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Abstract

In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct

prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information

(MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward

elimination (or pruning) and forward–backward selection is introduced. This methodology is used to optimize the three input selection

criteria (k-NN, MI and NNE). The methodology is successfully applied to a real life benchmark: the Poland Electricity Load dataset.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Time series forecasting is a challenge in many fields. In
finance, experts forecast stock exchange courses or stock
market indices; data processing specialists forecast the flow
of information on their networks; producers of electricity
forecast the load of the following day. The common point
to their problems is the following: how can one analyze and
use the past to predict the future?

Many techniques exist for the approximation of the
underlying process of a time series: linear methods such as
ARX, ARMA, etc. [11], and nonlinear ones such as
artificial neural networks [21]. In general, these methods try
to build a model of the process. The model is then used on
the last values of the series to predict the future values. The
common difficulty to all the methods is the determination
of sufficient and necessary information for an accurate
prediction.

A new challenge in the field of time series prediction is
the long-term prediction: several steps ahead have to be
predicted. Long-term prediction has to face growing
e front matter r 2007 Elsevier B.V. All rights reserved.
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uncertainties arising from various sources, for instance,
accumulation of errors and the lack of information [21]. In
this paper, two variants of prediction strategies, namely,
direct and recursive predictions are studied and compared.
This paper illustrates that the direct prediction strategy
gives better results than the recursive one.
In this paper, a global methodology to perform direct

prediction is presented. It includes input selection strategies
and input selection criteria. A global input selection
strategy that combines forward selection, backward
elimination and forward–backward selection is introduced.
It is shown that this selection strategy is a good alternative
to exhaustive search, which suffers from too large
computational load.
Three different input selection criteria are presented for

the comparison of the input sets: k-nearest neighbors based
input selection criteria (k-NN), mutual information (MI)
and nonparametric noise estimation (NNE). The optimal
set of inputs is the one that optimizes one of the three
criteria; for example, the optimal set of inputs can be
defined as the one that maximizes the MI between the
inputs and the output.
This paper shows that all the presented criteria (k-NN,

MI and NNE) provide good selections of inputs. It is also
shown experimentally that the introduced global metho-
dology provides accurate predictions with all three
presented criteria.
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In this paper, least squares support vector machines
(LS-SVM) are used as nonlinear models in order to avoid
local minima problems [19].

Section 2 presents the prediction strategies for the long-
term prediction of time series. In Section 3 the global
methodology is introduced. Section 3.1 presents the input
selection strategies and Section 3.2 the input selection
criteria. Finally, the prediction model LS-SVM is briefly
summarized in Section 4 and experimental results are
shown in Section 5 using a real life benchmark: the Poland
electricity load dataset.

2. Time series prediction

The time series prediction problem is the prediction of
future values based on the previous values and the current
value of the time series (see Eq. (1)). The previous values
and the current value of the time series are used as inputs
for the prediction model. One-step ahead prediction is
needed in general and is referred to as short-term
prediction. But when multi-step ahead predictions are
needed, it is called a long-term prediction problem.

Unlike the short-term time series prediction, the long-
term prediction is typically faced with growing uncertain-
ties arising from various sources. For instance, the
accumulation of errors and the lack of information make
the prediction more difficult. In long-term prediction,
performing multiple step ahead prediction, there are
several alternatives to build models. In the following
sections, two variants of prediction strategies are intro-
duced and compared: the direct and the recursive predic-
tion strategies.

2.1. Recursive prediction strategy

To predict several steps ahead values of a time series,
recursive strategy seems to be the most intuitive and simple
method. It uses the predicted values as known data to
predict the next ones. In more detail, the model can be
constructed by first making one-step ahead prediction:

ŷtþ1 ¼ f 1ðyt; yt�1; . . . ; yt�Mþ1Þ, (1)

where M denotes the number inputs. The regressor of the
model is defined as the vector of inputs:
yt; yt�1; . . . ; yt�Mþ1. It is possible to use also exogenous
variables as inputs in the regressor, but they are not
considered here in order to simplify the notation. Never-
theless, the presented global methodology can also be used
with exogenous variables.

