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The Kohonen self-organization map is usually considered as a classification or clustering tool, with only a few
applications in time series prediction. In this paper, a particular time series forecasting method based on Kohonen
maps is described. This method has been specifically designed for the prediction of long-term trends. The proof
of the stability of the method for long-term forecasting is given, as well as illustrations of the utilization of the

method both in the scalar and vectorial cases.

1. Introduction

Determining in advance the future evolution of
a time series is a problem of major interest in
many fields of applications as finance (forecasting
returns or stock markets), hydrology (predicting
river floods), engineering (estimating future elec-
trical consumption), etc.

As this problem can be found in many fields,
many methods have been developed with very
different approaches, from statistics to system
identification and more recently neural networks.
Most of the time, the models are linear and per-
form well on a rather short-term horizon, depend-
ing on the complexity of the problem. Their ef-
ficiency on a longer term is more questionable.
This fact is due to the learning strategy used to
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fit the model to the data. The goal is usually to
optimize the performance at a given term, most
often the next time step. There are only a few at-
tempts to explicitly predict values at long term,
or at least global trends, as for example [1]. This
problem is quite hard since the uncertainty in-
creases with the horizon of prediction.

Another issue generally shared by classical
models (such as ARX, ARMAX, ...) is that they
are used to predict a single value of a scalar time
series. In practice some industrial applications
require the prediction of a set of values in one
single step instead of several independent values.
Forecasting a vector of values requires more com-
plex models able to predict several components
together. If the approach is to develop several
simple models and combine them to predict a
vector, one can lose the correlation information
between the vector components. Though each
model may perform well, the forecasting accu-
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racy could be rather poor when considering the
vector of predicted values as a whole. Devel-
oping methods able to predict several values at
each step, with the same expected performance
on each value, should thus be a major concern.

Let us consider now the general problem of
forecasting at long term. Despite the fact that
long-term predictions in real situations will prob-
ably never be very accurate, in some applications
there is a need to have at least some ideas about
the future of the time series. For example, an-
swers to questions such as “Are there bounds
on the future values?”’or “What can we expect
in average?”or even “Are the confidence intervals
on future values large or narrow?”can give some
ideas about the time series evolution at long-term.

In this paper, we present a forecasting method
specifically designed to perform long-term fore-
casting in terms of general evolution of the time
series. Simulations, which are here defined as one-
step ahead predictions performed recursively to
enlarge the prediction horizon, are the real goal.
Repeating such simulations by a Monte-Carlo
procedure enables the observation of their dis-
tribution and the computation of classical statis-
tics such as mean, variance, quartiles, confidence
intervals, etc. In order to achieve these goals,
the method should be stochastic (to allow Monte-
Carlo repetitions) and stable (to avoid unrealis-
tic predictions even in the recursive case). The
stochastic nature of the method is guaranteed by
the use of a conditional probability law model.
Its stability is proved in the paper. An attractive
feature of the method is that it can be used to
predict either scalar or vectorial time series, with
the same expected precision for each component
in the vectorial case; this will allow reducing the
number of recurrences in a long-term prediction.

The general problem of time series forecasting
first consists in the development of a model, which
is in turn used to predict future values. More
formally, given a time series of values z(t) with
1 <t < n, the prediction can be defined as:

[2(t+1), ..., z(t+d)] = f(2(t), ..., 2(t—p+1))+es,
(1)

where d is the size of the vector to be predicted,

f is the model of the data generating process,
p is the number of past values that influence the
future values and ¢, is a centred noise vector. The
past values are gathered in a p-dimensional vector
called regressor. Having at one’s disposal n past
values x(t) (with n >> p and n >> d) means
that relation (1) is known for (n —p —d + 1)
past time steps. The problem is thus to model
relation (1) using the past information contained
in the regressors.

The general principle of the method presented
in this paper is to segment the space of regres-
sors, in order to build local models. For this step
of the method, the Self-Organizing Map (SOM)
algorithm [2] is used. This algorithm performs a
vector quantization of the data, leading to rep-
resentatives (prototypes) in each portion of the
space. The idea of the method is to use two
SOMs, one to segment the regressor space, and
another one to segment the space of differences
between consecutive regressors. These differences
are built to include the temporal dependences in
the model. Once these two maps are built and
their relations characterized, simulations over a
long-term horizon can be performed. By repeat-
ing these simulations using a Monte-Carlo proce-
dure, it is therefore possible to study their distri-
bution and the statistics that give information on
the long-term distribution of the time series.

Though we mainly use the vector quantization
property of the SOMs to segment the spaces, we
have chosen to use SOMs instead of other vec-
tor quantization (VQ) methods, since SOMs are
efficient and fast compared to other VQ meth-
ods with a similar complexity [3]. Furthermore,
they provide an intuitive and helpful graphical
representation. As the quantization properties
(by contrast to topological properties) of SOMs
are similar for one- and two-dimensional maps,
the former will be used in this work for simplicity
and illustration.

In this paper, we first briefly recall some basic
concepts about the SOMs. Then, we describe the
principle of the double vector quantization (DVQ)
forecasting method. For the sake of simplicity,
the method is first presented for scalar time series
prediction (i.e. d = 1 in (1)) and detailed later
on for vector forecasting. We define the method
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stability and give in full details the proof that
the method is stable according to his definition.
We also show illustrative examples for both scalar
and vector predictions.

2. The Kohonen Self-Organizing Maps

The Self-Organizing Map (SOM) is an unsuper-
vised classification algorithm introduced in the
80’s by Teuvo Kohonen [2]. Self-Organizing Maps
have often been used in many different applica-
tions since their first description. Their theoreti-
cal properties are well established [4], [5].

