-SVM)model. Toutilise the reduceddatadimension, relevantvariablesare further selectedusing forward–
backward (FB) selection. The methodology is experimented with three datasets originating from the food industry.
The results show that the proposed method can be used for dimensionality reduction without loss of precision.
Copyright © 2008 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

In the field of multivariate data analysis high-dimensional data are
becoming more and more common. This is especially true in ar-
eas related to spectral data due to constant development of more
accurate spectrometers. However, in the machine learning per-
spective, the constantly growing data dimension causes severe
problems. First of all, computational complexity of many com-
monly used analysis methods grows exponentially with respect
to the number of variables [1]. But what is more important, the
analysis suffers from the curse of dimensionality, which states that
the theoretical lower bound of error increases with data dimen-
sionality. For example it has been shown that pairwise distances
in high-dimensional spaces tend to be concentrated in a small
interval, which makes it difficult to measure similarity with a dis-
tance metric [2,3]. Still, most of the commonly used prediction
methods such as k-nearest neighbour (k-NN) and most of kernel
methods such as radial basis function networks (RBFN [1]), sup-
port vector machines (SVMs [1]) and kernel partial least squares
(K-PLS [4]), rely on pairwise distances and are thus bound to suffer
from the curse of dimensionality [5].

The growth of data dimension also implies that more training
examples are needed for building a reliable prediction model
[2,5]. However, the datasets in chemometrics tend to be small
due to high costs of data acquisition. In some cases the number
of spectral variables exceed the number of training examples
which is a poor starting point for machine learning and it very
likely leads to poor generalisation performance.

To overcome the curse of dimensionality, one can focus on
studying only a small subset of the data or project the data into a
smaller dimensional space. Although the first alternative is often
effective, it is not efficient: finding a relevant subset can be very
time consuming. On the other hand, projecting the data on a small
dimensional function space often provides a straightforward way
for dimensionality reduction. In the functional data analysis (FDA)
approach, the samples are treated as discretised functions that
are approximated by some finite function space [6]. In the case
of spectrometric data the functional approach seems especially

appealing because the spectral curves are often relatively smooth
and low on noise. Often standard function bases, such as the B-
splines [7,8] or wavelets [9,10], are used for the approximation.
However, instead of using a fixed basis it seems appealing to tune
the basis functions according to the data at hand so that minimal
number of coefficients (or weights) are needed for representing
the data.

We propose that quasi-Newton optimised Gaussian functions
are a good choice for the basis [11]. The locations and widths
of the Gaussian functions are optimised for an accurate fit in
the entire dataset. Consequently, the basis follows the statistical
nature of the data and a good representation is obtained with a
small number of basis functions. Furthermore, there is only one
unknown parameter to tune: the number of Gaussian functions.

In this paper the proposed methodology is experimented with
three datasets from the food industry. The goal is to predict some
analytical values (such as fat content) using infrared absorption
spectra. Gaussian fitting coefficients are used to train a least-
squares support vector machine (LS-SVM [12]) model for the fi-
nal prediction. For comparison partial least squares (PLS [13]) and
principal component regression (PCR [14]) models are also ex-
perimented. To fully utilise the reduced dimensionality, forward–
backward (FB) variable selection is used to select relevant basis
functions. A flow chart of the proposed method is presented in
Figure 1.

We have chosen LS-SVM model due to its capability to learn
nonlinear phenomena. Use of a linear model is based on the as-
sumption that the prediction problem is linear in the sense that
absorption is directly proportional to concentration of the sub-
stance and a spectrum of a mixture is a linear combination of
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Figure 1. Outline of the method.

the spectra of its components [15]. In practise, however, the as-
sumption is not always true. Wülfert et al. tested additivity of NIR
spectra and showed that there is significant deviation especially
with water-rich mixtures [15]. Furthermore, environmental condi-
tions (such as temperature, light and instrument variation) may
also affect the measurement and introduce nonlinearities [16].
LS-SVM regression has already been used to model nonlinear de-
pendencies in chemometrics [16,17].

The paper is organised as follows. The Gaussian fitting and non-
linear optimisation is explained in Section 2. Section 3 describes
the LS-SVM model. FB variable selection is explained in Section
4. Finally, the experiments and results are presented in Sections 5
and 6, respectively.