To predict the next value, the same model is used:

ŷtþ2 ¼ f 1ðŷtþ1; yt; yt�1; . . . ; yt�Mþ2Þ. (2)

In Eq. (2), the predicted value of ŷtþ1 is used instead of
the true value, which is unknown. Then, for the H-steps
ahead prediction, ŷtþ2 to ŷtþH are predicted iteratively. So,
when the regressor length M is larger than H, there are
M �H real data in the regressor to predict the Hth step.
But when H exceeds M, all the inputs are the predicted
values. The use of the predicted values as inputs
deteriorates the accuracy of the prediction.

2.2. Direct prediction strategy

Another strategy for the long-term prediction is the
direct strategy. For the H-steps ahead prediction, the
model is

ŷtþh ¼ f hðyt; yt�1; . . . ; yt�Mþ1Þ with 1phpH. (3)

This strategy estimates H direct models between the
regressor (which does not contain any predicted values)
and the H outputs. The errors in the predicted values are
not accumulated in the next prediction. When all the
values, from ŷtþ1 to ŷtþH , need to be predicted, H different
models must be built. The direct strategy increases the
complexity of the prediction, but more accurate results are
achieved as illustrated in Section 5.

3. Methodology

In the experiments, the direct prediction strategy is used.
H models have to be built as shown in Eq. (3). For each
model, three different input selection criteria are presented:
�
 minimization of the k-NN leave-one-out generalization
error estimate,

�
 maximization of the MI between the inputs and the

output,

�
 minimization of the NNE.

In order to optimize one of the criteria, a global input
selection strategy combining the forward selection, the
backward elimination and the forward–backward selection
is presented in Section 3.1.
The estimation of MI and NNE demands the choice of

hyperparameters. The definitions and the significance of
the hyperparameters are more deeply explained in Sections
3.2.2 and 3.2.3. In this paper, the most adequate
hyperparameter values are selected by minimizing the
LOO error provided by k-NN approximators presented in
Section 3.2.
In order to avoid local minima in the training phase of

the nonlinear models (f k in Eq. (3)), the LS-SVM are used.
The LS-SVM are presented in Section 4.

3.1. Input selection strategies

Input selection is an essential pre-processing stage to
guarantee high accuracy, efficiency and scalability [7] in
problems such as machine learning, especially when the
number of observations is relatively small compared to
the number of inputs. It has been the subject in many
application domains like pattern recognition [14],
process identification [15], time series modeling [20] and
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econometrics [13]. Problems that occur due to poor
selection of input variables are:
�

Fig

me
If the input dimensionality is too large, the ‘curse of
dimensionality’ problem [20] may happen. Moreover,
the computational complexity and memory require-
ments of the learning model increase. Additional
unrelated inputs lead to poor models (lack of general-
ization).

�
 Understanding complex models (too many inputs) is

more difficult than simple models (less inputs), which
can provide comparable good performances.
Usually, the input selection methods can be divided into
two broad classes: filter methods and wrapper methods, see
Fig. 1.

In the case of the filter methods, the best subset of inputs
is selected a priori based only on the dataset. The input
subset is chosen by an evaluation criterion, which measures
the relationship of each subset of input variables with the
output. In the literature, plenty of filter measure methods
of different natures [2] exist: distance metrics, dependence
measures, scores based on the information theory, . . . , etc.
In the case of the wrapper methods, the best input subset is
selected according to the criterion, which is directly defined
from the learning algorithm. The wrapper methods search
for a good subset of inputs using the learning model itself
as a part of the evaluation function. This evaluation
function is also employed to induce the final learning
model.