A Self-Organizing Map places a fixed number of
prototypes in the data space, performing a rough
approximation of the data density. These proto-
types are linked by neighbourhood relationships
using a predefined 1- or 2-dimensional grid. Dur-
ing the learning stage, the prototypes are moved
within the data space according to the location of
the considered data and to constraints given by
the neighbourhood relationships. After the learn-
ing stage the set of prototypes has established a
vector quantization of the data. Each prototype
is associated to a region of the space, namely
a Voronoi zone or a cluster, where data share
some similar features. Furthermore, the proto-
types preserve the topology: two similar data be-
long either to the same cluster or to two neigh-
bouring ones (on the grid). The SOM obtained
after learning also allows a graphical representa-
tion that can be interpreted intuitively.

Though the SOMs are usually considered as a
classification or recognition tool, there are a few
works where SOMs were used in forecasting tasks.
For example, some authors [6] use SOMs to cre-
ate clusters in the regressor space, eventually as-
sociating each cluster to a linear local model [7],
[8] or a nonlinear one [9]. Other VQ algorithms
like Neural Gas [10] are also used in combina-~
tion with local linear models. Another way is to
split the problem into the prediction of a normal-
ized curve, and the prediction of the curve mean
and standard deviation [11]. Recursive SOMs [12]
(and pioneer work on leaky integrators [13]) try
to learn sequences of data, as applied in [15] for
speech recognition problems. RSOMs can be fur-
ther combined with local linear models [14]. By

contrast to these works on short-term forecasts,
the method presented in this paper uses SOMs to
build a stochastic model specifically designed to
provide long-term predictions.

3. The double quantization method

The goal of the method presented in this paper
is to extract long-term information or behaviour
from a time series. The method is based on the
SOM algorithm used to characterize (or to learn)
the series. In a further forecasting step, the model
previously learned is used to perform a prediction
of the long-term evolution of the time series.

As explained in the introduction, this method
can be applied to scalar time series as well as to
vectorial ones. The method will first be described
in the scalar case. Though the generalization to
the vectorial case is straightforward, some addi-
tional details will be provided. The method will
be applied to various time series in section 5.

3.1. Characterization (scalar case)

According to the general formulation of a non-
linear auto-regressive model (1), the method uses
regressors of past values to predict the future evo-
lution of a time series. Those regressors are cre-
ated as follows. Having at one’s disposal a scalar
time series of n values, the latter are converted
into p-dimensional vectors, according to:

X€7p+1 = {a:(t—p—l— 1); s ,x(t—l),a:(t)}, (2)

where p < ¢t < n, and x(t) are the values of the
original time series at our disposal. The xj
are called regressors, and n—p+1 of them are ob-
tained from the original time series. In the xj_,
notation, ¢t — p + 1 and t respectively denote the
first and last time indices of the regressor; this no-
tation will be used throughout Sections 3 and 5
of this paper. Note that the order of the regressor
p is supposed to be optimal, i.e. it is supposed to
contain all the information that can be obtained
from the past evolution of the time series. More
considerations on the determination of an optimal
regressor in the context of non-linear prediction
can be found for example in [16].

The regressors xi_p 1 are then manipulated so
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that other vectors are created, according to:

t ot t
Yi—pt+1 = Xp—pro — Xi—pt1- (3)

The yi_p 41 vectors are called deformations. By
definition each deformation yj ., is associated
to a single regressor XLP 1 1; n — p deformations
can be obtained from a time series with n values.

To clarify the situation, the space containing
the xj_,,, regressors will be called in the follow-
ing the original space, while the one containing
the y; ., deformations will be called the defor-
mation space.

The main step of the method is the application
of the SOM algorithm to each of the two spaces.
The SOM algorithm performs a vector quantiza-
tion of the original and deformation spaces re-
spectively. The first SOM, in the original space,
results in ny prototypes X; (1 < i < ny). Clusters
containing all regressors associated respectively
to each prototype X; are denoted C; with C; € C,
where C is the set of prototypes in the original
space such that #C = ny. In the deformation
space nz prototypes y; (1 < j < ng) are obtained
by a second SOM and the corresponding clusters
containing the deformations are noted '} € C’; C'
is the set of prototypes in the deformation space
such that #C’ = na.

The double quantization of regressors and de-
formations only gives a characterization of the
past evolution of the time series. This charac-
terization is static and does not reflect the dy-
namics of this past evolution. However, the dy-
namics may be found in the associations between
the deformations y} ,,; and their corresponding
regressors X;_,.;, i.e. in the characterization of
how the series has evolved between a regressor
and the next one.

To model the dynamics of the time series it is
thus necessary to build a representation of the
relations between the regressors and their de-
formations. This representation is a matrix f;
that contains the relations between the xj .,
and the y%fp 41 with respect to their clusters (C;
and Cj respectively). Each row of the f;; matrix
(1 < j < ng) is in fact the conditional probabil-
ity that yi_p 41 belongs to Cj’- given the fact that
Xi—p+1 belongs to C;. In practice, these probabil-

ities are estimated by the empirical frequencies:

fii = #H{x}_py1 € Ciand yi_, ., € Cj}
’ #{X€*P+1 € Ci}

with 1 <17 <mp, 1 <j < mny. As expected with
such a definition, elements f;; (1 < j < ng) sum
to one for a fixed 7. This matrix will be called the
transition matrix in the following.

k) (4)

3.2. Forecasting (scalar case)

Having at one’s disposal two sets of prototype
vectors, respectively in the original and deforma-
tion spaces, together with the transition matrix
it is now possible to use this characterization of
the time series to perform a long-term evolution
forecasting. Defining horizon h = 1 as the next
value, i.e. t+1 for instant ¢, the goal is to forecast
evolutions of the series for horizons h > 1.

