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Abstract In this paper, the problem of residual variance estimation is examined. The
problem is analyzed in a general setting which covers non-additive heteroscedastic noise
under non-iid sampling. To address the estimation problem, we suggest a method based on
nearest neighbor graphs and we discuss its convergence properties under the assumption of
a Hölder continuous regression function. The universality of the estimator makes it an ideal
tool in problems with only little prior knowledge available.

Keywords Residual variance estimation · Noise variance · Nearest neighbor ·
Nonparametric

1 Introduction

The problem of residual variance estimation consists of estimating the minimum mean
squared generalization error obtainable by a nonlinear model [3,12]. The residual variance is
a natural measure of relevance in the context of data-derived modeling and can be profitably
exploited in common tasks like input and model structure selection for neural networks as
shown in [8]. In many cases, it offers a viable alternative to information theoretic measures
of dependency.

The problem originates from statistics, where it is often called noise variance estimation
[21,4,6,14]. Many studies on the topic analyze the additive and homoscedastic noise case
under the independent identically distributed (iid) sampling assumption, or fixed (equispaced
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or univariate) design setting. For example, statistically efficient difference-based methods
are derived in [17,7] and kernel-based estimators in [6]. From the general data analysis
point of view, however, the multivariate random covariates setting is more interesting and
challenging; in fact, while kernel-based estimators have straightforward extensions [7,14],
difference-based methods do not have clear counterparts in the random multivariate design
case. One possible generalization is discussed, for instance, in [21], where local linear regres-
sion is used to derive an estimator that is unbiased for linear problems.

Despite the usefulness of noise variance estimators in supervised learning and relevance
estimation, there has been less research on the topic in machine learning. Previous work using
near neighbor statistics includes [4,12], whereas the differogram is used in [15]. Applications
of these estimators include model selection for support vector machines and multilayer neural
networks [8,15,11] and input selection [8]. However, again the forementioned estimators are
analyzed assuming noise with constant variance, which is a strong assumption taking into
account that small amount of prior knowledge is often available.

Thus, an important step is to examine the case of heteroscedastic noise, which means that
the noise variance is a function of the covariates. The one-dimensional case has been exam-
ined, for example, in [1], but much less effort has been devoted to examine the multivariate
case. Methods based on the use of local linear regression have been developed and analyzed
in [22,19,9]; however, all of these methods contain free parameters, which are not always
easy to estimate.

Instead of estimating the whole variance function, we concentrate on estimating its expec-
tation over the sample space in a general non-iid setting. This alternative approach is thor-
oughly investigated in [3], where a modified nearest neighbor graph combined with a locally
constant estimator is used to generalize the nonparametric first nearest neighbor noise vari-
ance estimator to the heteroscedastic noise case. One interesting fact is that the convergence
properties of the estimator are independent of the smoothness of the variance function, which
allows general convergence properties while, at the same time, not assuming additive noise.

Stemming from such a recognition, we suggest an alternative estimator also based on
the use of nearest neighbor graphs but characterized by a slight but important modification
that allows a simpler formulation but similar convergence properties. The method is fully
nonparametric with no free parameters. The convergence is proven using a similar technique
as that developed in [12] which leads to different proofs than those in [3]. We also conjec-
ture that in practice the speed of convergence is expected to be faster than our theoretical
worst-case bound.

In the first two sections of this paper, the problem of residual variance estimation is for-
malized (Sect. 2), the concept of nearest neighbors is briefly overviewed and a theoretical
upper bound is derived (Sect. 3). In Sects. 4 and 5, we introduce the nonparametric residual
variance estimator and a convergence result is proven. In order to support the presentation and
demonstrate the properties of the estimator in practice, the results on numerical experiments
are illustrated in Sect. 6.

2 Residual Variance Estimation

By residual variance estimation, we mean estimating the lowest possible mean squared gen-
eralization error in a given regression problem based on given data. Our approach is mainly
intended for data-derived modeling using stationary models and is a generalization of the
formulation discussed in [4].
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Before stating the general form of the problem, we provide some general definitions that
are needed in the subsequent treatment.