2. GAUSSIAN BASIS

Consider a set ofNmeasured absorption spectra {Sj
i }m

j=1 and corre-
sponding analytically measured target values yi, i = 1, . . . , N. It is
assumed that S

j
i are (possibly noisy) measurements of some con-

tinuous absorption function s(�), that is S
j
i = si(�j ), j = 1, . . . , m,

where � is wavelength. To approximate s(�) we define a set of
Gaussian basis functions:

ϕk (�) = e−‖�−tk‖2big/�2
k , k = 1, . . . , q (1)

where tk is the centre and �k is the width parameter. If all the
Gaussian functions are distinct, the set ϕk (�) spans a q dimen-
sional vector space A = span{ϕk}.

Now s(�) can be approximated using the basis representation:

ŝ(�) =
q∑

k=1

ωkϕk (�) = ωTϕ(�)

where ϕ(�) = [ϕ1(�), ϕ2(�), . . . , ϕq(�)]T . The weights ω are
chosen by minimising the square fitting error. The problem is
formulated as

min
ω

m∑
i=1

∣∣Si − ωTϕ(�i)
∣∣2

(2)

When the locations and widths of the Gaussian functions
are known, the weights ω are obtained easily from Equation
(2). The solution is the pseudoinverse ω = (GTG)−1GTy, where
y = [y1, y2, . . . , ym]T are the values to be fitted and the matrix
elements Gi,j = ϕj (xi) [1].

Using this basis, any spectrum ŝ ∈ A is uniquely determined by
the weight vector ω. This suggests that it is equivalent to analyse
the discrete weight vectors instead of the continuous functions ŝ.

However, it should be noted that the functional fitting distorts
distances, which can be seen by computing the distance of two
arbitrary functions v̂(�) = ωTϕ(�) and û(�) = �Tϕ(�) in the func-

tion space:

‖v̂ − û‖2
A =

∫ b

a

(
(ω − �)Tϕ(�)

)2
d� = (ω − �)T�(ω − �)

�i,j =
∫

ϕi(�)ϕj (�)d�

Clearly, if the functions are orthonormal, � becomes an identity
and the norm is equal to the norm in (Euclidian) weight space,
(ω − �)T (ω − �). Generally this is not the case and distances in
function space are not equivalent to those in the weight space.
The distortion can be circumvented by applying a linear trans-
formation ω̃ = Uω, where U is the Cholesky decomposition of
� = UTU [18].

2.1. Optimisation of locations and widths

Since the basis functions are differentiable, the locations and
widths can be optimised for a better fit. The average fitting error
of all functions is obtained by averaging Equation (2) over all of
the sample inputs i = 1, . . . , N. Using the matrix notation given
above, it can be formulated as

E = 1

2N

N∑
i=1

(
Gωi − yi

)T(
Gωi − yi

)

The partial derivates are

∂E

∂tk

= 1

N

N∑
i=1

(
Gωi − yi

)T
G(t)

k ωi,k

∂E

∂�k

= 1

N

N∑
i=1

(
Gωi − yi

)T
G(�)

k ωi,k

Here, the matrix G is considered as a continuous matrix-valued
function G = G(t, �) and therefore its elements are differentiable
with respect to tk and �k . The notation G(t)

k and G(�)
k stand for

the kth column of G differentiated with respect to tk and �k ,
respectively.

Knowing the gradient, the locations and the widths can be op-
timised using a standard unconstrained nonlinear optimisation
method. Actually, the problem is constrained to � > 0 but the
Gaussian (1) is an even function with respect to � and thus
the constraint can be relaxed. In this paper, Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method with line search
is used. Similar to Newton’s method, also BFGS is based on min-
imising second-order function approximation, but the Hessian
matrix is approximated rather than computed explicitly [19].

Nonlinear optimisation requires an initial set of Gaussian
functions. Since there are many local minima involved in the
optimisation problem, the choice of initialisation is not trivial.
However, for the sake of simplicity, initially the basis functions are
distributed evenly on the data interval and the width is set to the
distance between neighbouring centres.

