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Abstract. This paper presents a new methodology for missing value im-
putation in a database. The methodology combines the outputs of several
Self-Organizing Maps in order to obtain an accurate filling for the miss-
ing values. The maps are combined using MultiResponse Sparse Regres-
sion and the Hannan-Quinn Information Criterion. The new combination
methodology removes the need for any lengthy cross-validation procedure,
thus speeding up the computation significantly. Furthermore, the accu-
racy of the filling is improved, as demonstrated in the experiments.

1 Introduction

The presence of missing values in the underlying time series is a recurrent prob-
lem when dealing with databases [1]. Number of methods have been developed
to solve the problem and fill the missing values.

Self-Organizing Maps [2] (SOM) aim to ideally group homogeneous individ-
uals, highlighting a neighborhood structure between classes in a chosen lattice.
The SOM algorithm is based on unsupervised learning principle where the train-
ing is entirely stochastic, data-driven. No information about the input data is
required. Recent approaches propose to take advantage of the homogeneity of
the underlying classes for data completion purposes [3]. Furthermore, the SOM
algorithm allows projection of high-dimensional data to a low-dimensional grid.
Through this projection and focusing on its property of topology preservation,
SOM allows nonlinear interpolation for missing values.

This paper describes a new method, which combines several SOMs in order to
enhance the accuracy of the nonlinear interpolation. The combination is achieved
with a simple linear regression performed on an extracted sample from the data.
The maps to be combined are selected first using a ranking of the maps by
Multiresponse Sparse Regression (MRSR) and then choosing the best SOMs
using the Hannan-Quinn Information Criterion. The combination improves the
accuracy of the imputation as well as speeds up the process by removing the
cross-validation scheme [4].
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The global methodology is presented in the next section, including all the
methods combined in the global methodology. The Section 3 demonstrates the
accuracy of the methodology.

2 Global Methodology

The global methodology is summarized in Figure 1.

Fig. 1. Global methodology summarized

The core of the methodology is the Self-Organizing Map (SOM). Several SOMs
are trained using different number of nodes and the imputation results of the
best SOMs are linearly combined.

In order to create the linear system, we have to remove a calibration set
from the data before any processing. Then, the SOM estimations of the removed
calibration data are used as the variables of the linear equations and the removed
data itself as the outputs of the equations. The linear system is summarized in
the following formula:
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where si denotes the ith removed calibration sample, ŝi,j denotes the ith cali-
bration data sample estimated by jth SOM, L denotes the number of calibration
data points, Q the number of the best SOMs used and, finally, the vector α

denotes the linear system parameters. The number of SOMs Q is determined
by the MultiResponse Sparse Regression and the Hannan-Quinn Information
Criterion.

When the α is solved, it can be used to estimate the originally missing values
of the dataset from the best SOM estimations selected.

In the following subsections, each of the methods is explained more deeply.

2.1 Imputation Using SOM

The SOM algorithm is based on an unsupervised learning principle, where train-
ing is entirely data-driven and no information about the input data is required
[2]. Here we use a 2-dimensional network, composed of c units (or code vectors)
shaped as a square lattice. Each unit of a network has as many weights as the
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length T of the learning data samples, xn, n = 1, 2, ..., N . All units of a network
can be collected to a weight matrix m (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the unit i at time t and t represents
the steps of the learning process. Each unit is connected to its neighboring units
through a neighborhood function λ(mi,mj , t), which defines the shape and the
size of the neighborhood at time t. The neighborhood can be constant through
the entire learning process or it can change in the course of learning.