Our starting point is standard: let us assume that (�, F, P) is a probability space with
the σ -algebra F of events and the probability measure P . The random vectors (Zi )

∞
i=1 =

(Xi , Yi )
∞
i=1 are independently distributed taking values in the product space X × R, where

(X, ρ) is a metric space with the distance ρ. Notice that our model covers also the case of a
fixed design, where the variables (Xi )

∞
i=1 are chosen in some deterministic fashion.

The joint distribution is given by the joint density pi (x, y) (w.r.t. a dominating measure
λ) from which we get the marginal density pi (x) be integrating out y. The scalar variables
(Yi ) model the output of a system, whereas (Xi ) describe the input; in practice, only a
finite sample (Xi , Yi )

M
i=1 is available and the number of samples M is the critical quantity

when performing any statistical inference. Justified by the fact that, in practice, most random
variables are bounded, we assume that supx,y∈X ρ(x, y) ≤ 1.

2.1 Problem Statement

Without assuming an additive noise model and independent identically distributed input, we
state the problem of residual variance estimation in the general case of independent observa-
tions from the point of view of regression. In regression, the goal is to build a model between
the variables (Xi ) and (Yi ) given a finite sample (Xi , Yi )

M
i=1; this can be done in diverse ways

including linear models and neural networks.
The model is chosen by minimizing a cost function, typically, the mean squared error

(MSE) between the model and the outputs. In this case, the problem reduces at estimating
the function g : X → R that minimizes the expectation

L M (g) = 1

M

M∑

i=1

E[(Yi − g(Xi ))
2], (1)

even though, in practice, the expectations usually have to be estimated by averaging over
the samples available and it is necessary to restrict the complexity of the function g to avoid
overfitting. In statistics the assumption of iid random variables is common; in that case the
simplification L M (g) = E[(Y1 − g(X1))

2] is possible.
The estimation of the residual variance is the inverse of this problem: the goal is to find

the minimum value that the cost L M can achieve on the set of bounded measurable functions.
Denoting the set of bounded and measurable functions on X by B(X), formally, the problem
consists of computing

VM = inf
g∈B(X)

L M (g). (2)

The value VM is the variance of the residual and it describes the magnitude of the part of the
output that remains unexplained with the theoretically optimal model. From the data-derived
modelling point of view, the quantity VM is the best possible generalization error one can
achieve using a learning machine.

The following theorem characterizes the theoretically optimal solution of the regression
problem.

Theorem 1 The function that minimizes the cost (1) is given by

m(x) =
M∑

i=1

pi (x)E[Yi |Xi = x]
∑M

i=1 pi (x)
. (3)
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If the stationarity condition E[Yi |Xi = x] = E[Y j |X j = x] holds for all i, j > 0, then
m(x) = E[Yi |Xi = x] for any i > 0.

Proof Define the density function q(x, y) = M−1 ∑M
i=1 pi (x, y) and assume that the ran-

dom variable (X̃ , Ỹ ) is distributed according to q . Then, it can be seen that L M (g) =
E[(Ỹ −g(X̃))2], which implies that the optimal function m is given by m(x) = E[Ỹ |X̃ = x]
as it is a well-known fact that the conditional expectation gives the optimal function in the
sense of L2-norm [20]. Hence, starting from the definition of abstract conditional expecta-
tions [20], it is possible to show that g is of the form defined in (3). �

3 Nearest Neighbors

The concept of nearest neighbors (see for example [4]) has found its applications in various
fields including non-parametric regression and classification. Our goal is to use nearest neigh-
bors based estimators to approximatively solve the problem of residual variance estimation
presented above.

3.1 Basic Definition

The definition of the nearest neighbor is based on the use of a proximity measure to determine
similarity between points.

The nearest neighbor of a point Xi is

N [i, 1] = argmin1≤ j≤M, j �=iρ(Xi , X j ). (4)

Possible ties are solved by taking the minimal index. The k-th nearest neighbor is defined
recursively as

N [i, k] = argmin1≤ j≤M, j �=i,N [i,1],...,N [i,k−1]ρ(Xi , X j ), (5)

that is, the closest point after removal of the preceeding neighbors. The corresponding dis-
tances are defined as di,k,M = ρ(Xi , X N [i,k]).