Although the central idea in this work is to use the function fit-
ting for dimension reduction, the nonlinear optimisation of Gaus-
sian functions bears close resemblance to optimisation RBFN. For
example Wettschereck and Dietterich [20] have presented a gen-
eralised RBFN where the locations and widths of the Gaussian ker-
nels are optimised by gradient descent based back-propagation
algorithm.

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 701–707
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3. LS-SVM FOR REGRESSION

LS-SVM is a least square modification of the SVM introduced by
Suykens [12]. The LS-SVM has two advantages over SVM: first, the
computationally demanding quadratic optimisation problem of
SVM is simplified so that it reduces to a set of linear equations
which greatly decreases the computational costs. Secondly, re-
gression SVM involves three unknown parameters while LS-SVM
has only two, the regularisation parameter � and the kernel width
�, which significantly simplifies the parameter optimisation phase.
SVM is sometimes presented as a method that can handle high-
dimensional data, but at least when it is coupled with a kernel
based on pairwise distances, such as most widely used Gaussian
kernel, it cannot overcome the curse of dimensionality [5].

Consider a set of N training examples (xi , yi)Ni=1 ∈ Rm × R. The
LS-SVM model is ŷ = wT (x) + b, where : Rm �−→ R

n is a map-
ping from the input space onto a higher dimensional hidden
space,w ∈ Rn is a weight vector and b is a bias term. The optimi-
sation problem is formulated as

min
w,b

J(w, e) = 1

2
‖w‖2 + 1

2
�

N∑
i=1

e2
i

so that yi = wT (xi) + b + ei

where ei is the prediction error and � ≥ 0 is the regularisation
parameter. The dual problem is derived using Lagrangian multi-
pliers which leads into a linear KKT system that is easy to solve [12].
Using the dual solution, the original model can be reformatted as

ŷ =
N∑

i=1

˛iK (x, xi) + b

where the kernel K (x, xi) =  (x)T (xi) is a continuous and sym-
metric mapping from Rm × Rm to R and ˛i are the Lagrange
multipliers. It should be emphasised that although we formally
define the high-dimensional hidden space Rn and the mapping
 (x), there is no need to compute anything in the hidden space;
the knowledge of the kernel K is enough. A widely used choice is
the standard Gaussian kernel:

K (x1, x2) = e−‖x1−x2‖2
2/�2

In order to obtain reliable performance measures the dataset
is divided into two pieces, learning set CL and test set CT . The
regression model is trained using the learning set data and cross-
validation. The obtained model is then simulated on the indepen-
dent test set CT in order to detect possible over-fitting [1].

4. FORWARD–BACKWARD VARIABLE
SELECTION

Selection of relevant variables is a important yet difficult task in
machine learning. Irrelevant inputs introduce noise to the predic-
tion model which decreases performance. As number of variables
reduce, the parameter optimisation becomes easier. Moreover,
variable selection can provide valuable information about the
data at hand.

The most simple variable selection method is exhaustive
search, that is trying out all the possible variable combinations.
However, exhaustive search quickly becomes impossible as num-
ber of variables grow. FB selection is a faster algorithm but there
is no guarantee that the optimal set of variables is found.

In FB algorithm, each variable can be in two states: ‘on’, mean-
ing that it belongs to the set of selected variables or ‘off’ mean-
ing that it is discarded. Given a certain initial state vector (states
of all variables), the algorithm proceeds by flipping the state of
each variable at a time and by computing the corresponding er-
ror measure. The flip operation that improved performance the
most is accepted, and the states are flipped again (excluding the
previously accepted change). The process is continued until no
improvement is found. FB selection can be seen as descent in a
graph where neighbouring state vectors differ with exactly one
state. Such a graph contains many local minima and therefore it
is advisable to initialise the process with random state vectors in
addition to the ordinary ‘all on’ and ‘all off’ states.

In this work, the error measure is LS-SVM prediction error. Since
the number of variables changes during FB iteration, the LS-SVM
is retrained in each step.

5. EXPERIMENTS

The proposed methodology was experimented with three differ-
ent datasets from food industry. PLS, PCR and LS-SVM regression
was tested using the original inputs. On top of that the three
regression models were experimented using compressed spec-
tra that were obtained using both Gaussian and B-spline basis
functions.