Comparing these two types of input selection strategies,
the wrapper methods solve the real problem. But it is
potentially very time consuming, as the ultimate algorithm
has to be included in the cost function. Therefore,
thousands of evaluations are performed when searching
for the best subset. For example, if 15 input variables are
considered and if the forward selection strategy (intro-
duced in Section 3.1.2) is used, then 15ð15þ 1Þ=2 ¼ 120
different subsets have to be tested. In practice, more than
15 inputs are realistic for time series prediction problems
and the computational time is thus increased dramatically.
. 1. Two approaches of input variable subset selection. (a) Filter

thod, (b) wrapper method.
On the contrary, the filter method is much faster because
the procedure is simpler. In this paper, due to the long
computational time of the wrapper method, it is unrealistic
to compare the wrapper and filter methods for the input
selection problem that is studied.
In the following sections, the discussion is focused on the

filter methods. The filter method selects a set of inputs by
optimizing a criterion over different combinations of
inputs. The criterion computes the dependencies between
each combination of inputs and the output using predict-
ability, correlation, mutual information or other statistics.
Various alternatives of these criteria exist.
This paper uses three methods based on different

criteria: k-NN, MI and NNE. In the following, MI is
taken as an example to explain the global input selection
strategy. For the other two input selection criteria, the
procedures are similar.

3.1.1. Exhaustive search

The optimal algorithm is to compute MI between all the
possible combinations of inputs and the output, e.g. 2M � 1
inputs combinations are tested (M is the number of input
variables). Then, the one that gives maximum MI is
selected. In the case of long-term prediction of time series,
M is usually larger than 15, so the exhaustive search
procedure becomes too time consuming. Therefore, a
global input selection strategy that combines forward
selection, backward elimination and forward–backward
selection is used. Forward selection, backward elimination
and forward–backward selection are summarized in the
following sections.

3.1.2. Forward selection

In this method, starting from the empty set S of selected
input variables, the best available input is added to the set
S one by one, until the size of S is M. Suppose we have a
set of inputs X i; i ¼ 1; 2; . . . ;M and output Y, the
algorithm is summarized in Fig. 2.
In forward selection, only MðM þ 1Þ=2 different input

sets are evaluated. This is much less than the number of
input sets evaluated with exhaustive search. On the other
hand, optimality is not guaranteed. The selected set may
not be the global optimal one.
Fig. 2. Forward selection strategy.
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3.1.3. Backward elimination or pruning

Backward elimination, also called pruning [12] proce-
dure, is the opposite of forward selection process. In this
strategy, the selected inputs set S is initialized to contain all
the input variables. Then, the input variable for which the
elimination maximizes MI is removed from set S one by
one, until the size of S is 1.

Basically, backward elimination is the same procedure as
forward selection presented in the previous section, but
reversed. It evaluates the same amount of input sets as
forward selection, MðM þ 1Þ=2. Also, the same restriction
exists, optimality is not guaranteed.

3.1.4. Forward–backward selection

Both forward selection and backward elimination
methods suffer from an incomplete search. Forward–back-
ward selection algorithm combines both methods. It offers
the flexibility to reconsider input variables previously
discarded and vice versa, to discard input variables
previously selected. It can start from any initial input set,
including empty, full or randomly initialized input set.

Let us suppose a set of inputs X i, i ¼ 1; 2; . . . ;M and
output Y, the procedure of the forward–backward Selec-
tion is summarized in Fig. 3.

It is noted that the selection result depends on the
initialization of the input set. In this paper, two options are
considered. One is to begin from the empty set and the
other is to begin from the full set.

The number of input sets to be evaluated varies and is
dependent on the initialization of the input set, the
stopping criteria and the nature of the problem. Still, it is
not guaranteed that in all cases this selection method finds
the global optimal input set.