We also set

δM,k,α = 1

M

M∑

i=1

dα
i,k,M (6)

which is the empirical α-moment for the distances to the k-th nearest neighbor.

3.2 Moment Bound Under a Dimensionality Constraint

In [12], it is shown that under the assumption X = R
n , the quantity Mα/nδM,α,k is bounded

by a universal constant for α ≤ n. This result is very useful, as it holds for all points sets and
is, thus, of deterministic nature. In this section, we show that a corresponding result holds in
a more general context.

To proceed, a constraint on the dimensionality of the metric space (X, ρ) is required.
There exists many possible definitions for the dimensionality of a fractal or metric space
including the Hausdorff dimension, capacity dimension and correlation dimension [5]. In
this work, we will instead use the concept of packing numbers [10], which is related to the
study of nearest neighbors as it is able to give an upper bound for the empirical moments.
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It is worthwhile noticing that it remains largely an open question how other definitions of
dimension are related to the average distance of the nearest neighbors; even though, it seems
that, for example, the Hausdorff dimension is too weak a concept to provide geometric upper
bounds.

A set A ⊂ X is an ε-packing, if for every distinct points x, y ∈ A, ρ(x, y) > ε. For
ε > 0, we define the packing numbers as the cardinality of the maximal packing, that is:

Npacking(ε) = sup
A is an ε-packing

|A|. (7)

Note that if X is a bounded subset of R
n then Npacking(ε) ≤ Cnε−n for 0 < ε < 1 and some

constant Cn depending only on n and X . However, the situation where X is a low dimensional
manifold in a high dimensional space is also common, in such a case the dimensionality of
the metric space X is smaller than that of the space in which it is embedded. In fact, if X is
a bounded manifold in the space �n′

locally parametrizable by n coordinates with n < n′,
then under some moderate regularity conditions on X and ρ, we have Npacking(ε) ≤ Cn′ε−n

for 0 < ε < 1 and some constant Cn′ .
The next theorem is slightly weaker than the one in [12] in terms of an additional log-

aritmic factor due to the weaker assumption made about the space X . The bound will be
used in the analysis of the bias of our residual variance estimator. See [10] for corresponding
results in the context of classification. Being based on a geometric argument, the bound is
independent of the underlying distribution.

Theorem 2 Assume that for some constants Cn, n > 0, Npacking(ε) ≤ Cnε−n when 0 <

ε < 1.
Then, for 0 < α < n and M ≥ kCn,

δM,k,α ≤ n

n − α
kα/nCα/n

n M−α/n − αkCn M−1

n − α
. (8)

For α = n, we have the bound

δM,k,n ≤ kCn M−1
(

1 + log

(
M

kCn

))
. (9)

Proof Choose arbitrarily t > 0 and 0 < α ≤ n and define the set of indices

It = {i : di,k,M > t}. (10)

Choose i1 ∈ It and define the set It,1 = It \ {N [i1, 1], . . . , N [i1, k − 1]}. Then pick up
i2 �= i1 (i2 ∈ It,1) and set It,2 = {i1} ∪ It,1 \ {N [i2, 1], . . . , N [i2, k − 1]}. Correspondingly,

It,3 = {i1, i2} ∪ It,2 \ {N [i3, 1], . . . , N [i3, k − 1]} (11)

with i3 �= i1, i2. By repeating the forementioned procedure as long as possible, we construct
the sets {It, j }L

j=1 for some L ≥ |It |/k. Notice that by construction each index in the sequence

(i j )
L
j=1 is in It,L . Thus, in each iteration, a point is chosen from the active set and its nearest

neighbors are removed up to the index k − 1 (excluding the previously chosen points). Then,
this chosen point is added to the set {i j }.