The learning starts by initializing the network node weights randomly. Then,
for a randomly selected sample xt+1, we calculate the Best Matching Unit
(BMU), which is the neuron whose weights are closest to the sample. The BMU
calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 − mi (t)‖} , (2)

where I = [1, 2, ..., c] is the set of network node indices, the BMU denotes the
index of the best matching node and ‖.‖ is a standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be
solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and
Letrémy [5], is used. The randomly drawn sample xt+1 having missing value(s)
is split into two subsets xT

t+1 = NMxt+1 ∪ Mxt+1 , where NMxt+1 is the subset
where the values of xt+1 are not missing and Mxt+1 is the subset, where the
values of xt+1 are missing. We define a norm on the subset NMxt+1 as

‖xt+1 − mi (t)‖NMxt+1
=

∑
k∈NMxt+1

(xt+1,k − mi,k(t))2 , (3)

where xt+1,k for k = [1, ..., T ] denotes the kth value of the chosen vector and
mi,k(t) for k = [1, ..., T ] and for i = [1, ..., c] is the kth value of the ith code
vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{
‖xt+1 − mi (t)‖NMxt+1

}
. (4)

When the BMU is found the network weights corresponding to the non-
missing values of xt+1 are updated as

mi (t + 1) = mi (t) − ε(t)λ
(
mBMU(xt+1),mi, t

)
[mi (t) − xt+1] , ∀i ∈ I, (5)

where ε(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the weight
update depends on the neighborhood function λ(mi,mj , t). The number of neu-
rons, which need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure is started again by finding the BMU of the sample.
The learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing
our data. Cottrell and Letrémy proposed to fill the missing values of the dataset
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by the coordinates of the code vectors of each BMU as natural first candidates
for the missing value completion:

π(Mx) (x) = π(Mx)

(
mBMU(x)

)
, (6)

where π(Mx) (.) replaces the missing values Mx of sample x with the correspond-
ing values of the BMU of the sample. The replacement is done for every data
sample and then the SOM has finished filling the missing values in the data.

The procedure is summarized in Table 1. There is a toolbox available for
performing the SOM algorithm in [6].

Table 1. Summary of the SOM algorithm for finding the missing values

1. SOM node weights are initialized randomly
2. SOM learning process begins

(a) Input x is drawn from the learning data set X

i. If x does not contain missing values, BMU is
found according to Equation 2

ii. If x contains missing values, BMU is found ac-
cording to Equation 4

(b) Neuron weights are updated according to Equation
6

3. Once the learning process is done, for each observation
containing missing values, the weights of the BMU of
the observation are substituted for the missing values

2.2 MultiResponse Sparse Regression

Multiresponse Sparse Regression, proposed by Timo Similä and Jarkko Tikka
in [7] is a variable ranking technique and an extension of the Least Angle Re-
gression (LARS) algorithm [8].

The main idea of the algorithm is the following: Denote by X = [x1 . . .xm]
the n × m regressor matrix. MRSR adds each column of the regressor matrix
one by one to the model Ŷk = XWk, where Ŷk = [ŷk

1 . . . ŷk
p ] is the target

approximation of the model. The Wk weight matrix has k nonzero rows at kth
step of the MRSR. With each new step a new nonzero row, and a new column
of the regressor matrix is added to the model.

More specific details of the MRSR algorithm can be found from the original
paper [7].

An important detail shared by the MRSR and the LARS is that the ranking
obtained is exact, if the problem is linear. Here, in this paper, we linearly combine
the SOM estimations of the missing values and, therefore, we have an exact
ranking of the estimations.
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2.3 Hannan-Quinn Information Criterion

Because the MRSR only ranks the SOM estimations, we need a method to
actually select the optimal number of input variables. This kind of selection can
be considered as a complexity selection or input variable selection.

There are many possible criteria for complexity selection used in machine
learning. Typical examples are Akaike’s information criterion (AIC) [9] or the
Bayesian Information Criterion (BIC) [10]. Their expression is usually based
on the residual sum of squares (Res) of the considered model (first term of the
criterion) plus a penalty term (second term of the criterion). Differences between
criteria mostly occur on the penalty term. The AIC penalizes only according to
the number of parameters p of the model, shown in Equation 7, whereas the BIC
takes into account also the number of samples N used for the model training,
Equation 8.