3.1.5. Global selection strategy

In order to select the best input set, we propose to use all
four selection methods: forward selection, backward
elimination, forward–backward selection initialized with
an empty set of inputs and forward–backward selection
initialized with a full set of inputs. All four selection
methods are fast to perform, but do not always converge to
the same input set, because of the local minima. Therefore,
it is necessary to use all of them to get more optimal
Fig. 3. Forward–backward selection strategy.
selection. From the candidate input sets of all four
selection methods, the one that optimizes the chosen
criteria (k-NN, MI or NNE) is selected.
This combined strategy does not guarantee the selection

of the best input set that would be obtained with the
exhaustive search strategy. Nevertheless, the input selection
is improved and the number of tested subsets is consider-
ably reduced compared to the exhaustive search strategy.
3.2. Input selection criteria

3.2.1. k-Nearest neighbors

The k-NN approximation method is a very simple and
powerful method. It has been used in many different
applications, particularly for classification tasks [3]. The
key idea behind the k-NN is that samples with similar
inputs have similar output values. Nearest neighbors are
selected, according to Euclidean distance, and their
corresponding output values are used to obtain the
approximation of the desired output. In this paper, the
estimation of the output is calculated simply by averaging
the outputs of the nearest neighbors:

ŷi ¼

Pk
j¼1yjðiÞ

k
, (4)

where ŷi represents the estimate (approximation) of the
output, yjðiÞ is the output of the jth nearest neighbor of
sample xi and k denotes the number of neighbors used.
The distances between samples are influenced by the

input selection. Then, the nearest neighbors and the
approximation of the outputs depend on the input
selection.
The k-NN is a nonparametric method and only k, the

number of neighbors, has to be determined. The selection
of k can be performed by many different model structure
selection techniques, for example k-fold cross-validation
[9], leave-one-out [9], Bootstrap [5] and Bootstrap 632 [6].
These methods estimate the generalization error obtained
for each value of k. The selected k is the one that minimizes
the generalization error.
In [16] all methods, the leave-one-out and Bootstraps,

select the same input sets. Moreover, the number of
neighbors is more efficiently selected by the Bootstraps
[16]. It has also been shown that the k-NN itself is a good
approximator for time series [16]. In this paper, however,
the k-NN is not used as an approximator, but as a tool to
select the input set.
3.2.2. Mutual information

The MI can be used to evaluate the dependencies
between random variables. The MI between two variables,
let, say, X and Y be the amount of information obtained
from X in the presence of Y and vice versa. In time series
prediction problem, if Y is the output and X is a subset of
the input variables, the MI between X and Y is one
criterion for measuring the dependence between inputs
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(regressor) and output. Thus, the inputs subset X , which
gives maximum MI, is chosen to predict the output Y.

The definition of MI originates from the entropy in the
information theory. For continuous random variables
(scalar or vector), let mX ;Y ;mX and mY represent the joint
probability density function and the two marginal density
functions of the variables. The entropy of X is defined by
Shannon [1] as

HðX Þ ¼ �

Z 1
�1

mX ðxÞ log mX ðxÞdx, (5)

where log is the natural logarithm and then, the informa-
tion is measured in natural units.

The remaining uncertainty of X is measured by the
conditional entropy as

HðX jY Þ ¼ �

Z 1
�1

mY ðyÞ

�

Z 1
�1

mX ðxjY ¼ yÞ log mX ðxjY ¼ yÞdxd y. ð6Þ

The joint entropy is defined as

HðX ;Y Þ ¼ �

Z 1
�1

mX ;Y ðx; yÞ log mX ;Y ðx; yÞdxdy. (7)

The MI between variables X and Y is defined as [4]

MIðX ;Y Þ ¼ HðY Þ �HðY jX Þ

¼ HðX Þ þHðY Þ �HðX ;Y Þ. ð8Þ

From Eqs. (5) to (8), MI is computed as

MIðX ;Y Þ ¼

Z 1
�1

mX ;Y ðx; yÞ log
mX ;Y ðx; yÞ

mX ðxÞmY ðyÞ
dxdy. (9)

For computing the MI, only the estimations of the
probability density functions mX ;Y ; mX and mY are required.