Choose now i, j ∈ It,L with i �= j and notice that from the properties of It,L it follows
that ρ(Xi , X j ) ≥ t and |It,L | ≤ Npacking(t), consequently. On the other hand, It,L contains
by construction exactly L points which implies that the cardinality |It |, is bounded by

|It | ≤ kL ≤ k Npacking(t) ≤ kCnt−n . (12)
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Under the assumption that M ≥ kCn , we have (see [18], Theorem 8.16):

δM,k,α =
∫ 1

0
αtα−1 M−1|It |dt ≤

∫ 1

0
α min (kCnt−n M−1, 1)tα−1dt

= kα/nCα/n
n M−α/n +

∫ 1

M−1/nk1/nC1/n
n

αkCn M−1tα−1−ndt

= n

n − α
kα/nCα/n

n M−α/n + αkCn M−1

α − n
. (13)

In the case that α = n and M ≥ kCn , we have:

δM,k,n ≤ kCn M−1 +
∫ 1

M−1/nk1/nC1/n
n

nkCn M−1t−1dt

= kCn M−1
(

1 + log

(
M

kCn

))
. (14)

�

4 Nonparametric Residual Variance Estimation

The concept of local continuity can be exploited to derive a nonparametric nearest neighbor
estimator of residual variance.

Denoting by VM the minimum of the cost in (3), a reasonable nonparametric estimator
would be [3]:

VM ≈ 1

2M

M∑

i=1

(YN [i,1] − Yi )
2. (15)

Analysis about these methods can be found for example in [12,4], where it has been shown
that the estimator has good properties under some stationarity conditions. Based on the sim-
ple and intuitive formulation of the estimator, one would expect the method to have good
convergence properties in most situations. However, the next example shows that the esti-
mator (15) is not necessarily consistent in the heteroscedastic noise case and thus it is not
satisfying from the theoretical point of view.

Example 1 Let us consider that the set of univariate inputs (Xi )
M
i=1 consists of two distinct

parts (containing M1 and 2M1 variables) denoted by (X1
i )

M1
i=1 and (X2

i )
2M1
i=1 respectively.

Furthermore, to construct our counterexample, we set X1
i = i

M1
, X2

2i = X1
i − 1

4M1
and

X2
2i−1 = X1

i + 1
4M1

. The outputs Y 1
i corresponding to the variables X1

i are set as zero mean

independent noise with unit variance, whereas for X2
i the outputs are set to 0. In this case, the

expectation value of the approximation in (15) is E
[

1
2M

∑M
i=1(YN [i,1] − Yi )

2
]

= 1
2 . How-

ever, the right answer in this case is 1/3 and, thus, it is clear that the method is not consistent
in this example.

The above problem was also noticed in [3], where a solution based on modified nearest
neighbor graphs was proposed. Our proposal to avoid the problem is to modify (15) to get

V̂M = 1

M

M∑

i=1

(Yi − YN [i,1])(Yi − YN [i,2]), (16)
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which, despite the non-intuitive formulation is shown to have much better properties than
the original estimator.

In the rest, we show that the novel estimator converges regardless of the smoothness of
the conditional variance function (and thus is able to solve the counterexample above).

5 Properties of the Estimator

In this section, we analyze the theoretical properties of the proposed estimator. We show
that the estimator is asymptotically consistent in a general statistical setting. The analysis
is done assuming that the conditions of Theorem 2 hold and that the absolute values of the
outputs Yi are bounded by some constant (this assumption is not the weakest possible, but
simplifies the analysis). It is also necessary to require some smoothness of the function m
in (3).

We have the following theorem on the rate of convergence of the estimator. The main
point in the proof is the fact that no smoothness assumptions are needed on the conditional
variance functions E[(Yi − m(Xi ))

2|Xi = x]. Moreover, the distributions of the covariates
(Xi )

M
i=1 do not affect the rate of convergence.

Theorem 3 Assume that the continuity condition

|m(x) − m(y)| ≤ Cmρ(x, y)γ (17)

holds for some constants Cm > 0, 0 < γ ≤ 1 and m(x) = E[Y1|X1 = x] = E[Yi |Xi = x]
for all i > 0 and x, y ∈ X.

