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Wavelength selection using themeasure
of topological relevance on the
self-organizingmap
Francesco Coronaa∗, Satu-Pia Reinikainenb, Kari Aaljokic, Annikki Perkiöd,
Elia Liitiäinena, Roberto Barattie, Olli Simulaa and Amaury Lendassea

In this work, we investigated the possibility to performwavelength selection by exploiting themetric structure of the
spectrophotoscopic measurements. The topologically preserving representation of the data is performed using the
self-organizing map (SOM) where the inputs’ significance to the output is computed with the measure of topological
relevance (MTR) on SOM. The MTR on SOM is a metric measuring the similarity between local distance matrices and
we found that spectral inputs with a topology, which is, close to the output’s are also associated to the wavelengths
that chemically explain the influence of the spectra to the property of interest. As a result, we suggest a wavelength
selection strategy based on the MTR on SOM, that is, interpretable to the domain experts and independent on the
regression technique subsequently used for estimation. To support the presentation, a full-scale application from the
oil refining industry is illustratedon theproblemof estimating standardproperties in a complexhydrocarbonproduct
starting from spectrophotoscopic measurements. The method is further validated on the problem of octane number
estimation in finished gasolines, under small sample conditions. The application led to accurate, parsimonious and
understandable models. Copyright © 2008 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Spectrophotograms are recognized sources of information in
a broad variety of fields ranging from analytical chemistry to
process industry. Many applications reported in the research and
industrial literature regard the estimation of important quality
indexes in a material (typically, chemical and physical properties)
starting from a collection of light absorbance spectra (e.g. see
Reference [1]).

The information encoded in the spectra result from the inter-
action between light and matter and it is displayed as complex
curves conditioned by the composition of the analyzed samples.
In turns, the composition determines the properties of interest.
However, without specific methods of analysis, such information
is not easily accessible and, cannot be directly extracted and used
for estimation purposes. In fact, one intrinsic characteristic of the
measurements acquired by a high-resolution spectrophotometer
is that the absorbance spectrum can be regarded as a regular
function observed at discretized arguments in the instrument’s
operating range of wavelengths. Because of such a distinctive
feature, the problem of estimating the output (the property of in-
terest) is defined from very high-dimensional and collinear inputs
(the observed spectra). Furthermore, it is not unusual to analyze
datasets with a number of observations, which is, radically smaller
than the number of input candidates.

To address the estimation problem, two regression approaches
are commonly used in practice. One standard solution is to rely
on full-spectrum methods for linear dimension reduction cou-
pled with linear regression: the basic formulations of principal
components regression (PCR) and partial least-squares regression
(PLSR) are reference models. The natural refinement of such an

approach benefits from a preliminary selection of relevant wave-
length ranges [2] as performed by one of the many available tech-
niques (e.g. see References [3–11]). Unfortunately, being based on
derived variables, PCR and PLSR models are still not necessarily
trivial to interpret and, the understandability of the models can
be further reduced when nonlinear and kernelized extensions are
considered. The alternative solution consists of selecting, among
all the original candidates, individual inputs that truly contribute
to a correct estimation of the output. Hence, wavelength selec-
tion is the limit extension of range selection where the origi-

* Correspondence to: F. Corona, Department of Information and Computer
Science, Helsinki University of Technology, Konemiehentie 2 (Room B313),
Espoo, P.O. Box 5400, FI-02015 HUT, Finland.
E-mail: francesco.corona@hut.fi
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nal interpretability of the inputs is explicitely retained. Typically,
the selection is approached either from first-principle consider-
ations known a priori or with data-derived methods based on
model performances, stepwise strategies, dependence indexes
and regularization (e.g. see References [12,13] and the references
therein).

In this study, wavelength selection is approached by exploit-
ing the metric structure of the data, leading to a method that
identifies only the spectral inputs with a topology most similar
to the output’s. The topology preserving modeling of the data is
carried out with the self-organizing map (SOM, [14]). The SOM
is an adaptive algorithm to formulate the vector-quantization
paradigm and perform mappings of high-dimensional data onto
an ordered low-dimensional subspace. The SOM is widely em-
ployed in many fields including chemometrics (for reference, see
the SOM References [15,16]). The SOM is mainly used to get a
visual insight of the data and their structure, as well as for the
investigation of potential relationships between variables [17,18].
Here, the SOM is used as a framework to investigate the topolog-
ical similarities between the spectral inputs and the output ac-
cording to a metric, the measure of topological relevance (MTR)
on the SOM ([19]), which is derived from the assumed continuity
of the unknown functionality existing between them.