In this paper, MIðX ;Y Þ is estimated by a k-NN
approach presented in [10]. In order to distinguish the
number of neighbors that used in the MI and the one used
in the k-NN, the number of neighbors is denoted by l for
the estimation of MI.

The novelty of this l-NN based MI estimator consists in
its ability to estimate the MI between two variables of any
dimensional space. Then, the estimation of MI depends on
the predefined value l.

In [10], it is suggested to use a mid-range value l ¼ 6. But
it has been shown that when applied to time series
prediction problems, l needs to be tuned for different
datasets and different data dimensions in order to obtain
better performance. As explained in Section 3, to select the
inputs based on the l-NN MI estimator, the optimal l is
selected using k-NN and leave-one-out.

3.2.3. Nonparametric noise estimator using the gamma test

Gamma test (GT) is a technique for estimating the
variance of the noise, or the mean square error (MSE), that
can be achieved without overfitting [8]. The evaluation of
the NNE is done using the GT estimation introduced by
Stefansson in [17].
Given N input–output pairs: ðxi; yiÞ 2 R
M � R, the

relationship between xi and yi can be expressed as

yi ¼ f ðxiÞ þ ri, (10)

where f is the unknown function and r is the noise. The GT
estimates the variance of the noise r.
The GT is useful for evaluating the nonlinear correlation

between two random variables, namely, input and output
pairs. The GT has been introduced for model selection but
also for input selection: the set of inputs that minimizes the
GT is the one that is selected. Indeed, according to the GT,
the selected set of inputs is the one that represents the
relationship between inputs and output in the most
deterministic way.
GT is based on hypotheses coming from the continuity

of the regression function. If two points x and x0 are close
in the input space, the continuity of regression function
implies the outputs f ðxÞ and f ðx0Þ will be close enough in
the output space. Alternatively, if the corresponding
output values are not close in the output space, this is
due to the influence of the noise.
Two versions for evaluating the GT are suggested. The

first one evaluates the value of g;s in increasing sized sets
of data. Then the result for a particular parameter pair is
obtained by averaging the results from all set sizes. The
new or refined version establishes the estimation based on
the k-NN differences instead of increasing the number of
data points gradually. In order to distinguish the k used in
the NNE context from the conventional k in k-NN, the
number of nearest neighbors is denoted by p.
Let us denote the pth nearest neighbor of the point xi in

the set fx1; . . . ;xNg by xpðiÞ. Then the following variables,
gN and sN are defined as

gNðpÞ ¼
1

2N

XN

i¼1

jypðiÞ � yij
2, ð11Þ

sNðpÞ ¼
1

2N

XN

i¼1

jxpðiÞ � xij
2, ð12Þ

where j:j denotes the Euclidean metric and ypðiÞ is the
output of xpðiÞ. For correctly selected p [8], the constant
term of the linear regression model between the pairs
ðgN ðpÞ; sNðpÞÞ determines the noise variance estimate. For
the proof of the convergence of the GT, see [8].
The GT assumes the existence of the first and second

derivatives of the regression function. Let us denote

rf ðxÞ ¼
qf

qxðiÞ

� �M

i¼1

; Hf ðxÞ ¼
q2f

qxðiÞqxðjÞ

� �M

i;j¼1

, (13)

where xi and xj are the ith and jth components of x,
respectively. M is the number of variables. The GT
requires both jHf ðxÞj and jrf ðxÞj are bounded.
These two conditions are general and are usually

satisfied in practical problems. The GT requires no other
assumption on the smoothness property of the regression
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Fig. 4. Learning set of the Poland Electricity Load dataset.
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function. Consequently, the method is able to deal with the
regression functions of any degree of roughness.