Consider a value z(t) for instant ¢. The cor-
responding regressor is XLPH. Using the pro-
totypes X; in the original space, the cluster of
xﬁ_p 41 is determined, for example k (this opera-
tion consists in finding the nearest neighbour X
from regressor xi_p 41 according to the Euclidean
distance used in the SOM algorithm). A defor-
mation prototype ¥; is then chosen at random
among the y; according to the conditional prob-
ability distribution defined by row k of the tran-
sition matrix, i.e. according to fi;,1 < j < no.
The prediction for instant ¢ + 1 is obtained ac-
cording to relation (3):

StHl ¢ -
Xi—pt2 = X{_pr1 T ¥ (5)

where kif;w is the estimate of Xitgl)w given by
our model.

Note that the result )Acile, 1o oObtained here is a
vector of size p. The components of )Acile, 4o are
in fact estimations for instants from ¢ — p + 2 to
t—+ 1. In the scalar case, and values from ¢t — p+ 2
to t being known, the scalar prediction Z(t + 1)
is extracted from )Acile, 12 The procedure is then
iterated, plugging in &(t 4+ 1) for z(¢) in (2) to
compute fciffﬂr?, by (5) and extracting Z(t + 2).
The same is done for &(t+3), &(t+4), ..., &(t+
h). These iterations up to horizon h are called a
simulation of the time series.
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As the goal of the method is to provide some
ideas about the possible evolution of the series,
we are interested in the distribution of the sim-
ulations. The whole simulation procedure above
has thus to be repeated. Since the random choice
of deformation according to the conditional prob-
ability distributions given by the rows of the tran-
sition matrix is stochastic, the simulation proce-
dure is repeated using a Monte-Carlo procedure.
The observation of all these simulations makes it
possible to estimate their distribution, and infer
global information about the time series such as
the evolution of its mean, its variance, confidence
intervals, etc.

3.3. Generalization: vector forecasting

Suppose that the studied problem requires the
prediction of a vector of values in one step instead
of (several) single value(s). For example when
forecasting an electrical consumption, the prob-
lem may be to forecast hourly values for a whole
day instead of predicting each value separately.
The problem is thus to predict vectors xiff of fu-
ture values of the time series z(t), where x/1{ is
defined as:

x4 = {a(t +1),x(t +2),..,2(t +d)}. (6)

In such applications d is determined according to
some a priori knowledge about the series (for ex-
ample the 24 hourly values in the electrical con-
sumption problem).

As above, regressors of this kind of time series
can be constructed according to:

t o t—p+d t—p+2d t
Xi—p+1 = {Xt7p+1axt_p+d+1a s 7Xt—d+1}7 (7)

where p is considered to be a multiple of d for
simplicity.

Relation (7) can be illustrated using the electri-
cal consumption example. Suppose that d = 24
hourly values and that values from three days are
needed in the regressors. The latter thus contain
p = 72 values. The regressor at time ¢ is thus

given by:

Xi—?l = {x(t - 71)7 e .,:C(t - 48)7

t—48
t—71

x(t —A47), ..., x(t —24),

X

t—24
Xi_a7

x(t—23),...,2(t —1),z(t)}.

t
Xi_23

In other words, regressors X ,.; are con-
structed as the concatenation of p/d d-
dimensional vectors of past values of the time se-
ries, similarly as it is the concatenation of scalar
(d = 1) past values in the scalar case. Note again
that the order p of this regressor is supposed to
be a multiple of d for simplicity, although this is
not compulsory.

Deformation regressors can also be defined for
the vectorial case, using a generalization of (3):

¢ _ Jt+d t
Yi—p+1 = X4 prdr1 — Xi—pti1- 9)

The algorithm can therefore be generalized in
a natural way. The SOM algorithm is applied on
both spaces, classifying respectively the vectorial
regressors X;_, ., and the vectorial deformations
yi_m_l. We obtain n; prototypes X; in the origi-
nal space associated to the clusters C; € C, with
1 < i < n;. In the deformation space, we ob-
tain ny prototypes y,; associated to the clusters
C}EC’,lﬁjgng.

Relation (4) can be generalized straightfor-
wardly to the vectorial case: the vectorial def-
inition of the f;; uses the same notations even
though x}_ ., and y}_,,; now design vectors of
vectors instead of vectors of scalars.

The simulation forecasting procedure can be
generalized too:

e consider the vectorial regressor X}, ;
e find the corresponding vectorial prototype
Xk;

e choose a vectorial deformation prototype ¥,
among the y; according to the conditional
distribution given by elements fi; of row k;
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e compute the forecast as:

sttd ot .
X ptd+1 = Xi—pp1 T Y55 (10)

At+d . . .
e as X, . ;.1 IS a p-dimensional vector, ex-

tract the vector &iif = (Z(t + 1),z(t +

2),...,2(t + d)) from its d last columns;
e repeat h/d times until horizon h.

As for the scalar case, a Monte-Carlo procedure
is used to repeat the whole simulation procedure.
Then the simulation distribution and its statistics
can be observed, which in turn gives information
about the long term of the time series.

3.4. Comments

The DVQ method, as any other forecasting one,
assumes that the time series data satisfy the re-
lationships of the underlying model. In the case
of the DVQ method, the relationships correspond
to the lines of the transition matrix, i.e. to condi-
tional probability laws. In other words, it is first
assumed that the knowledge of a regressor is suf-
ficient to build a conditional model of prediction.
Secondly, it is assumed that using discrete laws
instead of continuous ones does not penalize the
prediction results.