The MTR on SOM measures such similarities from distances be-
tween the map nodes (the U-matrices, [20]), and we found that
the inputs with a topology, which is, maximally similar to the out-
put’s are usually associated to the wavelengths that chemically
explain the influence of the spectral inputs to the property of in-
terest. This, suggests a simple strategy for wavelength selection
leading to only few inputs still interpretable to the domain ex-
perts. Moreover, being the selection performed before building
the estimation model, the approach is also model independent;
in the sense that, once the inputs are selected, any regression
technique can be used to reconstruct their relationship with the
output. With simplicity in mind, the estimation techniques pre-
ferred in our experiments are classical linear models like ordinary
least squares (OLS) and Ridge regression (RR). For completeness,
also a de facto standard in nonlinear function estimation was
considered; the least squares formulation of the support vector
machine for regression (LS-SVM, [21]). With this respect, when the
observations present a considerable curvature, the wavelengths
selected by the MTR on SOM are expected to perform better us-
ing nonlinear regression techniques, because of the ability of the
SOM to model nonlinearities in the data.

The study is organized as follows. In Section 2, we overview the
rationale and algorithmic part of the investigation; Subsection
2.1 briefly illustrates the SOM paradigm and the MTR on SOM and
Subsection 2.2 describes its application in the wavelength selec-
tion strategy. In Section 3, the direct application of the method
is discussed on a set of full-scale problems from the oil refin-
ing industry and further validated on a small sample benchmark
problem, from the same domain.

2. ALGORITHMS

2.1. The self-organizingmap (SOM)

In its basic formulation, the SOM consists of a bi-dimensional
regular array of nodes where a prototype vector mk ∈ Rp is as-
sociated with every node k = 1, . . . , K . Each prototype acts as
an adaptive model vector for the observations vi ∈ Rp, with

i = 1, . . . , N. The nodes are arranged in a grid, that is, usually
either hexagonal or rectangular.

During the computation of the map, the observations are pro-
jected onto the SOM’s array and the model vectors adapted ac-
cording to the learning rule:

mk (t + 1) = mk (t) + ˛(t)hk,c(vi )

(
mk (t) − vi(t)

)

where t is the discrete-time coordinate of the mapping steps,
and ˛(t) ∈ (0, 1) the monotonically decreasing learning rate. The
scalar multiplier hk,c(vi ) denotes a neighborhood kernel function
centered at the best matching unit (BMU).

The BMU denotes the model vectormc that best matches with
the observation vector vi . The matching is determined according
to a competitive criterion conventionally based on the Euclidean
metric ‖ · ‖ and, at each step t, the BMUmc(t) is hence the model
vectormk (t), that is, closest to the observation vi(t); which is

‖mc(t) − vi(t)‖ ≤ ‖mk (t) − vi(t)‖, ∀k

The neighborhood kernel function hk,c(vi ) is usually chosen in the
Gaussian form:

hk,c(vi ) = exp
(

− ‖rk − rc‖2

2�2(t)

)

where the vectors rk and rc (in R2, for the 2D map) represent the
geometric location of the nodes on the array, and �(t) denotes
the monotonically decreasing width of the kernel. Over the SOM’s
array, the effect of the Gaussian kernel decreases smoothly with
the distance from the BMU, thus allowing for a regular smoothing
of the model vectors. The map is computed recursively for each
observation and, as the term ˛(t)hk,c(vi ) tends to zero with t, the set
of model vectors {mk}K

k=1 is updated to represent, or prototype,
similar observations in {vi}N

i=1. By the end of the mapping, the
models will converge toward their asymptotic limits [22,23].

As a result, the prototypes will form an ordered manifold in
the original data space where the relevant topological and met-
ric properties of the observations are preserved. In Figure 1, the
training of a 2D SOM is depicted for a 2D set of synthetic data
consisting of four clusters. In general, since the dimensionality of
the data is higher than the SOM array’s, the resulting map is to be
understood as the organized image of the original data where the
high-dimensional structures existing within the observations are
represented on the low-dimensional grid with simple geometric
relationships between the prototypes.

Because of such properties, the SOM is usually employed to get-
ting a visual insight of the data structure by using the many avail-
able visualization techniques; for instance, the component planes
[24] and the unified-distance matrices, or U-matrices. Figure 2 de-
picts such displays for the SOM trained onto the synthetic data.
In the component planes representation, different gray shades
indicate the distribution on the map of the values of the proto-
types (along the original data directions), whereas the U-matrices
display clusters (dark areas) and cluster separations (bright areas)
by visualizing distances between neighboring prototypes.

2.1.1. Themeasure of topological relevance (MTR on SOM)

The SOM is also used to starting a preliminary investigation of po-
tential relationships between the component variables. From the
map, dependencies can be searched either qualitatively (by look-
ing for similar patterns in identical positions in the component

J. Chemometrics. 2008; 22: 610–620 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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(a) (b)

(c) (d)

Figure 1. The training of the SOM: (a) the data, (b) the map initialized along the two largest principal components of the data, (c) the map after a few
training steps and (d) the final result.

planes and distance-based representations) or calculated ex-
plicitely from their correlation [25].