5.1. Datasets

The Tecator dataset consists of NIR absorption spectra and fat
contents of 215 samples of minced pork meat [21]. Each spectrum
was measured at 100 wavelengths ranging from 850 to 1050 nm
using Tecator Infratec Food and Feed Analyser. The fat content
ranges from 0.9 to 49.1%. First 172 spectra were used as a learning
set CL and the remaining 43 were used as a test set CT . The training
set is illustrated in Figure 2.

The second dataset contains 124 mid-infrared absorption spec-
tra of wine samples and the goal is to determine the percentage
of alcohol. The 256 spectral variables relate to wavenumbers from
400 to 4000 cm−1. Alcohol content ranges from 7.48 to 18.5% and
the accuracy is three digits. First 94 spectra were used as a learn-
ing set CL while the remaining 30 were regarded as a test set CT .
The spectra are illustrated in Figure 3.

The third dataset is related to the prediction of saccharose
content of orange juice samples. The dataset contains absorption

Figure 2. Spectra of the Tecator dataset.

J. Chemometrics. 2008; 22: 701–707 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 3. Spectra of the wine dataset.

spectra of 700 variables measured in range 1000–2500 nm. The
training and learning set contain 146 and 67 values, respectively.
The saccharose content ranges from 0 to 78.8%. The spectral
data are illustrated in Figure 4.

Both the wine and juice datasets are examples of cases where
the number of spectral variables exceeds the number of training
examples.

5.2. Error measures

In this work we use mean square error (MSE) to measure the qual-
ity of the prediction. In the training phase, 10-fold cross-validation
is used. Denoting the 10 subsets of CL as CL,1, CL,2, . . . , CL,10, the
cross-validation MSE is defined as

MSEV = 1

10

10∑
j=1

MSEV,j

MSEV,j =
∑
i∈CL,j

(yi − ŷi)
2

where ŷi represents the estimated concentration and each MSEV,j

is associated to a model that has been trained with the set CL \ CL,j .
The generalisation performance is estimated by simulating

the prediction model on the test set CT . In this case the MSE is

Figure 4. Spectra of the juice dataset.

Figure 5. Tecator dataset. Above: LS-SVM validation error versus number
of basis functions. Below: accuracy of the Gaussian function approxima-
tion versus number of kernels. Solid line stands for the Gaussian fitting
and dash-dotted line stands for B-splines. The selected number of basis
functions is marked with a dot (closed for Gaussian, open for B-splines).

simply

MSET =
∑
i∈CT

(yi − ŷi)
2

However, since the test sets are rather small, the MSET is not
very reliable error measure and thus the validation errors must
also be taken into consideration when interpreting the results.

5.3. Selecting number of basis functions

For each dataset, we computed both the Gaussian fitting (as ex-
plained in Section 2) and a standard cubic B-spline fitting (see
Reference [7], for example). In both cases the Cholesky decompo-
sition was used to orthonormalise the fitting weights. The number
of basis functions was selected by trying out several values and
selecting the one that gave the smallest LS-SVM validation error.
The maximum number of functions was 25, 36 and 35 for Tecator,
wine and juice datasets, respectively. The evolution of fitting ac-
curacy and LS-SVM validation error is presented in Figures 5–7 for
the three datasets, respectively.

Figure 6. Wine dataset. Above: LS-SVM validation error versus number
of basis functions. Below: accuracy of the Gaussian function approxima-
tion versus number of kernels. Solid line stands for the Gaussian fitting
and dash-dotted line stands for B-splines. The selected number of basis
functions is marked with a dot (closed for Gaussian, open for B-splines).

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 701–707
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Figure 7. Juice dataset. Above: LS-SVM validation error versus number
of basis functions. Below: accuracy of the Gaussian function approxima-
tion versus number of kernels. Solid line stands for the Gaussian fitting
and dash-dotted line stands for B-splines. The selected number of basis
functions is marked with a dot (closed for Gaussian, open for B-splines).