The first assumption is common in any
regressor-based prediction model: even in AR
models, it is assumed that the regressor includes
sufficient information to perform a prediction.
This question is closely related to the application-
dependent choice of the regressor size. The se-
ries to be modelled also have to be stationary (in
mean and variance), at least over a reasonable
window size. Short-term trends or periodicities
may be taken into account by using sufficiently
large regressors (it is the stationarity of the series
of regressors that is important, not the one of in-
dividual values in the time series). More precisely,
regressors should be of a size multiple of the short-
term trends or periodicities. However long-term
trends and periodicities should be removed from
the series before applying the method. Neverthe-
less, as it will be seen in the experiments, this
point may reveal not critical. Indeed long-term
variations in the series may be taken into account

by a higher number of clusters in the regressor
(and deformation).

The second assumption may be seen as
a specific implementation of the bias-variance
dilemma, when a finite number of data is avail-
able: the number of lines and columns in the tran-
sition matrix may be increased to reduce the bias
or decreased to reduce the variance of the model.
As it will be detailed in the experimental part of
this paper, the proposed methodology suggests
fixing this compromise by cross-validation.

Compared to the use of a single SOM where
the regressor and the deformation vectors would
be concatenated (even through some weighting),
the use of two SOMs enables to build a transi-
tion matrix which is a discrete approximation of
the conditional law between regressors and defor-
mations; a stochastic model is obtained in each
cluster in the regressor space. Thus it is possible
to repeat simulations and compute statistics on
the results (mean, variance, confidence intervals)
which are the real goal of the procedure.

Furthermore using the SOM to quantize the
X;_,1 and yf{_,.; vectors helps the method to
reach easily the goal of forecasting vectors with
the same expected precision for each component.
Indeed while looking deeper in the SOM algo-
rithm, it can be noticed that all components of
the x{ ., and y} ,,; vectors are used in an
identical way in all computations of the algo-
rithm. In other words, none of the xj ., or
yifp 11 components have a greater importance
than other components, for example in the adap-
tation of prototypes, etc. If equation (1) is a rea-
sonable model of the series, i.e. if the prediction
of d values after time t is deemed to be feasible
based on p values until time ¢, then the perfor-
mances on each of the d components to be pre-
dicted are expected to be similar.

As mentioned in the description of the method
in the vectorial case, the regressor order p is sup-
posed to be a multiple of d. This is also the case
for scalar predictions, as any p is a multiple of 1.
In both the scalar and vectorial cases the regres-
sors were supposed to be constituted by succes-
sive values of the series (see equations (1), (2),
(6), (7)). However, according to some knowledge
about the time series or to some validation proce-
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dure, it could be advantageous to consider only a
limited number of past values in the regressor. In
other words, if we consider the scalar case for il-
lustration, the regressor may contain only specific
past values. For example, we could take:

Xi—p—‘,—l = {x(t—5),x(t—3),x(t—2),x(t)}, (11)
instead of:

xi—p—i—l = {(E(t - 5)a {E(t - 4); {E(t - S)a

ot - 2),a(t - 1),2(0)),

omitting possibly unnecessary values z(t — 1) and
x(t — 4) in the regressor. This comment also ap-
plies to the vectorial case.

Another comment concerns an immediate ex-
tension of the method. The method has been pre-
sented here in a scalar time series context, both in
scalar and vectorial model cases. Nevertheless, if
a problem requires the prediction of several scalar
series simultaneously (in other words a vectorial
series), the same vectorial method could be ap-
plied in a straightforward way. The only changes
would concern the definition of the regressors that
would now become vectors of spatially correlated
values instead of temporally successive ones.

Finally, note that in practice any kind of SOM
can be used, but it is assumed here that one-
dimensional maps (or strings) are more adequate
in this context, for example for illustration pur-
poses. More specifically, remind that each row
of the transition matrix corresponds to a condi-
tional probability law. If the series contains some
regularity (as assumed when building a model),
all possible values of the deformations (columns
in the matrix) will not occur for a specific clus-
ter in the regressor space; in other words, the
transition matrix will be sparse. Furthermore,
because of the topological property of Kohonen
maps, non-zero elements corresponding to simi-
lar deformations will appear close to one another
on a row. This last property will be less visible
if two-dimensional maps are used instead of one-
dimensional ones. Indeed in this case the index
of the transition matrix columns (for example)
should span the two-dimensional indices of the
Kohonen map, resulting in close indices (on the
map) being separated in the column index. This

is the reason why one-dimensional maps are pre-
ferred in the following of this paper, insisting on
the fact that nothing prevents the use of other
maps besides this visualization property.

4. Method stability

Looking at the predictions obtained by the
model described in the previous sections, the pre-
dicted values could either be contained in the
range of the learning set or exceed this range, in
particular at long term. In the first case, the se-
ries of predicted values is said to be stable while
it is said to be unstable in the other case. We will
prove in this section that the method presented
in this paper is stable according to this definition.
Stability is indeed a necessary condition to ensure
that long-term forecasts will give some useful in-
formation about the future of the series.

To improve the readability of the proof simplier
notations will be used. In the following of this
section, for a fixed d and a fixed p, notation X;
will represent the vector xj ;. The last known
the regressor will be denoted Xy. The prototype
of a cluster C'j'- of deformations will be noted Y.
Finally, hats will be omitted for simplicity as all
regressors X, are estimations, except for ¢ = 0.