Such metrics mostly exploit the quantization properties of the
SOM. On the other hand, the MTR on the SOM calculates the out-
put’s relevance of a set of inputs from the topology preserving
properties of the map. The metric is derived from the assumed
continuity of the unknown functionality y = f (x) + r existing be-
tween the inputs and the output. As usual, the relationship is to
be estimated from N observations in the form {(xi ; yi)}N

i=1 where,
xi ∈ Rd and yi ∈ R are the inputs and output for the ith obser-
vation, respectively, and r denotes the additive noise. Under the
continuity hypothesis, if two points xi and x′

i are close together in
the input space, it is expectable that also f (xi) and f (x′

i) are close
together in the output space. If the neighborhood continuity is
not satisfied (i.e. yi and y ′

i are not close together), this can be
either due to an high level of noise or because the inputs are ac-
tually not relevant for the output. For a SOM trained to represent

input–output observations vi = [xi ; yi], the MTR on SOM exploits
this general principle directly from the model vectors mk of the
map and the U-matrices; that is, a relevant input is expected to
have, on a map, a topology that is similar to the output’s.

The global neighborhood topology of the data is extracted
from a map as a matrix consisting of distances between each
connected node (the full U-matrix U based on all the component
variables, as in Figure 2(c)). For clarity, we recall that: letting mk

the prototype vector associated to node k and N(k) its neighbor-
hood of L adjacent nodes l (e.g. L = 6 almost everywhere, on the
hexagonal grid), the entries of the unified-distance matrix U are
essentially calculated as:

� local pairwise distances, for all l:

d(k, l) = ‖mk −ml‖

Figure 2. The visualization of the SOM: (a,b) the two component planes (one for each direction in the original data space), (c) the full U-matrix revealing
the clustering structure of the data and (d,e) the two component U-matrices (again, one along each direction in the original data space). This figure is
available in color online at www.interscience.wiley.com/journal/cem

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 610–620
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� locally averaged distances in N(k):

d(k) = 1

L

∑
l∈N(k)

‖mk −ml‖

Being based on a fixed nearest neighbor graph, such a matrix is
hence structured and organized according to the local topology
of the observations.

Analogous considerations apply when the U-matrix is cal-
culated independently along each direction of the data space
(the component U-matrices Uxj

for the input variables, with
j = 1, . . . , d, and Uy for the output, as in Figure 2(d) and (e)).
By calculating the distance between each input–output pair of
component U-matrices, the MTR on SOM is used to quantify the
similarity between topologies and, thus, the significance of an in-
put in reconstructing the neighborhood continuity with the out-
put. The metric assessing such a similarity is formally expressed
as:

T (xj, y) = ‖Uxj
− Uy‖F

where the Frobenius metric ‖ · ‖F is used to measure the Eu-
clidean closeness between matrices; the closer to 0 is the mea-
sure, the more relevant is the input for the output. In order to
clearly represent relevances the way they are commonly per-
ceived, the measure T(·, ·) ≥ 0 is preferably inverted and rescaled
so that, larger values indicate stronger relevances (e.g. T(·, ·) ≥
0 → T(·, ·) ∈ [0, 1]).

The MTR on SOM can be calculated using the SOM Tool-
box. The Matlab version of the package is available from
http://www.cis.hut.fi/projects/somtoolbox/.

2.2. The strategy for wavelength selection

In principle, given the values of the MTR on SOM for each input–
output pair, variable selection could be simply performed by:
(1) ranking the inputs according to their relevance to the out-
put and (2) selecting a reduced but still representative subset
x̌ ∈ Rs with s 	 d. However, this basic selection procedure when
directly applied to spectrophotoscopic inputs is intrinsically lim-
ited by the continuous nature of the wavelengths’ domain, since
absorbances measured at neighboring wavelengths are charac-
terized by a relevance to the output that is very similar. Therefore,
the selection of an input xj , that is, found to be relevant to predict-
ing ywould be naturally accompanied by the selection of a broad
range of contiguous inputs also characterized by high relevance,
but redundant and collinear because embedding a near-identical
informative content.

In such a context, it is possible to observe the existence of a
regular function defined over the wavelengths’ domain that de-
scribes the smooth changes in relevance as neighboring inputs
are considered. The MTR on SOM also shows such a behavior,
therefore, we propose a strategy for wavelength selection that re-
tains only those inputs that manifest a topology, that is, maximally
similar to the output’s.