The second assumption is about the noise distribution:

EFfrg ¼ 0 and EFfr
2g ¼ varf�go1, ð14Þ

EFfr
3go1 and EFfr

4go1, ð15Þ

where Effrg is the noise density function. Furthermore, it is
required that the noisy variable should be independent and
identically distributed. In the case of heterogeneous noise,
the GT provides the average of noise variance extracted
from the whole dataset.

As discussed above (see Eq. (11)), the GT depends on the
number of p used to evaluate the regression. It is suggested
to use a mid-range value p ¼ 10 [8]. But, when applied to
time series prediction problems, p needs to be tuned for
each dataset and for each set of variables to obtain better
performance. As explained in Section 3, to select the inputs
the optimal p is selected using k-NN and leave-one-out.

4. Nonlinear models

In this paper, LS-SVM are used as nonlinear models [19],
which are defined in their primal weight space by [22,18]

ŷ ¼ oTjðxÞ þ b, (16)

where jðxÞ is a function, which maps the input space into a
higher-dimensional feature space, x is the vector of inputs.
o and b are the parameters of the model. The optimization
problem can be formulated as

min
o;b;e

Jðo; eÞ ¼
1

2
oToþ g

1

2

XN

i¼1

e2i , (17)

subject to yi ¼ xTjðxiÞ þ bþ ei; i ¼ 1; . . . ;N, (18)

and the solution is

hðxÞ ¼
XN

i¼1

aiKðx;xiÞ þ b. (19)

In the above equations, i refers to the index of a sample and
Kðx;xiÞ is the kernel function defined as the dot product
between the jðxÞT and jðxÞ. Training methods for the
estimation of the o and b parameters can be found in [22].

5. Experiments

5.1. Dataset

One time series is used as an example. The dataset is
called Poland Electricity Load, and it represents two
periods of the daily electricity load of Poland during
around 1500 days in the 1990s [23]. The quasi-sinusoidal
seasonal variation is clearly visible from the dataset.

The first 1000 values are used for training, and the
remaining data for testing. The learning part of the dataset
is shown in Fig. 4.
5.2. Results

The maximum regressor size is set to 15 according to
[16]. Two-weeks regressor is large enough to catch the main
dynamics of the electricity load time series. The selected
inputs based on the three methods are shown in Table 1.
For example, the inputs selected by MI for the one-step
ahead prediction are t, t� 6 and t� 7. Then, the prediction
model is

yðtþ 1Þ ¼ f 1ðyðtÞ; yðt� 6Þ; yðt� 7ÞÞ. (20)

From Table 1, it can also be seen that the time distance
between the target time and some selected inputs is
constant over the whole prediction horizon. For example,
input t� 6 is used to predict tþ 1, input t� 5 is used to
predict tþ 2, input t� 4 is used to predict tþ 3, etc. This
fact is due to the weekly dynamics of the time series.
The number of inputs selected by the k-NN varies from 2

to 9 and on average is 7 (from the maximum of 15 inputs).
It shows that the models are sparse and the curse of
dimensionality is reduced.
The sparsity also enables a physical interpretation of the

selected inputs. For example, for one-step ahead predic-
tion, the inputs selected by the k-NN are t, t� 5, t� 6,
t� 7 and t� 13. This means, that in order to predict the
load of the next day, let us say Tuesday, we need to use the
load of Monday (current day); Wednesday, Tuesday,
Monday of the previous week and Tuesday 2 weeks before.
The load of the current day is needed, because it is the most
up-to-date measurement. Monday, Tuesday and Wednes-
day of the previous week are needed to estimate the trend
of the electricity load over Tuesday. Tuesday 2 weeks
before is needed to handle the day specific changes in the
electricity load.
The LS-SVM are used to compare the performances.

