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Abstract

A general-purpose useful parameter in time series forecasting is the regressor size, cor-
responding to the minimum number of variables necessary to forecast the future values of
the time series. If the models are nonlinear, the choice of this regressor becomes very dif-
ficult. We present a quasi-automatic method using a nonlinear projection named curvilinear
component analysis to build this regressor. The size of this regressor will be determined by
the estimation of the intrinsic dimension of an over-sized regressor. This method will be
applied to electric consumption of Poland using systematic cross-validation. The nonlinear
model used for the prediction is a Kohonen map (self-organizing map). (© 2002 Published
by Elsevier Science B.V.
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1. Introduction

Time series forecasting is a great challenge in many fields. In finance, one fore-
casts stock exchange courses or indices of stock markets; data processing specialists
forecast the flow of information on their networks; producers of electricity fore-
cast the load of the following day. The common point to their problems is the
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following: how can one analyse and use the past to forecast the future? Many
techniques exist, the linear methods such as ARX, ARMA, etc. [1,9], and the non-
linear methods such as artificial neural networks [13]. In general, these methods
try to build a model of the process that is to be predicted. This model connects
the last values of the series to these future values. The common difficulty to all
methods is the determination of sufficient and necessary information for a good
prediction. If the information is insufficient, the forecasting will be poor. On the
contrary, if information is useless or redundant, modelling will be difficult or even
skewed.

In this paper, we will describe an original method for the determination of the
information that is useful for a good forecasting. The size of the regressor (vector
including the past values of the series) will be determined by the estimation of the
intrinsic dimension of an over-sized regressor [11,6]. The optimal regressor will
be obtained by the nonlinear projection of this initial over-sized regressor [8]. For
this nonlinear projection, we will use a method named curvilinear component
analysis [5].

We will also briefly present a model of nonlinear forecasting using the Koho-
nen maps [7]. Finally, we will illustrate the presented methods with a traditional
example of time series, the forecasting of the electrical consumption in a country.
The data that we will use correspond to the electrical load in Poland [3]. A sys-
tematic cross-validation methodology is presented that prevents the overfitting of
the learning data.

2. General method for forecasting

In this section, we will briefly describe a general forecasting method (without
exogeneous variables) [10]. We note the series y,, with ¢ varying between 1 and
N. A standard model that collects the dynamics of the process is

j}t-H:f(ytbyt—la---ayt—mﬂ)a (1)

where ¢ is the set of parameters that makes it possible for the model f to ap-
proximate the series as well as possible. For example, in a multi-layer perceptron
(MLP), ¢ is the set of synaptic weights [14]. The vector y, to y;_, is called
regressor.

It is obvious that the choice of the regressor and thus of n is capital. If this
choice is badly done, the model will be vague or possibly skewed. In the best
case, the model will be correct but the determination of ¥ will be very difficult.
Several methods exist to choose the regressor. For example, one can use the optimal
regressor obtained from a linear model, but using a linear criterion in a nonlinear
context is far from being optimal. One can also use pruning methods [2], but these
usually require extensive computations and are in most cases limited to a particular
model.
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Generally, a model is parameterized by a given number of parameters say M.
In our Eq. (1), M would be the size of ¢J. Usually, when M is small, the model
is not complex enough to capture the dynamics of the true system and in case of
time series prediction, the prediction will not be accurate. On the contrary, if M
is taken too large, the parameters try to capture also the noise contained in the
learning data. This is the overfitting phenomenon. The prediction of the learning
data will hence be very accurate (even the noise is “correctly” predicted) but on
validation data (the generalization step) the model will be inaccurate.

The goal is thus to determine the optimal number M of parameters. With this aim
in view, the data y, will be randomly divided into a learning set and a validation
set. Two different mean squared error are calculated, the learning mean squared
error (LMSE):

SN, — )

LMSE =
S N

(2)
where N, is the dimension of the learning set, and the validation mean squared
error (VMSE)

S, — )

MSE =
VMS. N,

3)
with N, being the dimension of the validation set.

The optimal number of parameters M* is a compromise between an accurate
model (minimizing the VMSE) and a parsimonious model (with a little number of
parameters). Unfortunately, this optimum M* depends on the choice of the learning
and the validation sets. A solution to this problem is the cross-validation method.
In this method, the splitting between learning and validation sets is repeated several
times. For each division, the LMSE and the VMSE are computed with respect
to M, finally the LMSE and the VMSE are averaged to get an optimal M*
independent of the choice of the learning and validation sets.

3. Determination of the regressor using CCA

The method that we will present to determine the best regressor is different from
the classical ones. Indeed, we will not pick up variables among the past values
of the series to build the best regressor, but we will construct it from a nonlinear
projection.