The procedure to perform wavelength selection summarizes as
follows:

1. calculate the set T = {T(xj, y)}d
j=1 of pairwise relevances be-

tween each input–output pair;

2. select the subset of inputs, x̌, with a topology that best matches
the output’s, that is

x̌ = {
x̌j∗ ⊂ x : j∗ = argmax

j

T (xj, y)
}

The procedure identifies and selects only inputs whose wave-
lengths correspond to the local maxima of T (i.e. relevant to pre-
dicting the output). The selection is optimal with respect to the
problem of predicting the output; in fact, among similar inputs,
only the maximally relevant ones are retained and the neighbor-
ing redundancies are discarded. Being relevance to the output the
only supervising criterion for selection, the procedure is still sub-
optimal with respect to the problem of selecting inputs that are
also minimally redundant. Nevertheless, the selected variables x̌
are implicitly also as much as possible dissimilar, because each
x̌j∗ prototypes the different wavelengths’ ranges separated by the
local minima of T.

For the sake of clarity, the procedure to perform wavelength
selection using the MTR of SOM is summarized on an illustrative
example (Figure 3). The dimensionality of the spectra is 100 (i.e.
x ∈ Rd , with d = 100) and a scalar property is to be estimated (i.e.
y ∈ R), 30 observations are available. In the first stage, both the
spectra and property observations are mapped onto the SOM,
here the topological relevance between each input and the out-
put is measured. The metrics form a relevance function defined
over the wavelength domain (i.e. T(xj, y)). In the second stage, the
local maxima of T are identified and only the associated spectral
variables are selected (i.e. x̌ ∈ Rs, with s = 4). From the set of se-
lected variables, x̌, any model that estimates the functionality, f,
can be learned and used to predict the output, y, as depicted in
Figure 4.

The regression techniques preferred in our experiments are
classical linear models like the OLS and the RR. Nevertheless, also
nonlinear function estimators were used; specifically, we consid-
ered the LS-SVM ([21]. When needed and to avoid overfitting, the
meta-parameters of the models (i.e. the penalty term in the Ridge
model and the kernel width and the regularization term in the
LS-SVM) were optimized by standard resampling methods to es-
timating the prediction accuracy. In our study cases, schemes like
the leave one out (LOO-CV) and 10-times 5-fold cross-validation
(CV) were adopted [26]. The same approach on the topological
error of the SOM [27] is also used to optimize the size of the map
and prevent it from overfitting the observations.

3. EXPERIMENTS

The American Society for Testing Materials standards (ASTM,
[28]) for measuring the properties of an hydrocarbon mixture
are often based on time-consuming procedures, expensive and
maintenance-intensive laboratory equipment that require skilled
labor. Nevertheless, real-time estimates of such properties are of
fundamental significance for both the production and blending
process of finished and semi-finished products. In particular, the
availability of accurate and parsimonious models that estimate
such properties in real-time from inexpensive and non-intrusive
spectral measurements is beneficial when the predictions are
used for on-line monitoring and control of the operating units,
expecially if no sensible computational load is introduced to the
plant’s distributed control system.

J. Chemometrics. 2008; 22: 610–620 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 3. Wavelength selection using the MTR on SOM: a summary.

This section presents application of the investigated method
on a set of monitoring tasks from the oil refining industry. The first
study case is a full-scale application where the problem consists
of estimating a set of different chemical and physical indexes
in a hydrocarbon product processed by a separation unit. The
second study case is a standard benchmark problem referring to
the prediction of the octane number in finished gasolines from a
set of only few measurements.

3.1. Study case I

The first application consists of estimating six different properties
in a hydrocarbon mixture starting from the same set of spectral
observations. The data are collected over an extended period
of time (from February to August 2006, once per working shift)
that spans most of the important variations in the processing
unit; that is, major winter and summer assets, as well as minor
changes in the production conducted according to operational
necessities. Due to the commercial significance of the application
and the secrecy agreement with our industrial partners, it is not
possible to provide a more exhaustive description of the problem.
Anyway, we believe that the reported information, along with
the following results, will give the possibility to appreciate the
method here proposed.

The absorbance spectra are acquired by means of a continuous-
flow spectrophotometer operating in the 4408–9992 cm−1 range
(≈2270–1000 nm). The absorbance is measured on the basis of
the NIR principle with a 4 cm−1 resolution, in Figure 5(a). Each ob-
servation consists of the 1397-channel spectrum of absorbances

Figure 5. (a) The full spectral range and (b) the MTR on SOM between
the inputs and the first output property. In (b), the vertical dashed lines
delimit the spectral range initially selected, roughly corresponding to the
first overtone.