The stability property is intuitively not sur-
prising. As the model will produce predictions
that are random choices according to an observed
probability law, these predictions will remain in
the range of observed data. If, for some reason,
the prediction tends to exceed this range during
the simulation, the next deformations will then
drive the predictions back inside the range, at
least with high probability. The following of this
section is intended to give a technical proof of
this intuitive result. Indeed as the stability of
the method is a primary concern, it is necessary
to prove that the method will not be unstable at
long term, even with a low probability.

The proof consists in two steps: it is first
shown that the series generated by the model is a
Markov chain; secondly, it is demonstrated that
this particular type of Markov chain is stable.

To prove that the series is a Markov chain, we
consider the starting regressor X of the simula-
tion, and Cj its corresponding SOM cluster in the
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initial space. The deformation that is applied to
Xy at this stage is Yy. Then the next values of
the series are given by:

X1 = Xo+ Y,
Xo=X14+Y=Xo+ Yy + Y71, (13)

with Yp, Y7, ... drawn at random among the de-
formation code vectors, according to the transi-
tion matrix, for clusters Cy, C1, ... respectively.
The series of predicted Xy, with ¢ > 0, is there-
fore a Markov chain, homogeneous in time (the
transition distributions are not time dependent),
irreducible and defined over a numerable set (the
initial X; are in finite number, and so are the
deformations).

To show the stability of this Markov chain and
thus the existence of a stationary probability dis-
tribution, Foster’s criterion [17] is applied. Note
that Foster’s criterion in fact proves a stronger
result: the Markov chain will be proved to be er-
godic. This stronger condition will be satisfied;
consequently the Markov chain defined by rela-
tion (13) has a unique stationary (limiting) dis-
tribution.

A necessary and sufficient condition for an irre-
ducible numerable chain to be ergodic (and there-
fore stable) is that there exists a positive function
g(.), a positive £ and a finite set 2 such that:

VeeQ:E (g(Xt-i-l) | Xt = .1?) < 00, (14)

Vo ¢ Q:E(g(Xeq1) | Xy = 2)—g(x) < —e. (15)

The proof is done here for a two-dimensional
case, but can easily be generalized to other di-
mensions.

In the following proof, the function g¢(.) is cho-
sen to be g(.) = ||.||* in (14) and (15).

Since the Markov chain is homogenous, it is
sufficient to observe transition Yy from Xg to X7.
The same development is also valid for any other
transition.

Before going on in further details, let us remark
that, if we consider a SOM with at least three
prototypes in general position, cluster Cy covers
strictly less than half a plane. This fact can easily
be observed for any vector quantization problem,

L ,
250 300

Figure 1. Two-dimensional regressors (dots), pro-
totypes (crosses) and clusters from the Santa Fe
A time series.

and in particular for any quantization of the re-
gressor space in a time series context. In Figure
1 for example, the regressors of the Santa Fe A
time series [18] (with p = 2) are plotted in their
respective clusters in the IR? plane, with the cor-
responding prototypes.

To prove Foster’s criterion, we distinguish two
cases. The first one is when || Xo| < Ry, where
Ry can be any constant. In this case we have by
triangular inequality:

E([Xql) < Ro+ Yol

16
< Ro+max (). 16

As the deformations Y; are in finite number, the
maximum of their norm is finite. This proves
equation (14) in a straightforward and obvious
way in the case of a finite norm of Xy (i.e.
bounded cluster case).

The other case to be considered is therefore
when || Xo|| — +oo. This can only happen in
unbounded clusters; in Figure 1 for example, all
clusters are unbounded except two. The un-
bounded cluster case is much more technical to
prove.

Looking at Figure 2, we see that each un-
bounded cluster is included in a cone with ver-
tex A and delimited by the normalized vectors a;
and as. These vectors delimiting the border of the
cone are chosen in the direction of the two infinite
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(a) A Cluster within an (b) A Cluster within an ob-
acute angle tuse angle

Figure 2. Notations for the cone containing an
unbounded cluster of a SOM; see text for details.

segments at the borders of the cluster. There are
two possibilities: a; and as form either an acute
angle or an obtuse one, as shown in Figure 2(a)
and Figure 2(b) respectively.

In order to prove that Foster criterion can
be applied, we first prove three technical lemma
(Properties 1., 2. and 3.).

Property 1.
Denoting
) x
lzm|\x|\~>oom -a; = 0, (17)

we have 01 and ds both strictly positive in the
acute angle case, while either d; or s is positive
for an obtuse angle.

Indeed, consider the origin O. Vector O—é is
given by:

— _—  —
Ox = OA+ Ax. (18)

Using (18) in (17), we have:

x Oz
— - a; — —_—
fa ol %
OA Ax
= _— + _— . ai
=l [l
OA-a; Azx-aq;

Considering ||z|| — 400, we obtain:

OA Az || Az
= Ca; = G _a:) | Az] -a;. (19)
E] ENMTIRE
——
—0 —1

This proves relation (17) since the second term
of the right member can be bounded below by a
strictly positive constant.

As shown in Figure 2, this property is true for
both i = 1 and 2 for an acute angle <((a;, as) and
for at least ¢ = 1 or i = 2 for an obtuse angle.