A 10-fold cross-validation [9] procedure for model
structure selection purposes has been applied.
The MSE of direct prediction on the test set, based on

the three input selection methods are drawn in Fig. 5.
All input selection criteria (k-NN, MI and GT) provide

good and quite similar inputs. The selected inputs also
provide predictions with similar errors. From the three
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Table 1

Selected inputs for the Poland electricity Load dataset

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 x x x x x x x x x x x x

� � � � � � � � � � � � � �

n n n n n n n n n n n n n n n

-1 x x x x x x

� � � � � � � �

n n n n n n n n

-2 x x x x x

� � � � � � �

n n n n n n n n

-3 x x x x

� � � �

n n n n n n n

-4 x x

� � �

n n n n n n n n

-5 x x

� � � � �

n n n n n n n n

-6 x x x

� � � � � � �

n n n n n n n n n

-7 x x

� � � � � � � �

n n n

-8 x x x x

� � � � � � �

n n n

-9 x x

� � � � �

n n n n

-10 x x

� � � �

n n n

-11 x x x

� � � �

n n n n n

-12 x x

� � �

n n n

-13 x x x x x

� � � �

n n n

-14 x x x x x x x x

� � � � � � � �

n n n n n n

The numbers in the first row and first column represent time steps and regressor index, respectively. Symbol X is for MI selected inputs, O represents NNE

selection results, D is for k-NN selected results.
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Fig. 7. Prediction results of the k-NN method for the Poland Electricity

Load data: solid line is for the true values and solid line with � mark

represents the prediction results.
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methods, the k-NN is the fastest and therefore should be
preferred.

The MSE of direct and recursive predictions on the test
set based on the k-NN input selection criteria are shown in
Fig. 6.

From Fig. 6 it can be seen, that the direct prediction
strategy gives smaller error than the recursive one. The
error difference increases as the horizon of prediction
increases. The error of the direct strategy is linear with
respect to the horizon of prediction. This is not the case for
the recursive strategy.

Fifteen time step predictions of the direct prediction
method based on the k-NN input selection method are
given in Fig. 7.

In Fig. 7 it can be seen that the long-term prediction has
captured the intrinsic behavior of the time series.

Our results agree with the intuition and with the models
used by the real life electricity companies in their electricity
consumption estimation.

Similar results have been obtained on other time series
benchmarks. The direct prediction strategy always provides
accurate predictions. Furthermore, the global methodology
introduced in this paper provides sparse and accurate long-
term prediction models that can be easily interpreted.
0 5 10 15
0

2

4

6
x 10-3

Fig. 5. The MSE of different methods on the test set of the Poland

Electricity Load data: dashed line with � mark corresponds to MI selected

inputs, solid line is for the NNE selected inputs, and solid line with � mark

corresponds to the k-NN selected inputs.
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Fig. 6. The MSE of the direct and recursive predictions for the test set of

Poland Electricity Load data: solid line represents the direct prediction

error and dashed line is for the recursive prediction error.
6. Conclusion

This paper presents a global methodology for the long-
term prediction of the time series. It illustrates that the
direct prediction strategy gives better results than the
recursive one. On the other hand, the direct prediction
strategy multiplies the computational load by the number
of prediction steps needed. In order to deal with the
increase of the computational load, a fast and reliable
global input selection strategy has been introduced.
It has been shown that the k-NN, the MI and the NNE

criteria provide good selections of inputs. It is also shown
that global input selection strategy combining the forward
selection, the backward elimination and the forward–back-
ward selection is a good alternative to the exhaustive
search, which suffers from a too large computational load.
The k-NN selection criterion is the fastest, because the

selection of hyperparameters is not needed. This makes
k-NN roughly 10 times faster than MI and 20 times faster
than NNE.
The use of LS-SVM, which do not suffer from the

problems of local minima, allows reliable comparison. The
methodology has been applied successfully to a real life
benchmark. The sparseness of the selected models allows
straightforward physical interpretations.
In further works, efforts have to be done to reduce the

computational load of the input selection criteria. Alter-
natives to the forward, the backward and the forward–
backward selection strategies have to be explored as well.
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