Figure 4. Estimating the property from the reduced set of spectral variables selected using the MTR on SOM: any estimator f̂ can be used.

www.interscience.wiley.com/journal/cem Copyright © 2008 John Wiley & Sons, Ltd. J. Chemometrics 2008; 22: 610–620
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Table I. Data summary

Calibration Testing Missing
samples (n) samples (n) samples (%)

Property 1 419 139 ≈36
Property 2 431 143 ≈35
Property 3 431 143 ≈35
Property 4 354 118 ≈47
Property 5 165 55 ≈75
Property 6 413 138 ≈37

and the corresponding values of six properties. The measure-
ments of the product’s properties are obtained in laboratory by
ASTM methods and the accuracy of the analysis are used to assess
the quality of the estimates.

Because a different number of missing values is recorded for
different properties, the avaliable dataset consists of a different
number of observations to be used for learning and validating
each estimation model (calibration). By the same token, a differ-
ent number of observations is also available for testing the final
models. Approximatively, 900 observations with a percentage of
missing values ranging from 35 to 75% are available. In general,
the first 2/3rds of the data are used for learning/validation and the
last 1/3rd is used for testing the resulting models in extrapolation.
Table I summarizes the modeling setup.

3.1.1. Wavelength selection and chemical interpretability

The analyzed spectra show the typical overlapped absorbance
bands arising from different hydrocarbon functional groups
and reflect the samples’ composition. The major absorbance
features in the experimental region are usually assigned to
the second overtone (≈1100–1300 nm), the combination bands
(≈1300–1550 nm) and the first overtone (≈1600–1800 nm) of the
Carbon–Hydrogen vibrations [29,30]. The vibrations of the C–H
bond on different functional groups lead to distinct absorption
peaks, therefore, the chemical and physical properties of the hy-
drocarbon mixture can be reconstructed from spectra since phe-
nomenological relationships between the chemical structure and
the properties exist. In addition, being the relationships between
the properties (6) and the spectra distributed among a large num-
ber of different inputs (1397), the application is interesting be-
cause wavelength selection cannot be easily performed only by
an a priori interpretation of the spectra.

Starting from such a recognition, our first concern was to per-
form a preliminary selection of the most relevant spectral range.
According to the method presented in Section 2, a first set of six
2D SOM on the full-spectrum inputs and each of the output prop-
erties was trained using the observations in the calibration set.
Each map consisted of a hexagonal array of nodes firstly initialized
along the subspace spanned by the eigenvectors corresponding
to the two largest eigenvalues of the covariance matrix of the
data. As usual, the ratio between these two eigenvalues was also
used to cross-validate the size of the SOMs. Subsequently, the
MTR on the SOM was calculated between each input-output pair,
independently for each output. In Figure 5(b) the resulting rele-
vance function based on the MTR on SOM is depicted for the first
output. As for the other product properties, near-identical results
were obtained; for the sake of compactness, the corresponding
plots are not reported/discussed.
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Figure 6. Comparison on the full range: (a) the accuracies obtained
by MW-PLSR in cross-validation and (b) the set of variables selected by
UVE-PLSR.

From Figure 5, it is possible to notice that the spectral region
corresponding to the first overtone is characterized by values of
topological relevance that are overall higher than those obtained
in the other spectral ranges. Higher relevances were found for the
combination bands arising from ≈2100 nm), but, because of the
incompleteness of the peak, such a region was not considered.
Based on such a result, we performed a preliminary selection of
this range thus achieving a reduction of the dimensionality while
retaining the most significant information. Moreover, because the
behavior is shared between all the outputs, this also suggested
that the problem could be globally modeled starting from the
same spectral range. It is worthwhile noticing that the selection
did not depend on the accuracy of any regression model and,
only afterwards, its validity was experimentally confirmed by the
models’ accuracy.

The preliminary range selection was compared to several
widely accepted methods for variable selection. In Figure 6, we re-
ported the results obtained for the first output property by unifor-
mative variable elimination (UVE-PLSR, [5]) and moving window
(MW-PLSR, [10]), a variant of Interval PLS (iPLS, [9]). As expected,
the qualitative results obtained by MW-PLSR confirmed the rele-
vance of the selected interval (the first overtone), as associated
with the best accuracies over the full range. As for UVE-PLSR,
its application often led to an improvement in the overall perfor-
mance of PLSR but its also associated to the selection of a still high
number of spectral variables which is only partially simplifying the
interpretability of the problem; the dimensionality reduction and
the accuracy obtained by UVE-PLSR is reported in Table III.