Property 2.
We define b; such that the angle <(aq1,b1) is
+%. Similarly by is defined such that the angle
(b, az) is also +5. Then, for both the acute
and obtuse angle cases, we have:

—

A
inf o by =1y > 0, (20)
zeC ||z||
where C' is the considered cone which has border
vectors a; and as.
Indeed, we can rewrite the first term of (20) as:

Az Az || Az|
inf — -b; = inf TmH il - b;. (21)
veC ||z weC || Az| =l
| Az
Since H T| — 1 when ||z|| — +o00, we have:
X
Az |4z
ing A2 Al (22)
v€C || Az| Jl=l
~~
—1

This property is valid for ¢ = 1 and ¢ = 2 both
in the acute and obtuse angle cases.

Property 3.
Assume for the moment that:

E., (Yo) a1 <0 and E,, (Yp) - a2 <0, (23)

where 119 is the empirical distribution correspond-
ing to an unbounded cluster Cj in the transition
matrix. Let us denote:

B, (Yo) - a; = —v; <0, (24)
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Ey, (%) B Ey, (%)

(a) Acute angle case. (b) Obtuse angle case.

Figure 3. Third geometrical property, see text for
details.

with ~; > 0. As shown in Figure 3, we have that:
E,(Yo) - bi <0, (25)

for at least © = 1 or ¢ = 2 in case of an acute angle
(Figure 3(a)) and for both i =1 and i = 2 in the
obtuse case (Figure 3(b)).

To be convinced of the initial assumption (23),
it suffices to realize that, in average, the deforma-
tions will point to the interior of the distribution,
as illustrated in Figure 3. This can easily be ver-
ified numerically too. In particular it has been
verified for the Santa Fe A time series example,
the result being shown in Figure 4.

Foster’s criterion

Now we can apply Foster’s criterion in the case
of an unbounded cluster; remember that the case
for bounded clusters has already been solved in
the discussion after (16). Considering cluster Cy
such that its prototype is the nearest from data
Xy, and considering its corresponding transition
distribution, with g(.) = ||./|?, we have:

E(g9(X1) | Xo = z) — g(z)
= E(9(Xo+Yo) | Xo=12) —g(x)
= E(|Xo+ Yol? | Xo = ) — [|=|]?
= B ([ X0+ Yol?) — || X0l

= 2X0 - By (Y0) + By ([|Yol?)-

Thus we obtain:
E(g(X1) | Xo=12) — g(x) = )

€z - EHO(YO) EILO(HYE)H ) ) (26)
(E4 2|zl

2|l

1501 + 2B, (Xo - Y0) + Epio ([1Y0]1) — | Xol|?

L ,
250 300

Figure 4. Two-dimensional regressors (dots), pro-
totypes (crosses) and clusters from the Santa Fe
A time series, and expected deformations in each
unbounded cluster (arrows).

First let us have a look at the second of the two
terms between the brackets in (26). Since [|Yp]|?
is finite, we have:

sup E,, (||Yo?) < Moy < o0.
zeCoh

M,
Thus, for o > 0 and ||z]| > —2, we have:
o

1

mEuo(HYOHQ) < ag. (27)
Now we still have to cope with the first term

between the brackets of (26). We choose either

i =1 or ¢ = 2 such that:

limy, *,+ooi-ai=5i>0,
Il =o0 g (28)

EMO (Yo) -b; < 0.

In the case of an unbounded cluster, it is always
possible to find either i = 1 or i = 2 such that
those two conditions are fulfilled, according to
Properties 1. and 3.

We suppose for now that i = 2 satisfies those
two conditions (28). Looking closer to the first
term between the brackets of relation (26), we
can decompose E,,; (Yp) in the (bg, az) basis as:

Eo(Yo) = (Ep (Yo)-a2)az+(E, (Yo)-b2)be, (29)
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thus obtaining, for i = 2:

X
N E., (Yo)

—(© ) e) () (@)
@“%))k”|“>

According to Property 1., we know that:
x
]Jm”z”A)Jroo W -ag = 62 > 0, and thus:
x

02

x
—-ay > —, (31)
] 2
for ||z|| sufficiently large.
Furthermore, from Property 3. we have

EHO (Yo)-ag =—7 <0 (23), and Elio (Yb)bg <0,
from (28). The last parenthesis in (30) can be
developed as:

OA Az
L, = <_+_x> by, (32)

] [l [l

For x sufficiently large in the unbounded cluster,
—

0OA
that is for x| — 400, Tl by — 0.

Furthermore, by Property 2., we have:

Aa:
[E

Equation (32) can thus be simplified in:

bg > Tro > 0. (33)

for ||z|| sufficiently large.
Replacing all those results in (30) we obtain:

ﬁ Elio (Yb)
s@mm»ng%T@)
~———— X

=—72 by (24) 5
>22 by (31)

+ Euo (YO) < b2> )
L 2\«
<0 by (28) ~——~—""
> by (34)

11

which finally results in:

02

Eu, (Yo) < 25 (35)

x

]

when ||z|| is large enough, denoted here ||x| > Lo.

The above development has been made under

the hypothesis that ¢ = 2 in (28). If on the con-

trary ¢ = 1 satisfies the two conditions (28), we
obtain by the same development:

x 61

B (Y ok
||37H /J«O( 0)< Al 9 (36)

when ||z|| > Lj.
Using relations (27) and (35 or 36), we can now
rewrite (26) as

E(g9(X1) | Xo = 2) — g(z)

= 2[z| x'Euo(YO)+Euo(||YOH2)

] 2|l (37)
< 2|z| [0 + 3]
= —2elig

where ||z|| > K¢ = max (Lo, Lj) and «p in (27) is

1) 1)
chosen such that ag = mln(’yl L 2 2)

This whole development has been done for one
cluster Cy. The value ag depends on this clus-
ter Cy, as well as vectors ay, by, as, by and val-
ues My, Lg, Ko. If we now consider all possible
unbounded clusters Cj, taking a = inf¢, a; and
K = supg, K, we have:

Yzl > K -
Eu() | Ew(%l?) __a_ (39)
] 2l 2

By (26) and (38), we finally obtain:
E(g(X1) [ Xo = 2) —g(z) < —allz[|.  (39)

The right member of this inequality tends to —oo
for ||z|| increasing to +oc.