BIC = N × log
(

Res

N

)
+ p × log N, (7)

AIC = N × log
(

Res

N

)
+ 2 × p. (8)

The AIC is known to have consistency problems: while minimizing the AIC, it
is not guaranteed that the complexity selection will converge toward an optima,
if the number of samples goes to infinity [11]. The main idea raised by this
observation is about trying to balance the underfitting and the overfitting when
using such a criterion. This is achieved through the penalty term, for example,
by having a log N based term in the penalty, which the BIC has. Unfortunately,
in our previous experiments, the BIC criterion failed to give proper results in
terms of complexity.

The Hannan-Quinn Information Criterion (HQ) [12] is very close to the other
two criteria. The HQ is defined as

HQ = N × log
(

Res

N

)
+ 2 × p × log(log N). (9)

The idea behind the design of this criterion is to provide a consistent criterion,
unlike the AIC, and in which the penalty term 2 × p × log(log N) grows with a
very slow rate regarding the number of samples.

In this paper, the HQ criterion is used to select an optimal number of already
ranked SOM estimations to be combined. The number of samples corresponds to
the number of selected training points from the training dataset and the number
of parameters to the number of SOM estimations to be combined.

3 Experiments

In the following experiments, we use a financial fund dataset. The dataset is clas-
sified and, therefore, our possibilities to mention any specifics are very limited.
The dataset can be downloaded from [13].
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The dataset contains 120 time series of funds from a total of 121 months each.
The data has been normalized and rescaled. The series are correlated in time and
between series and there are no missing values originally present in the dataset.
Figure 2 shows 15 example series of the original 120 rescaled fund values.
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Fig. 2. Rescaled and normalized fund values of 15 funds present in the database

Before running any experiments, we randomly remove 20 percent of the data
as a test set. The test set contains roughly 2900 values. In our methodology, there
is no need for actual validation set, but in order to calculate the linear model
parameters for the SOMs, we have to remove a set of data that will be used as
output of the linear model. For that purpose, 20 percent of the remaining data
are removed, which corresponds to roughly 2300 values, and the set is called
calibration set.

According to the methodology, several SOMs are trained using different amount
of nodes. Figure 3 shows the training evaluation errorwith respect to the SOM size.
In this paper, the SOM size is actually the length of the dimension of the square
lattice. So, for example, size 10 means a square SOM grid of size 10×10, a total of
100 nodes.

From Figure 3 we can see that the best SOM size, according to this simple
calibration evaluation, is 6. It means that the som with only 36 nodes is the
most optimal to fill in the missing training evaluation values.

Of course, if we would use a standard SOM for the filling, we should use a
lengthy Cross-Validation scheme to validate the SOM size. But even that lengthy
process does not guarantee that the SOM to be used to fill the test set values is
properly validated.

Figure 4 shows the Hannan-Quinn Information Criterion values with respect
to the number of SOMs in the combination.

From Figure 4 we can see that the most optimal value is reached with 12
SOMs. The selected SOM sizes are 7, 9, 12, 16, 18, 20, 21, 22, 23, 24, 25 and
26. Here the maximum SOM grid size was 26. From the previous list we can
clearly see that the small SOM grids are not accurate enough to be included in
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Fig. 3. SOM training evaluation errors with respect to the SOM size
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Fig. 4. Hanna-Quinn Information Criterion values for the selection of SOMs in the
combination

the combination, but several larger sizes are. Comparing this to Figure 4 it is
also clear that after the 12 selected SOMs the HQ value starts to increase, which
means that the rest of the SOMs do not improve the results.

After the calibration, the obtained models are used to fill in the test set. In
Table 2 the errors are summarized.

From Table 2 we can see that the Combination of the SOMs clearly outper-
forms the single SOM decreasing the test error by 18 percent.

Table 2. Test Errors for the SOM and the Combined SOMs

10−3 Training Evaluation Error Test Error

SOM 1.8 1.6
Combined SOMs 1.3
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4 Conclusions

As the experiments demonstrate, the new methodology combining several Self-
Organizing Maps is at least as accurate in filling of the missing values than
single SOM alone. At the same time, the calculation time is reduced significantly
(almost divided by 10), because of the removal of the cross-validation phase from
the SOM.

Further work consists of finding other ways to combine the SOMs and compare
the achieved performance to other popular imputation methods.
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