Then, the bias of the estimator given in (16) is bounded by

|E[V̂M ] − VM | ≤ C2
m E[δM,2,2γ ]. (18)

Proof The proof is based on conditionalization with respect to the sample (Xi )
M
i=1 (denoted

by E[·|X M
1 ]). The treatment relies on the basic properties of abstract conditional expectations,

see for example [20]. We make the definitions

bi, j = m(Xi ) − m(X j ) (19)

ri = Yi − m(Xi ). (20)

Then, we write

E[(Yi − YN [i,1])(Yi − YN [i,2])]
= E[(bi,N [i,1] + ri − rN [i,1])(bi,N [i,2] + ri − rN [i,2])]
= E[bi,N [i,1]bi,N [i,2]] + E[bi,N [i,1](ri − rN [i,2])] + E[bi,N [i,2](ri − rN [i,1])]

+E[(ri − rN [i,1])(ri − rN [i,2])]. (21)
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Now using the fact that E[ri |X M
1 ] = 0

E[rN [i,k]|X M
1 ] =

M∑

j=1

E[rN [i,k]|X M
1 ]I (N [i, k] = j)

=
M∑

j=1

E[r j I (N [i, k] = j)|X M
1 ]

=
M∑

j=1

E[r j |X M
1 ]I (N [i, k] = j) = 0, (22)

and observing that bi,N [i,k] is a function of the variables (Xi )
M
i=1, we have using the properties

of conditional expectations

E[bi,N [i,1](ri − rN [i,2])] + E[bi,N [i,2](ri − rN [i,1])]
= E[bi,N [i,1]E[ri − rN [i,2]|X M

1 ]] + E[bi,N [i,2]E[ri − rN [i,1]|X M
1 ]]

= 0 (23)

and |bi,N [i,1]bi,N [i,2]| ≤ C2
md2γ

i,2,M .
Next by the independence of the samples,

E[ri rN [i,1]|X M
1 ] = E[ri rN [i,2]|X M

1 ] = E[rN [i,2]rN [i,1]|X M
1 ] = 0. (24)

This follows from the properties of conditional expectations:

E[rN [i,2]rN [i,1]|X M
1 ] =

M∑

j=1

M∑

l=1

E[rlr j |X M
1 ]I (N [i, 2] = j)I (N [i, 1] = l)

=
M∑

j=1

M∑

l=1

E[YlY j − m(Xl)m(X j )|X M
1 ]I (N [i, 2] = j)I (N [i, 1] = l)

= 0 (25)

and for this reason E[(ri − rN [i,1])(ri − rN [i,2])] = E[r2
i ] leading to the conclusion

|E[V̂M ] − VM | ≤ M−1C2
m E

[
M∑

i=1

d2γ

i,2,M

]
. (26)

�

Corollary 1 Under the assumptions of Theorems2 and 3 with γ = 1, we have for n ≤ 2,

|E[V̂M ] − VM | ≤ 2CnC2
m M−1

(
1 + log(

M

2Cn
)

)
(27)

and, for n > 2,

|E[V̂M ] − VM | ≤ 22/nn

n − 2
C2/n

n C2
m M−2/n + 4CnC2

m M−1

2 − n
. (28)

Proof The corollary follows from Theorem 2 by noticing that E[d2
i,k,M ] ≤ E[dn

i,k,M ] for
n ≤ 2. �
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Example 2 To demonstrate Corollary 1, let us choose X =
[
0, 1/

√
2
]2 ⊂ �2 with ρ the

Euclidean metric and

m(x) = ωT x (29)

for some vector ω ∈ �2. Then we may choose n = 2, Cm = ‖ω‖ (the Euclidean norm of
ω), γ = 1 and Cn = 1. With these choices, inequality (27) gives

|E[V̂M ] − VM | ≤ 2‖ω‖2 M−1
(

1 + log(
M

2
)

)
. (30)

Based on Corollary 1, it can be concluded that fast convergence is expected when n ≤ 2,
whereas for a higher dimension the rate of convergence decreases. Example 2 demonstrates
the application of Corollary 1 when m is linear. Notice that for a nonlinear m, Cm can be
chosen as the upper bound for the norm of the gradient of m in case it exists.