To conclude, let us now define precisely the set
) that must be used in Foster’s criterion i.e. re-
lations (14) and (15):

U ) U {Xol IXoll < K}, (40)

1<j<ns
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where C]’- are the bounded clusters as discussed in
the introduction to the proof. With this defini-
tion, the above developments prove Foster’s cri-
terion (14) and (15). Thus the chain defined in
relation (13) is ergodic, and admits a unique sta-

tionary distribution.

5. Experimental results

In this section, results obtained with the DVQ
method are described. The method is illustrated
on two time series. The first one is the well-known
Santa Fe A benchmark presented in [18]. This ap-
plication of the method illustrates the scalar case.
The second time series is the Polish electrical con-
sumption [20] from 1989 to 1996. This real-world
problem requires the prediction of vectors of 24
hourly values and illustrates the vectorial case.

5.1. Methodology

The choice of constants ny and ns, representing
the number of prototypes in each SOM, has not
been discussed yet. Different values of ny (ns9)
lead to different segmentations of the regressors
(deformation) space. This means in fact different
models of the time series since the conditional dis-
tribution in the transition matrix are constructed
according to the segmentations obtained with the
two SOMs.

In the following applications we use a simple
validation procedure to fix n; and no. For that
purpose, we divide the set of data in three parts: a
learning, a validation and a test set. The learning
set is used to fix the values of the model param-
eters, such as the prototypes in the SOMs and
the frequencies in the transition matrix. The val-
idation set is used to fix meta-parameters, such
as n1 and me. The test set aims at seeing how
the model behaves on unused data that mimic
real conditions. More elaborated validation pro-
cedures such as cross-validation, leave-one-out or
bootstrap (all discribed in [19]) could be used to
fix the meta-parameters, but no significant dif-
ference was observed in these cases on the two
examples illustrated in this paper.

The selection of n; and ne must be made ac-
cording to an error criterion. We have chosen a
one-step ahead mean square error criterion com-

puted over the validation set:

EMSE = g

z(t+1)eValidSet

(z(t+1) — &(t + 1))

(41)

Note that once numbers n; and ns have been
set, a new learning is done on the reassembled
learning and validation sets. This new learning is
only performed once for the selected model with
optimal n; and no.

5.2. Scalar forecasting: Santa Fe A

The Santa Fe A time series [18] has been ob-
tained from a far-infrared-laser in a chaotic state.
This time series has become a well-known bench-
mark in time series prediction since the Santa Fe
competition in 1991. The completed data set con-
tains 10 000 data. This data set has been di-
vided here into three parts: the first 6000 data
in the learning set, the 2000 following ones in the
validation set, and the 100 next ones in the test
set. Though a larger training set is used here, the
same time horizon (h = 100) as in the competi-
tion is used as it is a rather long-term horizon for
this time series [18].

According to previous experiments on this se-
ries [18], the regressors have been constructed ac-
cording to:

xi—ﬁ = {:L‘(t),i[:(t - 1); {E(t - 2)a {E(t - S)a
z(t —5),z(t —6)}.
(42)

In other words, in this example d = 1, p = 6 and
h = 100. Note that x(t — 4) is missing from the
regressor.

Kohonen strings of 1 to 200 prototypes in each
space have been used. All the 40 000 possible
models have been tested on the validation set.
The best model among them has 179 prototypes
in the regressor space and 161 prototypes in the
deformation space. After re-learning this model
on the joined learning and validation sets, 1000
simulations were performed on a horizon of 100
values. Then, the mean and confidence interval
at 95% level were computed, giving information
on the possible long-term evolution of the time



hal-00115624, version 1 - 23 Nov 2006

series. Figure 5 shows the mean of the 1000 sim-
ulations compared to the true values contained
in the test set, together with the confidence in-
terval at 95% level. Figure 6 shows a zoom on
the first 30 values. In Figure 7, we can see 100
simulations picked up at random for the same 30
values. Note the stability obtained through the
replications. For a simpler model with n; = 6 and
ng = 8 (used for illustrations purposes), Figure 8
shows the code vectors and regressors (resp. de-
formations) in each cluster; Table 1 shows the cor-
responding transition matrix. As expected (see
details in section 3.4), the transition matrix is
sparse and most non-zero elements on a row are
grouped together.

== True time series
— Simulation mean
2501 -+ Confidence interval at 95 % level [

Output

Figure 5. Comparison between the mean of
the 1000 simulations (solid) and the true values
(dashed), together with confidence intervals at
95% level (dotted).

From Figure 6, it should be noted that the
method gives roughly the first 25 values of the
time series, a result that is not so far from those
usually obtained with other neural network mod-
els [18]. One exception is the winner of the Santa
Fe A competition, a specifically designed Time
Delay Neural Network [18].

Although the confidence intervals give less in-
formation at long term, Figure 5 illustrates the
conclusion of the stability proof: despite the fact

13

== True time series
— Simulation mean
250 - Confidence interval at 95 % level |

Figure 6. Comparison for the first 30 values be-
tween the mean of the 1000 simulations (solid)
and the true values of the test set (dashed), to-
gether with confidence intervals at 95% level (dot-
ted).

that at some horizon this (as any) model will
not provide any useful information anymore, the
prediction will remain stationary and within the
scope of the original series.