Fitting accuracy should decrease monotonically as the number
of basis functions increase, but in practise this may not always
be true. It can be seen that in the case of the wine dataset the
Gaussian fitting set produces a very spiky curve. This behaviour
is due to the fact that the spectra of the Wine dataset is rather
flat with some local spikes and therefore the optimisation of the
Gaussian functions gets stuck in local minima more easily. How-
ever, it should be noted that the Gaussian basis functions provide
a more accurate fit that B-splines of the same dimension. Also,
especially with Tecator and wine data, the validation error tends
to be smaller than with the B-splines.

The LS-SVM models were trained using 10-fold cross-validation.
To acquire reliable cross-validation errors, the learning sets were
randomly permutated. The same permutation was used in all tests
to obtain fully comparable results. The LS-SVM parameters � and
� were optimised using four sequential 10 × 10 grid searches,
starting from a coarse grid and moving to a finer one near the
minimum value.

As benchmarks, widely used PLS and PCR regression models
were trained on the spectral data. The number of latent variables
(in PLS) and number of principal components (in PCA) were se-
lected using the same 10-fold cross-validation. The number of
basis functions was also selected using the same criterion. Fur-
thermore, to illustrate the effect of the Gaussian fitting, all the
three models, PCA, PLS and LS-SVM, were trained with the raw
spectral data as well. In all cases, the input variables were scaled
to zero mean and unit variance before training†.

5.4. FB variable selection

To initialise FB variable selection, 100 random selections were
computed, out of which the 15 best were tuned with the actual
FB algorithm. After the FB process, final LS-SVM validation error
was computed with full grid search as described in Subsection 5.3.

In the case of the Tecator dataset, the number of Gaussian basis
functions was 16, out of which 10 were selected by the FB process.
Using the B-spline basis, 24 functions were chosen, out of which

† To be more specific, the learning set was scaled to zero mean and unit variance
and the same scaling was used in the test set.

11 were selected. For the Wine dataset, Gaussian fitting resulted
in 13 variables out of which 8 were selected while B-spline fitting
resulted in 35 variables out of which 15 were selected. The re-
sults obtained with the juice dataset are similar: Gaussian fitting
resulted in 32 variables out of which 9 were selected and B-spline
fitting resulted in 30 variables out of which 10 were selected. Thus
in all the cases spectra were compressed remarkably, resulting in
only 8–15 significant variables.

6. RESULTS

The prediction errors obtained with the three datasets are pre-
sented in Tables I–III.

Table I. Results for the Tecator dataset. Number of latent variables are
given in parenthesis

Method Number of variables MSEV MSET

PLS 100 (14) 6.41 4.04
PCR 100 (20) 12.88 4.98
LS-SVM 100 1.67 1.54
Gaussian + PLS 23 (13) 6.80 5.29
Gaussian + PCR 23 (17) 7.61 5.02
Gaussian + LS-SVM 16 0.74 0.95
Gaussian + LS-SVM + FB 10 0.57 1.16
B-spline + PLS 23 (15) 6.63 4.85
B-spline + PCR 23 (23) 6.81 4.68
B-spline + LS-SVM 24 1.62 1.77
B-spline + LS-SVM + FB 11 1.00 1.22

Table II. Results for the wine dataset

Method Number of variables MSEV MSET

PLS 256 (8) 0.0054 0.0099
PCR 256 (30) 0.0066 0.0094
LS-SVM 256 0.0285 0.0078
Gaussian + PLS 31 (20) 0.0046 0.0130
Gaussian + PCR 26 (24) 0.0054 0.0098
Gaussian + LS-SVM 13 0.0054 0.0121
Gaussian + LS-SVM + FB 8 0.0043 0.0090
B-spline + PLS 33 (18) 0.0046 0.0150
B-spline + PCR 33 (30) 0.0046 0.0313
B-spline + LS-SVM 35 0.0096 0.0064
B-spline + LS-SVM + FB 15 0.0036 0.0062