By selecting the 1666–1744 nm range, in Figure 7(a), only 92
wavelengths were retained and used to perform wavelength se-
lection. The range was selected after noticing that the peak of
relevance found at approximatively 1800 nm could mostly be as-
signed to the presence of olefin in the mixture which should,
however, be almost absent in the analyzed product (indeed, it was
verified afterward that including such a input did not improve the
accuracy of the models). For the purpose of selection, a second
set of SOMs was trained, as above, and the sets of MTR on SOM

J. Chemometrics. 2008; 22: 610–620 Copyright © 2008 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 7. (a) The selected spectral range and (b) the MTR on SOM be-
tween the inputs and the first output property. In (b), the vertical dashed
lines indicate the selected wavelengths.

calculated for each output independently. The selected subset
of maximally important inputs was then found in the correspon-
dence of the local maxima of each relevance functions; only five
wavelengths were identified as relevant to the outputs (Table II).
In Figure 7(b), the resulting relevance function is depicted only
for the first output, being the others again very similar.

The set of selected inputs is analogous for each output and,
more importantly, it is in agreement with the chemical model
explaining the influence for the chemical groups on the product
properties (again, see References [29,30]). In detail:

� wavelengths x̌1 and x̌2 are related to the stretching vibrations
of the methyl (CH3) groups that manifest themselves as a
doublet (≈1695 and ≈1705 nm). Their presence indicates the
presence of (possibly, large amounts of ) branched hydrocar-
bons, although the absorbances can be also influenced by lin-
ear paraffins;

� wavelengths x̌3 and x̌5 are assigned to the stretching vibrations
of the methylene (CH2) groups also manifesting as a doublet
(≈1725 and ≈1765 nm). Their presence typically indicates the
presence of linear hydrocarbons.

As for x̌4, the selection of this wavelength could not be readily
assigned to any neat spectral feature known to the authors and,
therefore, remains unassigned.

In Figure 8, the results of the relevance function estimated with
more conventional indexes of dependence like the absolute Pear-

Table II. The subset of selected wavelengths

x̌1 x̌2 x̌3 x̌4 x̌5

[nm] 1694 1704 1731 1749 1764

Figure 8. (a) The relevance function estimated from the absolute corre-
lation coefficient and (b) the mutual information to the first output.

son’s correlation coefficient (CC) and the mutual information (MI)
are presented for comparison. Based on the depicted results, both
the measures present a behavior that resembles what obtained
with the MTR on SOM. Only the CC is capable to represent the
smooth nature of the observations but it is, however, restricted
to detecting dependencies that manifest themselves in the co-
variance. On the other hand, the more general MI presents a very
scattered behavior (due to difficulty of estimating such measure
from real-world measurements) that prevents the application of
an automatic wavelength selection strategy.

For comparison, Figure 9 depicts what is obtained by using
established variable selection methods (MW-PLSR, UVE-PLSR and
genetic algorithms (GA-PLSR, [8]) now a suitable technique be-
cause of the reduced number of spectral variables). Although
characterized by an almost flat relevance over the spectral range,
again the MW-PLSR qualitatively confirmed the significance of the
variables selected by the MTR on SOM. As for UVE-PLSR, the high
number of selected variables prevents from a direct assignment
of the absorbtion bands (nevertheless, this result is mostly true
only for the first output). On the other hand, GA-PLSR performed a
parsimonious selection of wavelengths that, though, is again not
necessarily interpretable. Anyway, both methods are often capa-
ble to improve the performance of PLSR. A detailed comparison
of the results is presented in Table III.

3.1.2. Regressionmodels and estimation results

From the set of five selected wavelengths, both linear (OLS and RR)
and nonlinear (LS-SVM) models were calibrated to reconstruct the
functionality to the set of six output properties (independently).
The results are summarized in Table III where the accuracy and
the complexity of the models are also compared with standard
PLSR, UVE-PLSR and GA-PLSR, when suitable. The prediction ac-
curacy of the models is reported in extrapolation (i.e. only for the
independent set of testing data), in terms of the root mean square
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6
1
7

Wavelength selectionusingMTR

1680 1700 1720 1740 1760
1.6

1.7

1.8

1.9

2

Wavelength

R
M

S
E

C
V

MW−PLSR

(a)

1680 1700 1720 1740 1760
0

0.2

0.4

0.6

0.8

1

Wavelength

S
el

ec
te

d

UVE−PLSR

(b)

1680 1700 1720 1740 1760
0

0.2

0.4

0.6

0.8

1

Wavelength

S
el

ec
te

d

GA−PLSR

(c)

Figure 9. Comparison on the selected range: (a) the accuracies obtained
by MW-PLSR in cross-validation, (b) the set of variables selected by UVE-
PLSR and (c) GA-PLSR.

error in prediction (RMSEP) and the determination coefficientR2.
All the models were preliminary cross-validated using only the
calibration/validation set of observations.

From Table III, it is possible to notice that the preliminary se-
lection of the spectral range corresponding to the first overtone
suggested by the MTR on SOM has proven to be effective. In fact,
the prediction results are always benefiting when the basic PLSR
models are applied on such a range and, moreover, the complex-
ity (i.e. the number of latent variables actually cross-validated) is
often reduced. This result is often further confirmed by the im-
proved accuracy of the UVE- and GA-PLSR models.

