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Abstract: We propose a method of function approximation by radial basis function 
networks.  We will demonstrate that this approximation method can be 
improved by a pre-treatment of data based on a linear model.  This 
approximation method will be applied to option pricing.  This choice justifies 
itself through the known nonlinear nature of the behavior of options price and 
through the effective contribution of the pre-treatment proposed for the 
implementation of radial basis function networks in this field. 
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INTRODUCTION 

The approximation of functions is one of the most general uses of 
artificial neural networks.  The general framework of the approximation 
problem is the following.  One supposes the existence of a relation between 
several input variables and one output variable.  This relation being 
unknown, one tries to build an approximator (black box model) between 
these inputs and this output.  The structure of this approximator must be 
chosen and the approximator must be calibrated as to best represent the 
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input-output dependence.  To realize these different stages, one disposes of a 
set of inputs-output pairs that constitute the learning data of the 
approximator. 

The most common type of approximator is the linear approximator.  It 
has the advantage of being simple and cheap in terms of computation load, 
but it is obviously not reliable if the true relation between the inputs and the 
output is nonlinear.  One has then rely on nonlinear approximators such as 
artificial neural networks. 

The most popular artificial neural networks are the multilayer 
perceptrons (MLP) developed by Werbos [1] and Rumelhart [2].  In this 
chapter, we will use another type of neural networks: the radial basis 
function networks (or RBFN) [3].  These networks have the advantage of 
being much simpler than the perceptrons while keeping the major property 
of universal approximation of functions [4].  Numerous techniques have 
been developed for RBFN learning.  The technique that we have chosen has 
been developed by Verleysen and Hlavackova [5].  This technique is 
undoubtlessly one of the simplest ones but it gives very good results.  The 
RBFN and the learning technique chosen will be presented in section 1. 

We will demonstrate that the results obtained with RBFN can be 
improved by a specific pre-treatment of the inputs.  This pre-treatment 
technique is based on linear models.  It does not complicate the RBFN 
learning but yields very good results.  The pre-treatment technique will be 
presented in section 2. 

These different techniques will be applied to option pricing.  This 
problem has been successfully handled by for instance Hutchinson, Andrew 
and Poggio in 1994 [6], a work that has surely widely contributed to give 
credibility to the use of artificial neural networks in finance.  The existence 
of a chapter dedicated to neural networks in the work of Lo, Cambell and 
MacKinlay [7] sufficiently attests to it.  Hutchinson et al., by using notably 
simulated data, have demonstrated that RBFN allow to price options, and 
also to form hedged portfolios.  The choice that the authors made of the 
determination of a call option price as application domain of neural networks 
in finances is certainly not an accident.  The financial derivatives assets 
indeed characterize themselves by the nonlinear relation that links their 
prices to the prices of the underlying assets.  The results that we obtain are 
comparable to those of Hutchinson et al. but with a simplified learning 
process.  We will demonstrate with this example the advantages of our 
technique of data pre-treatment.  This example will be handled in detail in 
section 3. 
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1. APPROXIMATION BY RBFN 

We dispose of a set of inputs xt and a set of outputs yt.  The 
approximation of y, by a RBFN will be noted ŷt.  This approximation will be 
the weighted sum of m Gaussian kernels Φ : 
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The RBFN is illustrated in figure 1. 
The complexity of a RBFN is determined by the number of Gaussian 

kernels.  The different parameters to specify are the position of the Gaussian 
kernels (Ci), their variances (σi), and the multiplicative factors (λ i). The 
technique that allows determining them is developed in detail in [5].  We 
will explain it briefly. 

The position of the Gaussian kernels is chosen according to the 
distribution of xt in space.  At locations where there are few inputs xt few 
nodes will be placed and conversely, a lot of nodes will be placed where 
there are many input data. 

The technique that allows realizing this operation is called vector 
quantization and the points that summarize the position of the nodes are 
called centroids.  The vector quantization is composed of two stages.  The 
centroids are first randomly initialized in the space.  They are then placed in 
the following way.  All xt points are inspected, and for each of them the 
closest centroid will be moved in the direction of xt according to the 
following formula: 

( )itii CxC:C −α+= , (Eq.3) 

with xt the considered point, Ci the closest centroid to xt, and α a parameter 
that decreases with time.  Further details on vector quantization methods can 
be found in [8,9]. 
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Figure 10-1. Representation of a RBFN. 

The second parameter to be chosen is the standard deviation (or width) of 
the different Gaussian kernels (σi).  We chose to work with a different width 
for each node.  To estimate them, we define the Voronoï zone of a centroid 
as the space region that is closest to this centroid than to any other centroid.  
In each one of these Voronoï zones, the variance of the points belonging to 
that zone is calculated.  The width of a Gaussian kernel will be the product 
of the variance in the Voronoï zone where the node is located, multiplied by 
a factor k.  We will explain in our application how to choose this parameter 
[10].  This method has several advantages, the most important being that the 
Gaussian kernels better cover the space of the RBFN inputs. 