Figure 7. 100 simulations picked out at random
from the 1000 simulations made for the Santa Fe
A long-term forecasting.
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<

=
—

=

<

V /

Figure 8. The code vectors and associated curves
in the regressor (top) and deformation (bottom)
spaces (when n; = 6 and ny = 8). The code
vectors are represented in white as 6-dimensional
vectors (according to (42)). Regressors (resp. de-
formations) belonging to each cluster are shown
in black.

0.12 0 0 0 0 0 0.23 | 0.66
0.67 | 0.30 0 0 0 0 0.02 0.01
0.05 0.55 0.40 0 0 0 0 0
0.03 0 0.30 0.54 0.13 0 0 0
0 0 0 0 0.50 | 0.48 0.02 0
0.06 0 0 0 0.0 0.34 | 0.56 | 0.04
Table 1

Example of transition matrix, here with n; = 6
and ny = 8 as in Figure 8. Note that in each row,
the frequency values sum to one.

5.3. Vector forecasting: the Polish electri-
cal consumption

This second example concerns the Polish elec-
trical consumption time series [20]. This series
contains hourly consumption values from 1989 to
1996. The whole dataset contains about 72 000
hourly data and is plotted in Figure 9. Due to the
daily periodicity of the time series, we are inter-
ested in daily predictions. This is a vectorial case
with d = 24, since it seems natural to forecast the
24 next values (the next day) in one step.

The 3000 z}_,; data of dimension 24, consid-

Figure 9. The Polish electrical consumption time
series, between 1989 and 1996.

ered without any preprocessing, have been di-
vided in three sets as follows: we use the first
2000 data the learning set, the next 800 ones the
validation set and the last 200 the test set. Since
the optimal regressor is unknown, many different
regressors were tried, using intuitive understand-
ing of the process. The final regressor that has

been selected is:
Thopr1 = {223, 242, 17 167 Thgn )
(43)

This regressor contains the 24 hourly values of
today, yesterday, of two, six and seven days ago.
While there is no proof that this regressor could
be the optimal one, it is the one that makes the
lowest error (41) on the validation set. Since the
regressor contains 5 data of dimension d = 24, we
work in a 120-dimensional space. The algorithm
is run on the learning set with values for n; and
ns, each varying from 5 to 200 prototypes by steps
of 5. The lowest error is made by a model with
n1 = 160 and no = 140 respectively.

As above, a new learning is performed for the
model with nqy = 160 and ny = 140 with a new
learning set now containing 20004800 data. Then
1000 complete forecasts are performed with this
model. Figure 10 presents the mean of the 1000
simulations obtained with 24-dimensional vectors
and with horizon h limited to 40 days (a sin-
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gle plot of the whole 24 * 200 predicted values
becomes unreadable). For convenience, Figure
11 shows a zoom and a comparison between the
mean of those 1000 long-term predictions and the
real values. A confidence interval at 95% level is
also provided.

Predicted mean of the time series with 1000 simulations

0 100 200 300 400 500 600 700 800 900 1000
Time

Figure 10. Mean of the 1000 simulations at long
term (h = 40).

T :
- - True time series

171 —— Simulation mean —

-+ Confidence interval at 95 % level

Figure 11. Comparison between the true values
(dashed), the mean of the predictions (solid) and
the confidence interval at 95% level (doted).

15

From Figure 11, it is clear that the mean of
the predictions at long term will show the same
periodicity as the true time series and that the
values will be contained in a rather narrow confi-
dence interval. This fact denotes a probable low
variability of the series at long term. This also
extends the good results for short-term forecast-
ing obtained in [1], [20] or [21], for a single day
ahead, to a much longer term.

Figure 12 shows 100 predictions picked up at
random from the Monte-Carlo procedure. It is
visible that most simulations have almost the
same shape; this is a major argument for hav-
ing some ideas about the long-term evolution of
the series.

Time

Figure 12. Plot of 100 simulations chosen at ran-
dom from the 1000 simulations performed on the
series.

6. Conclusion

In this paper, we have presented a time se-
ries forecasting method based on a double use
of the SOM algorithm respectively in the origi-
nal space (containing the regressors of the time
series) and in the deformation space (containing
the deformation regressors). The links between
the two SOMs are characterized by a transition
matrix. The stochastic behaviour of the method
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in the forecasting stage allows repeating the sim-
ulations using a Monte-Carlo procedure. These
repetitions make it possible to compute statistics
(mean, variance, confidence intervals, etc.) on the
long-term predictions.

The utilization of the SOM helps the method
to reach the goal of forecasting a vector of val-
ues with the same expected accuracy on each of
its components, making the method applicable to
vectorial time series forecasting. Spatial and tem-
poral vectors are possible; it is possible to use the
vectorial method to predict several scalar series
together or to predict several future values of a
scalar series in one block.

A stability concept is defined for long-term
forecasts. According to this definition, this paper
includes a detailed proof of the method stability.

This method could be used in many contexts.
This paper illustrates its utilization on a stan-
dard benchmark (Santa Fe A series) and on a
real-world problem of electrical load forecasting.
The method can easily be used on other ap-
plications like financial series. Future work in-
cludes experiments on series of spatial vectors
(interest rates, biomedical signals such as elec-
troencephalograms, etc.). From a methodologi-
cal point of view, the properties of the transition
matrix may be further studied using the theory
of Markov chains. Finally, the compromise be-
tween the length of the predicted vectors and the
number of recurrences needed to reach a specific
time horizon may be studied both theoretically
and experimentally.
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