If the stationarity condition on the conditional expectations E[Yi |Xi ] can be removed is
an interesting question for future research. We would like to note that the weaknesses and
strongpoints of the method are the same as for many other nonparametric regression methods
including the Nadaraya-Watson and k-NN estimators. The simplicity of the method makes it
a good choice in low dimensional problems, even though more sophisticated method obtain
better rates of convergence (see for example [21]).

In this section, the bias of the method was examined. Another important question is
the variance. However, the variance of nearest neighbor based estimators is relatively well
understood [2,4]. We state the following theorem and give a short proof.

Theorem 4 Assuming that the variables (Xi , Yi )
M
i=1 possess a density with respect to the

Lebesgue measure on �n × �, we have

sup
M>0

M E[(V̂M − E[V̂M ])2] < ∞. (31)

Proof (sketch) Choose l > 0 and define a new sample (X̃i , Ỹi )
M
i=1 by taking (Xi , Yi ) =

(X̃i , Ỹi ) when i �= l and (X̃l , Ỹl) as an independent random variable distributed similarly
as (Xl , Yl). Thus we have simply replaced one of the original random variables by an inde-
pendent copy. We define V̂M,l as the residual variance estimator in this new sample. Now,
because the absolute values of the variables (Yi )

M
i=1 are assumed to be bounded by some

constant c (we may choose c = 1) we have

|(Yi − YN [i,1])(Yi − YN [i,2])| ≤ 4 (32)

and (see [4], chapter 6.4 for a similar argument)

M |V̂M − V̂M,l | ≤ 8 + 8
2∑

j=1

|{i : X N [i, j] = Xl}| + 8
2∑

j=1

|{i : X̃ Ñ [i, j] = X̃l}|. (33)

However, for example by lemma 4.1 in [4] (the existence of densities ensures that ties do not
occur),

8 + 8
2∑

j=1

|{i : X N [i, j] = Xl}| + 8
2∑

j=1

|{i : X̃ Ñ [i, j] = X̃l}| ≤ K (n) (34)
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for some constant K (n) depending on the dimension n but not on M . But now the well-known
Efron-Stein inequality [13] implies

E[(V̂M − E[V̂M ])2] ≤ 1

M2

M∑

l=1

E[(V̂M − V̂M,l)
2] ≤ 1

M
K (n) (35)

and the proof is complete. We would like to remark, that corresponding results for slightly
different estimators can be found for example in [2] and [4]; here we shortly demonstrated
how to adapt such result to our special case using a classical concentration inequality. �

The variance goes in general slowly to zero, but in practical problems the major difficulty
is the bias of the algorithm, as the variance tends to be small compared to the variance of the
output. Once we take into account both the bias and variance parts, we can see that the rate
of convergence obtained in [3] is similar to the rate suggested by our analysis in this section.

Finally, we would like to further comment on the accuracy of the algorithm. It can be seen
from (21) that the term bi,N [i,1]bi,N [i,2] causes the finite sample bias of the method. For the
estimator in (15) the corresponding term is of the form b2

i,N [i,1] as can be seen by a similar

calculation as in (21). However, moving to the linear case with m(x) = wT x (the general
case could be analyzed with a Taylor expansion), we may write

bi,N [i,k] = wT (Xi − X N [i,k]), (36)

which is related to the angle between the two vectors. Then, it is reasonable to assume, that
asymptotically the terms bi,N [i,1] and bi,N [i,2] become uncorrelated leading to a low bias for
the method, as the angle between w and Xi − X N [i,k] is in general asymptotically uniformly
and independently distributed [4,16]. Based on this observation, we conjecture that actually
the novel method improves the original algorithm also in terms of rate of convergence, a fact
for which we do not yet have a formal proof. We believe that the actual rate of convergence
is M−3/n or even M−4/n , of course depending on the regularity of the underlying system. As
will be seen in the next section, our hypothesis is confirmed by experimental results, which
demonstrate a significant improvement in accuracy compared to [3]. However, a rigorous
theoretical analysis remains a topic of future research with potential applications in other
estimation problems as well.