The last parameters to determine are the multiplicative factors λ i.  When 
all other parameters are defined, these are determined by the solution of a 
system of linear equations. 

The total number of parameters equals m*(n+1)+1 with n being the 
dimension of the inputs space and m being the number of Gaussian kernels 
used in the RBFN.  

2. RBFN WITH WEIGHTED INPUTS 

One of the disadvantages of the RBFN that we have presented is that they 
give an equal importance to all input variables.  This is not the case with 
other approximators of functions such as the MLP.  We will try to eliminate 
this disadvantage without penalizing the parameters estimation process of 
the RBFN. 
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Let’s suppose first that all inputs are normalized.  We understand by this 
that they all have zero mean and unit variance.  If we build a linear model 
between the inputs and the output, the latter will be approximated by a 
weighted sum of the different inputs.  The weighting associated to each input 
determines the importance that this latter has on the approximation of the 
output.  Indeed, if one differentiates the linear model with respect to the 
different inputs, one finds back these very same weightings.  This is 
illustrated in the following example: 

212 xxŷy +=≅  (Eq.4) 
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We thus dispose of a very simple mean to determine the relative 
importance that the different inputs have on the output. 

We will then multiply the different normalized inputs by the weighting 
factors obtained from the linear model.  These new inputs will be used in a 
RBFN such as the one we presented in the previous section.  This new 
RBFN that we will qualify as «weighted», will thus give a different 
importance to the different input variables. 

3. OPTION PRICING 

The initial success of neural networks in finance has most surely been 
motivated by the numerous applications presented in the field of assets price 
prediction (Cottrell, de Bodt and Levasseur [11] present a wide synthesis of 
obtained results in this field).  The emergence of nonlinear prevision tools 
and their universal approximation properties, obviously not well understood, 
brought in new hopes.  Quickly though, it appeared that forecasting the price 
of assets remains an extremely complex problem, that the concept of 
financial markets informational efficiency introduced by Fama [12] is no 
idle words; to overperform financial markets, after having taken account of 
the transaction costs and the level of risk taken is not simple.  
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The application studied in this section, the modeling of the behavior of 
the price of a call option, as developed by Hutchinson, Lo and Poggio [6], 
presents a typical case of application of neural networks in finance.  The 
prices of the derivatives depend nonlinearly on the price of the underlying 
assets.  Major advances have been introduced in finance to set up analytical 
evaluation formulas for assets derivatives.  The most famous is undoubtedly 
the one established by Black and Scholes [13], daily used nowadays by the 
majority of financial operators.  Evaluation formulas of options prices are 
based on very strict assumptions among which, for example, the fact that the 
actions prices follow a geometric Brownian motion.  The fact that these 
assumptions are not strictly verified in practice explains that the prices 
observed on financial markets deviate more or less significantly from the 
theoretical prices.  In this context, to dispose of a universal function 
approximator, capable of capturing the nonlinear relation that links an option 
price to the price of its underlying asset, but that does not rely on the 
assumptions necessary for the setting up of analytic formulas, presents an 
obvious interest.  It is though necessary that the proposed tool be reliable and 
robust for it to be adopted by the financial community.  This is indeed our 
major concern. 

3.1 Generating data 

The RBFN with weighted inputs has been tested on an example of 
determination of a call option price.  This example has been handled by 
Hutchinson, Lo and Poggio in 1994 [6], and we will use the same method of 
generation of data. 

To generate their data, the authors use in their article the Black and 
Scholes formula [13] in order to simulate the call option prices.  This 
formula is the following: 

( ) ( ) ( ) ( ) ( )21 dXedtStC tTr Φ−Φ= −− ,  (Eq.7) 
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and 
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tTdd −σ−= 12 . (Eq.9) 

In the above formulas, C(t) is the option price, S(t) the stock price, X the 
strike price, r the risk-free interest rate, T-t the time-to-maturity, σ the 
volatility and Φ is the standard normal distribution function.  If r and s are 
stable, which is the case in our simulations, the price of the call option will 
only be function of S(t), X and T-t.  The approximation type that has been 
chosen is the following: 
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For our simulation, the prices of the option during a period of two years 
will be generated, in a classical way, by the following formula:  

∑
= =
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e)(S)t(S 10 ,  (Eq.11) 

taking the number of working days by year equal to 253, and Zt a random 
variable extracted from a normal distribution with µ = 0.10/253, and 
variance σ2 = 0.04/253.  The value S(0) equals 50 US$. 