In addition, the prediction accuracies are also improved af-
ter performing wavelength selection with the MTR on SOM and,
then, building the OLS and RR models. The result accredited that
the MTR on SOM was capable to select only a parsimonious set
of inputs still carrying an important informative content. This is
also demonstrated by almost negligible values of penalty term
cross-validated for most of the RR models: this indicates a near-
absolute absence of shrinkage for the OLS estimated regression
coefficients, as well as that the models did not overfit the ob-
servations. The performances could be further ameliorated when
the selected variables were used to calibrate the more power-
ful LS-SVM model. In particular, this has shown to be valid when
the relationship between the spectra and the property of inter-
est cannot be fully recovered by the linear methods (no matter
whether PLSR, OLS or RR models are used). On the other hand,
when a linear functionality is experienced using the LS-SVM did
not lead to any sensible improvement, as expected.

The results obtained with the best models calibrated on the se-
lected variables (linear for the first three properties and nonlinear
for the last three) are depicted in Figure 10. In the diagrams, the
estimated properties are plotted against the laboratory measure-
ments for the entire testing period (over 2 months of continuous
functioning) and compared to the accuracy of the corresponding
ASTM test. The representation provides an important summary
of the properties that we sought during the development of the
models for such a critical application: (1) accuracy (always com-
parable with the prediction accuracy of reference methods); (2)
simplicity (a reduced set of variables and the simplest methods
can be used to produce valuable results); (3) interpretability (the

Table III. A comparison between the prediction results obtained by the regression models on the independent set of testing observations

Full range 2nd Overtone Combination 1st Overtone
[1000–2270 nm] [1100–1300 nm] [1300–1550 nm] [1666–1744 nm]

PLSR UVE PLSR PLSR PLSR UVE GA OLS RR LS-SVM

Property 1 1.33 (0.76) 3.30 (0.60) 1.31 (0.77) 1.42 (0.72) 1.24 (0.80) 1.20 (0.81) 1.32 (0.77) 1.16 (0.83) 1.16 (0.82) 1.18 (0.83)
1397/6 129/9 300/5 300/7 92/4 82/3 14/6

Property 2 2.15 (0.79) 2.04 (0.80) 2.01 (0.80) 2.38 (0.73) 1.80 (0.85) 2.02 (0.82) 1,75 (0.86) 1.65 (0.90) 1.59 (0.90) 1.60 (0.90)
1397/5 128/5 300/5 300/5 92/5 29/9 31/6

Property 3 0.25 (0.85) 0.23 (0.88) 0.25 (0.85) 0.30 (0.78) 0.23 (0.88) 0.22 (0.82) 0.23 (0.88) 0.21 (0.92) 0.20 (0.91) 0.21 (0.90)
1397/5 162/5 300/5 300/5 92/5 23/7 20/6

Property 4 285 (0.60) 313 (0.47) 460 (0.65) 405 (0.62) 450 (0.66) 332 (0.35) 300 (0.53) 225 (0.76) 220 (0.75) 220 (0.82)
1397/5 103/5 300/7 300/5 92/8 42/9 39/8

Property 5 1.61 (0.82) 3.08 (0.43) 2.13 (0.65) 1.88 (0.74) 1.52 (0.84) 1.63 (0.82) 1.85 (0.76) 2.00 (0.80) 1.83 (0.81) 1.39 (0.88)
1397/5 77/8 300/8 300/2 92/4 38/3 10/6

Property 6 3.51 (0.36) 3.68 (0.30) 2.61 (0.67) 2.77 (0.62) 2.55 (0.69) 2.41 (0.73) 2.65 (0.66) 2.62 (0.67) 2.62 (0.67) 2.23 (0.83)
1397/9 145/5 300/3 300/4 92/6 29/5 13/3

The accuracy is evaluated with the root mean square error of prediction (RMSEP) and, in between brackets, the determination coefficient R2. Information about
the model complexity is indicated by the number of variables and latent factors cross-validated for the PLSR models. As for OLS, RR and LS-SVM, the models are
based only on the five variables selected by the MTR on SOM.
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Figure 10. A comparison between measured and estimated product properties in simulating the real testing scenario (over 2 months of continuous
operation). The bands represent the accuracy of the ASTM methods.

selected wavelengths are easily accessible and can be used to
analyze the models and their performances) and (4) the robust-
ness required to effective implementations in a full-scale pro-
duction environment (different operating assets and corrupted
measurements).