Finally, one should remark that the proposed method is very simple. It could be possible
to obtain improvement by combining our idea with a more sophisticated tool such as the
Gamma test [4] and the local linear estimator in [21]. However, possible benefit probably
comes at the cost of decreased robustness in real life applications.

6 Experiments

In the experiments we show, that the theoretical considerations lead to a practical algorithm
by comparing the second (modified nearest neighbor) estimator in [3] and our method (16) in
three different test problems. Notice that comparison with methods like the Gamma test [4]
is not meaningful, because estimators designed for homoscedastic noise variance estimation
do not necessarily address heteroscedasticity as demonstrated in Example 1.

6.1 Linear Problems

In the first two experiments the estimators are tested on two linear cases. The results of the
experiment are plotted in Figs. 1a and b.
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Fig. 1 Results of the linear models with the first experiment in (a) and the second in (b). The dotted line is
the mean absolute deviation of the estimator in [3] and the solid that of the estimator (16)

In the first one, the observations are related to the inputs by

Y = X1 + 3X2 + sin(4π X1)ε, (37)

where (X1, X2) is sampled from the uniform distribution on [0, 1]2 and ε ∼ N (0, 1) is
independent Gaussian noise. The variance of residual is in this case 0.5 and the variance of
the output 10.5. The experiment is repeated 100 times with the number of samples ranging
from 100 to 5000 and the mean absolute deviation from the real noise variance is calculated.

The second linear experiment is made to test the methods in a higher dimensional case.
In this case the model is

Y = X1 + X2 + X3 + X4 + 3X5 + ε (38)

with (X1, X2, X3, X4, X5) ∈ [0, 1]5 and ε ∼ N (0, 1) the number of samples varying
between 100 and 5000. Observe that variable X5 has more weight than the others making
the problem more challenging for methods using the Euclidean distance.

In the first experiment, the methods are approximately equivalent, whereas in the second
one our method is more accurate. Especially the second problem is challenging for both
methods, as the problem is relatively high dimensional, whereas in the first experiment the
error is mainly caused by statistical fluctuation of the estimators around their expectations.
However, even in the second case the novel estimator achieves reasonable estimates.

6.2 Nonlinear Problems

The third experiment is a highly nonlinear product of sinusoids. The model is

Y = sin(2π X1) sin(2π X2) sin(2π X3) + 0.2 sin(4π X1)ε (39)

with ε ∼ N (0, 1) and again (X1, X2, X3) uniformly distributed. The variance of the residual
is 0.02. Again, the mean absolute deviations are calculated over the sample size varying from
100 to 10000 with the results in Fig. 2.

The result with the novel residual variance estimator is again asymptotically good. How-
ever, in this problem both methods perform badly with a small number of samples due to the
nonlinearity of the data. Convergence is nevertheless approached with a much better result
for the proposed novel method.
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Fig. 2 Results of the parity
function experiment. The dotted
line is the mean absolute
deviation of the estimator in [3]
and the solid that of the estimator
(16)
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7 Conclusion

In this paper, a novel method for residual variance estimation is presented in the context of
supervised learning. It seems that despite the usefulness of residual variance estimators they
are not well-known in the machine learning community and most work has been done in the
context of statistics. Thus one of the goals of this paper is introducing a novel tool for model
selection and data analysis.

The theoretical bounds derived for the proposed method imply that the method has good
asymptotic properties in low dimensional spaces. The experiments show that in mildly non-
linear problems fast convergence is expected, whereas in highly nonlinear problems a large
number of samples may be required. Interestingly, the results strongly support the conjecture
that the novel method has better convergence properties than the original method on which
it is based with clear practical implications.

In the future, it is of interest to extend the idea to locally linear estimators of residual
variance [21]. In this case, better rates of convergences would be obtained with the price
of added complexity and thus possibly reduced robustness. This type of a method would fit
well in data-sparse high dimensional applications and is thus an interesting topic for future
research.

Another important topic is further examination of the properties of the novel method. An
interesting open question is, what are the minimal regularity conditions required to obtain
the fast rates of convergence discussed at the end of Sect. 5. This type of a theory would also
have interesting applications in the field of nonparametric statistics in general.
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