The strike price X and the time-to-maturity T-t are determined by the 
rules of the «Chicago Board Options Exchange» (CBOE) [14].  In short, the 
rules are the following: 
1. The strike price is a multiple of 5$ for the stock prices between 25 and 

200$; 
2. The two closest strike prices to the stock prices are used at each 

expiration of options; 
3. A third strike price is used when the stock price is too close to the strike 

price (less than one dollar); 
4. Four expiration dates are used: the end of the current month, the end of 

the next month and the end of the next two semesters. 
 
A typical trajectory obtained by the application of these rules is 

represented in figure 2. 
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Figure 10-2. The continuous line represents the action price.  The oblique lines represent the 
different exercise prices.  These are represented obliquely to make visible the different 
introduction and expiration dates. 

The call option prices obtained using these trajectories are represented in 
Figure 3. 

 

Figure 10-3. Option purchase prices obtained by using the simulated trajectories and the 
Black and Scholes formula. 
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3.2 Performance measures 

Three performance measures will be used, as in Hutchinson et al. [6].  
The first measure is the determination coefficient R2 between C et Ĉ.  The 
two other performance measures are the tracking error ξ and the prediction 
error η.  These errors are defined as follows: 

( )[ ]TVEerT=ξ ,  (Eq.12) 

( )[ ] ( )[ ]TVVarTVEerT +=η 2 ,  (Eq.13) 

( ) ( ) ( ) ( )tVtVtVtV CBS ++= ,  (Eq.14) 

with V(t) being the portfolio value at time t, Vs the stock value, VB the 
obligations value, and VC the option value.  If the option price is correctly 
evaluated, V(T) should at any time be equal to zero, given that it is a fully 
hedged portfolio.  The more the tracking error (ξ) deviates from 0, the more 
the option price deviates thus from its theoretical value.  The prediction error 
is based on the classical formula of variance decomposition (the variance is 
equal to the difference between the expectation of the squared variable and 
its squared expectation).  The expected squared V(T), in other words the 
prediction average quadratic error, equals thus the sum of its squared 
expectation and its variance.  The terms erT represent the actualization terms 
in continuous time, allowing the addition of obtained results at different 
moments in time.  A more detailed explanation of these criteria can be found 
in [6]. 

3.3 Results 

In order to measure the quality of the results obtained by classical and 
weighted RBFN, we have simulated a price sample of a duration of 6 months 
(using formulas (7) et (11)).  Two RBFN are calibrated on these data: a 
classical RBFN and a weighted RBFN.  The number of Gaussian kernels is 
6.  This corresponds in fact to 19 parameters per RBFN, which is roughly 
equivalent to the 20 parameters RBFN used in [6]. 

Then, one hundred test-sets are generated (using the same formulas), and 
for each of the two RBFN the coefficient R2 is calculated.  The values of ξ 
and η obtained for the two RBFN and for the exact Black and Scholes 
formula are also calculated. 
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The results obtained for R2 (averaged on the one hundred test-sets) are 
presented in Figure 4, as a function of k, the coefficient used to compute the 
width of the nodes.  The value of k to be used is chosen as the smallest value 
giving a result (in terms of R2) close to the asymptote, that is to say a value 
that can be found in the elbow of the curves in Figure 4.  The value of k = 4 
has been chosen in this case. 

 

Figure 10-4. Value of R2 as a function of the coefficient k of the RBFN.  Dotted line: classical 
RBFN; solid line: weighted RBFN. 

The benefit of weighting is obvious.  The R2 obtained exceeds 97%, 
which is equivalent to the results in [6] while using a RBFN with much 
simpler learning process. 

The results obtained for ξ and η are also in favor of the weighted RBFN.  
Table 1 presents the average values and the standard deviations of R2, ξ and 
η for both types of RBFN.  As for the performance measures for the Black 
and Scholes exact formula, we have ξ = 0.57 et η = 0.85. 

Table 10-1. Average values and standard deviations of R2, ξ and η for both types of RBFN. 

 R2 ξ η 
classical RBFN  0.93 ± 0.10 1.80 ± 0.53 2.03 ± 057 
weighted RBFN  0.97 ± 0.02 1.24 ± 0.50 1.50 ± 0.53 
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4. CONCLUSIONS 

In this paper, we have presented a simple method to parameterize a 
RBFN.  We have then proposed an improvement to this classical RBFN.  
This improvement consists in the weighting of inputs by the coefficients 
obtained through a linear model.  These methods have then been tested for 
the determination of the price of a call option.  The results that we have 
obtained show a clear advantage of the weighted RBFN whatever the 
performance measure used.  In addition, in the example used, the results are 
comparable to the best RBFN or multilayer perceptrons that can be found in 
literature.  The advantages of this weighted RBFN are thus simplicity of 
parameterization and quality of approximation. 
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