Let us build a regressor of large dimension, which will contain too many
information

}It:[ytaytfla"'aytfn]' (4)

We thus created a set of regressors in an n-dimensional space, in which information
is redundant. The fact that the real or intrinsic dimension d of the set of regressors
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Fig. 1. Projection carried out by CCA from R* to R%.

is lower than n expresses this redundancy of information. The Y, data form a
d-dimensional surface in space R". We are thus going to construct a new regressor
of dimension d that stores all the information contained in the initial regressor. For
this purpose, a projection can be used. Various techniques of projection exist to
project from an n-dimensional space to a d-dimensional one. For example, principal
component analysis (PCA) may be used, but PCA is probably not judicious here
because it is a linear projection. An interesting alternative to PCA is the curvilinear
component analysis (CCA) that is one of its nonlinear extensions. Fig. 1 shows
an example of projection on the horseshoe distribution carried out by CCA.

CCA is a nonlinear mapping from an r-dimensional space to a d-dimensional
space. This mapping is obtained by minimizing

E:%ZZ(XU_ Yy ' F(Yij, 2y) ®)
i i

where X; is the Euclidean distance between two inputs (7 and j), Y;; the Euclidean
distance between two outputs (i and;) and

R 1 if Yy < 2y, ©
ijs A =
P00 i vy > A

Details on the minimization of £ using a gradient descent can be found in [4,5].
We can thus summarize the global method as follows: the regressor

Yi=[y6Yim15--05 Yien] (7
is projected using CCA to

Z,=z1,22,...,24] (8)
The forecasting model is then built,

Vi = f(z22,..0,24,9). 9)

The methodology is illustrated in Fig. 2.
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Fig. 2. The two steps of the methodology.

4. Intrinsic dimension

First, it is important to evaluate the projection dimension, i.e. the dimension of
the space of the new variables. If the estimation of this dimension is too small,
information will be lost in the projection. If it is too large, the usefulness of the
method is lost. To evaluate this dimension, the concept of intrinsic dimension is
used. The intrinsic dimension is the effective number of degrees of freedom of a set,
i.e. the number of independent variables. The definition of the intrinsic dimension
(named d) of a set of points ¥ (Y € R") is

_ i In(C(r))

4= (10)
with

Cu(r) = N(N 1<§<NI(”Y Yi[ < (1)
and

I(2)=1 iff condition A holds, 0 otherwise.

More details on the intrinsic dimension can be found in [11]. This concept is
presented here with the well-known horseshoe distribution (Fig. 2): for this data
set, the intrinsic dimension is equal to two as two degrees of freedom are suf-
ficient to uniquely determine any data in the set, although the data live in R>.
The computation of the intrinsic dimension is explained in [6], but its determina-
tion remains very difficult to apply, not to say approximate, for high-dimensional
data sets. Therefore, the intrinsic dimension will be only considered here
as a rough approximation of the dimension that should be wused for the
projection.
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5. Toy example

Fig. 3 shows an artificial series used to test the presented method. This series is
built as the sum of two sine waves: sin(wz) and sin(2wt) with noise. The continuous
time series is then discretized and considered as a dynamical system.

The initial regressor that we will choose is of dimension 3. Fig. 4 shows the
regressor at each time step of the series.

It is clearly visible in the figure that the intrinsic dimension of the series is 1.
We will thus project the regressor to R using CCA. In Fig. 5, we represent y; |
with respect to the new regressor Z.

This series can be easily modelled using a RBF network (radial basis function
network) with five Gaussian kernels [12]. The VMSE obtained is 2.4. In compar-
ison, the VMSE obtained with the initial regressor is 11.50 with a linear model
and 2.1 using a RBF with 25 Gaussian kernels.

os5f
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Fig. 4. The initial regressor at every step of the series.
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Fig. 5. y;41 with respect to the new regressor Z.

6. Forecasting time series using Kohonen maps

The model of forecasting that we will use is based on Kohonen self-organizing
maps (SOM) [7]. Assume that an optimal regressor Z, has been built using
CCA. We will concatenate this regressor with the next value y,;; in a new vector
named Xx;

xt:[Zl,ZZ,---,Zda)/tH]- (12)

Then, we will quantify the x, distribution by a SOM whose centroids will be noted
as C;. These centroids are thus made of two parts, the first part C;; corresponding
to the regressors and the second part Cj; corresponding to the predictions. These
centroids form our model. Indeed, at each time ¢, the forecasting will be calculated
in the following way. First, the regressor Z; is built using CCA. Then, the centroid
C; whose part C;; is closest from Z, is selected. Finally, the forecasting is part Cj
of this centroid:

P :cizéml_innz, — Ca. (13)

7. Application to electricity consumption

The series studied in this paper represents the daily electrical consumption in
Poland [3] during 2700 days. The standardized series is shown in Fig. 6. The
quasi-sinusoidal seasonal variation is clearly visible. If we look at a few weeks
scale (Fig. 7), it may be seen that the electrical consumption has the shape of saw
teeth, where the maximum occurs during the weekdays.
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Fig. 6. Electricity consumption in Poland.
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Fig. 7. Electricity consumption in Poland on a few weeks scales.