Table III. Results for the juice dataset

Method Number of variables MSEV MSET

PLS 700 (9) 28.6311 18.8016
PCR 700 (15) 35.9 26.5
LS-SVM 700 61.5 32.9
Gaussian + PLS 23 (20) 28.1 19.5
Gaussian + PCR 24 (24) 29.1 19.7
Gaussian + LS-SVM 32 34.1 13.6
Gaussian + LS-SVM + FB 9 23.1 18.1
B-spline + PLS 28 (18) 28.1 17.7
B-spline + PCR 28 (12) 29.6 21.1
B-spline + LS-SVM 30 38.0 18.6
B-spline + LS-SVM + FB 10 25.9 18.3

J. Chemometrics. 2008; 22: 701–707 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 8. Plots of actual concentration versus estimated concentration obtained with the best models. Learning set is marked with dots and the test set
is marked with circles. The best model for Tecator was Gaussian + LS-SVM + FB, for Wine it was B-Spline +LS-SVM + FB and for Juice it was plain PLS.

6.1. Tecator

In the case of Tecator data, using nonlinear prediction method is
clearly advantageous. Using LS-SVM divides the MSE roughly by
5 compared to any of the linear models. This suggests that there
are some nonlinearities involved in the input–output relation. The
nonlinearity of this dataset has been discussed also in the original
work by Borggaard et al. [21].

Using the Gaussian fitting improves the performance even
more: the test MSE was decreased roughly by one-third. How-
ever, combining FB variable selection to the Gaussian + LS-SVM
model decreases the validation error but increases the test error.
Since both the learning set and the test set are small, it is not clear
whether this is due to over fitting: the validation error is an aver-
age of 10 separate estimates, so theoretically it should be more
accurate than the test error. On the other hand, however, the vali-
dation error has been minimised during the training process, so it
is not independent and thus not as reliable as the test error. All in
all, one can only conclude that the FB selection reduces the num-
ber of variables from 16 to 10 while the overall performance stays
quite the same. The performance of Gaussian + LS-SVM + FB is
presented in Figure 8 where the actual target concentrations are
plotted against the predicted ones.

Considering both the validation and the test error, B-splines
do not perform quite as well as the Gaussian fitting. The variable
selection, however, is clearly advantageous in this case.

6.2. Wine

In the case of Wine dataset, all the models, including plain PLS and
PCR, give good results which suggests that the problem is highly
linear. The good performance is clearly observable in Figure 8.

Despite the linearity of the problem, combining the function
fitting with LS-SVM model yields good results. Again, considering
both MSEV and MSET one can conclude that the B-spline + LS-
SVM + FB is the best model. However, the Gaussian + LS-SVM

(+FB) results in significantly smaller number of variables while
the performance remains satisfactory.

6.3. Juice

If the wine dataset was an example where all the models perform
reasonably well, the juice dataset is quite the opposite. Predict-
ing the saccharose content is more difficult task, and none of
the models produces satisfactory results, which is clearly seen in
Figure 8.

Among the plain regression models, plain PLS performs the
best. Gaussian +LS-SVM + FB and B-spline + LS-SVM + FB give
slightly better results, but considering the size of the dataset,
the difference can hardly be considered as significant. Therefore,
due to the simplicity of PLS, one can conclude that plain PLS is
the best model.

7. CONCLUSIONS

We have proposed optimised Gaussian basis functions as a tool for
dimensionality reduction for spectrometric data. When combined
with LS-SVM model, our experimental results on three datasets
suggest that dimensionality can be reduced dramatically without
loss of prediction accuracy.

Gaussian fitting combined with LS-SVM model performed best
on the Tecator dataset and it was observed that the Gaussian
fitting tends to compress the data more than the B-splines.
However, B-splines gave better results in the wine dataset. Fur-
thermore, the results obtained with the juice dataset suggest
that in some, rather difficult cases, the function fitting cannot
improve the prediction performance. Therefore, the choice of
method depends on the dataset and the goal of the analy-
sis. Reducing data dimensionality simplifies the regression task
and speeds up variable selection considerably. Both the func-
tion fitting and the variable selection can provide the researcher

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 701–707
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valuable information on the problem at hand, even though it
would not yield clear benefits in performance.

Finally, it should be noted that in the light of these results,
the importance of learning set and test set size becomes very
clear. Therefore, in future the methodology should be tested on
various large datasets in order to be able to obtain more reliable
performance measures.
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