3.2. Study case II

The second application consists of estimating the octane number
in gasolines. The application of the methodology is discussed on
a dataset of spectral measurements and associated evaluations of
the octane number provided by Camo A/S (Trondheim, Norway),
which is gratefully acknowledged.

The absorbance spectra are acquired by means of a spec-
trophotometer operating in the 1100–1550 nm wavelengths’
range with a 2 nm resolution, in Figure 11. The measurements
of the octane number (in the 86–92 range) are evaluated in lab-
oratory by reference ASTM motor tests. Therefore, each sample
consists of the 226-channel input spectrum of absorbances and
the corresponding output, the octane number. The application

of the MTR on SOM on this benchmark is interesting because
of the small sample size; only 24 observations for model calibra-
tion/validation and 9 observations for testing the final model.

According to the methodology, the input and output obser-
vations in the calibration set were mapped onto a 2D SOM. On
the map, the set of topological relevances between each input–
output pair was calculated and only a subset of six relevant inputs
selected (Table IV).

The set of selected inputs is again in agreement with the chem-
ical model explaining the influence for the chemical groups on
the octane number [31]. The major absorbance features in the
experimental region are usually assigned to the second overtone
and to the combination bands of the C–H vibrations. In detail:

Table IV. The subset of selected wavelengths

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

[nm] 1146 1215 1336 1394 1416 1518
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Figure 11. (a) The full spectral range and (b) the MTR on SOM between
the spectra and the octane number. In (b), the vertical dashed lines are
drawn in the correspondence of the selected variables.

� the aromatic bonds at 1150 nm (x̌1) are related to an increase in
octane number. Conversely, the methylene bonds at 1220 nm
(x̌2) indicate the presence of linear hydrocarbons which are re-
sponsible for a reduction in the gasoline quality. The methyl
bonds at 1200 nm indicate a larger amount of branched hy-
drocarbons although the absorbance is also influenced by the
amount of linear paraffin: in fact, its effect on octane is not
readily explained and the contribution, usually, varies with the
gasoline type. Actually, this occurs with the present spectra in
which, even if the relevance T shows an inflection at 1200 nm,
the absorbance does not correspond to a local maximum and,
thus, the associated input is not selected;

� by the same token, the effect of the combination bands for
methylene (1395/1416 nm) and methyl (1360/1345 nm) on oc-
tane mimics what observed in the short-wavelength range.
With this respect, the methylene absorbance wavelengths are
correctly identified (x̌4 and x̌5), while x̌3 accounts for the first
methyl band. As already noticed above, again the second
methyl band is only partially recovered by an inflection in T.

As for variable x̌6, no spectral features are readily assignable. Its
selection can be ascribed to baseline effects.

Starting from the six selected spectral variables, the regression
models were calibrated to estimate the octane number and the
prediction accuracy evaluated on the independent set of testing
data (Table V and Figure 12). When needed, the meta-parameters
of the models (the penalty term in RR and the kernel width and
regularization term in LS-SVM) were optimized by LOO-CV. In
this specific case, the use of leave one out cross-validation was
adopted because of the reduced sample size. The same scheme
was applied for cross-validating the optimal size of the SOM used
for wavelength selection, as well as the number of latent factors
for the PLSR model.

Based on the experimental results, it is possible to notice that
again the MTR on SOM was capable to select an informative and
interpretable subset of spectral inputs to be used in parsimonious
and yet accurate regression models.
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Figure12. A comparison between measured and estimated octane num-
ber. The band represents the accuracy of the ASTM methods (0.25 RON).

Table V. A comparison between prediction results

Number of variables RMSEP

PLSR 4 (Latent) 0.28
OLS 6 (Original) 0.34
RR 6 (Original) 0.31
LS-SVM 6 (Original) 0.24

4. CONCLUSIONS

In this work, we investigated the possibility to exploit the metric
structure of spectrophotoscopic data in order to perform wave-
length selection. For the purpose, we analyzed the results ob-
tained by using the MTR on the SOM.

The application of the method on a full-scale set of monitoring
problems from process industry showed that the MTR on SOM
was successfull, firstly, in the preliminary selection of the most
relevant spectral range and, secondly, in identifying a significant
subset of wavelengths. The selected inputs are in agreement with
the chemical model explaining the composition of the analyzed
samples and, therefore, understandable to the domain experts.
Moreover, the selected variables are also characterized by an im-
portant informative content that can be exploited to develop
parsimonious regression models. This led to develop prediction
models that always achieved the accuracy required for an effec-
tive use in real-time monitoring. Given the independence from
the regression method, several methods could be investigated
and developed. The predictions obtained by building the sim-
plest linear models were always comparable to what is achieved
with the standard methods. On the other hand, when more accu-
racy was required, the possibility to use more powerful nonlinear
methods directly on the selected variables allowed to improve
the results in a sensible fashion.
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