7.1. Linear model

For the sake of comparison, and also to determine an initial (too large) size of
the regressor that we will use in a nonlinear model, we first adjust a linear model
of the form

Vim=at+aiyitay 1+ + g1 Vi (14)
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Fig. 8. Averaged VMSE w.r.t. the size of the regressor.

In such a linear model, the number of a; parameters is the size of the regressor.
To determine this size, we will use the cross-validation methodology presented in
Section 3. The averaged VMSE with respect to the size of the regressor is shown
in Fig. 8.

The cross-validation is realized on a large number of splittings between learn-
ing and validation sets (1000 splittings); for each division two third of the data
are used for training and one third is kept for validation. A good choice for the
number M of parameters (ag, ai,...,a,+1) is 15, i.e. 14 days in the regressor.
The regressor covers two weeks most probably because some saturdays are public
holidays in Poland, and some others are not. The VMSE is 0.0263. This value
is very low; we conclude that the real dynamics of this times series is nearly
linear.

7.2. Initial nonlinear model

The second step is the determination of an optimal nonlinear model. First, the
regressor obtained with the linear model is maintained. The number of centroids
in the Kohonen map is again determined by cross-validation on the VMSE. One
hundred splittings between learning and validation sets are used. The result is
presented in Fig. 9.

The optimum number of centroids is about 1500. For this optimum, the VMSE
is 0.0179 i.e. 30% less than that with the linear model. However, the use of a
cross-validation procedure increases the computational load. Moreover, the large
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Fig. 9. Averaged VMSE w.r.t. the number of centroids (initial nonlinear model).

dimension of the regressor (and thus the information redundancy) leads to difficul-
ties in the learning phase of the Kohonen map. The number of parameters seems
very large but the use of the cross-validation technique guarantees that we do not
overfit the data. In general, in local models techniques, it is know low noisy data
lead to a great number of parameters.

7.3. Intrinsic dimension and nonlinear projection

The intrinsic dimension of this time series is computed using the technique
defined in [6]. The dimension found is equal to 6. The computation of an intrinsic
dimension is never accurate, but the results will show that accuracy is not crucial
at this stage. The curvilinear component analysis is performed from a 14-D space
to a six-dimensional space and in this new input space (Z;,) a Kohonen map is
built. The CCA projection is repeated, and for each projection different nonlinear
models (Kohonen maps) are built. The results obtained by this new cross-validation
procedure are shown in Fig. 10.

The optimum number of centroids is about 1500. For this optimum, the VMSE
is 0.0178. This error is nearly the same than the error obtained without projection,
but in this case, the dimension of the input space is smaller. The information
contained in the regressor is kept, noise is reduced and the convergence of the
Kohonen map is easier.
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Fig. 10. Averaged VMSE w.r.t. the number of centroids (nonlinear model after projection).

7.4. Discussion

Why are the results not better? We chose on purpose an approximation technique
(Kohonen map) that is probably not the best model that could be used for this
series. However, with this technique, the problems of local minima in the learning
phase are reduced. With a MLP or a RBF network, these problems would interfere
with the determination of the optimal parameters.

Finally, the nonlinear projection obtained with CCA is not perfect and could
add some undesirable noise in the new regressor; improvements in the CCA could
improve the results too.

8. Conclusion

In this paper, we presented a methodology based on a nonlinear projection to
build a good regressor in the problem of time series prediction. The intrinsic di-
mension is used to estimate the information contained in the series. This estimation
is not very accurate but sufficient to get good results. The methodology shows that
knowledge resulting from linear models on the same series is useful. Moreover, the
use of systematic cross-validations avoids local minima and varying errors. This
makes the method robust.

We used Kohonen maps as nonlinear approximators, because they are less sub-
ject to problems of local minima than other nonlinear models as MLP and RBF.
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Kohonen maps may be good approximators, but other models could be used to
improve the results. However, the goal of this study was not to obtain the best
possible results, but to assess a new methodology including nonlinear projection.
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