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Abstract. The steganography problem consists of the identification of
images hiding a secret message, which cannot be seen by visual inspec-
tion. This problem is nowadays becoming more and more important since
the World Wide Web contains a large amount of images, which may be
carrying a secret message. Therefore, the task is to design a classifier,
which is able to separate the genuine images from the non-genuine ones.
However, the main obstacle is that there is a large number of variables
extracted from each image and the high dimensionality makes the feature
selection mandatory in order to design an accurate classifier. This paper
presents a new efficient parallel feature selection algorithm based on the
Forward-Backward Selection algorithm. The results will show how the
parallel implementation allows to obtain better subsets of features that
allow the classifiers to be more accurate.

1 Introduction

Steganography has been used and known for a very long time and it aims at
hiding some content (usually called message) into an apparently innocuous doc-
ument – mostly digital files nowadays.

Image steganography is currently one of the most investigated field of
steganography, since there are many images available online and hence, poten-
tially embedding a secret message.

Steganalysis is the “opposite” process: the main goal is to detect, with the
highest possible accuracy, the presence of a secretly embedded content in another
document. This can be seen as a typical classification problem, since an optimal
separation between images embedding a content (stego images) and genuine ones
(cover images) is to be searched.

There exists different ways to perform steganalysis, but the most classical one
remains to extract features from each considered image (considered suspicious).
Fridrich et al. feature set for image steganalysis is widely used [1] since it enables
achieving a high detection rate of stego images. Even though Fridrich’s set of
features is very large (274 features), there are other steganalysis feature sets with
even greater number of features.
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This paper presents an application of a new parallel feature selection scheme
for the steganalysis problem. The methodology is a parallelized version of the
Forward-Backward Selection method, which has been recently successfully ap-
plied in Time Series prediction problems [2].

The rest of the paper is organized as follows: Section 2 presents the original
Forward-Backward algorithm. Then, Section 3 introduces the new improvements
incorporated to the algorithm. Afterwards, Section 4 describes the dataset used
and the experiments performed. Finally, in Section 5, conclusions are drawn.

2 Forward-Backward Selection

Forward-Backward (FB) Selection is an algorithm that results from the joining
of two methodologies: Forward and Backward selections [2]. Both the Forward
Selection and the Backward Elimination (or Pruning) methods suffer from an
incomplete search. FB offers the flexibility to reconsider input variables previ-
ously discarded and vice versa, to discard input variables previously selected. It
can start from any initial input set, including empty, full or randomly initialized
input set.

Let us suppose a set of inputs Xi, i = 1, 2, · · · , d and an output Y, the
procedure of the Forward-Backward Selection is summarized in Fig. 1. In the
procedure and in this paper, the k -Nearest Neighbors (kNN) criteria is used as
an example criteria for evaluating the input set, but the criteria can be almost
any criteria or a suitable approximator or classification algorithm.

1. (Initialization)
Let S be the selected input set, which can contain any input variables, and F be
the unselected input set containing the inputs, which are not in set S. Compute
k-NN(S,Y ).

2. (Forward-backward selection)
Find:

Xs = arg max
Xi,Xj

{k-NN({S,Xj}, Y)} ∪ {k-NN(S\Xi,Y)},Xi ∈ S,Xj ∈ F.

If the previously computed k -NN is larger than the new k -NN, stop; otherwise,
update set S and save the new k -NN, repeat step 2 until S is equal to any former
selected S.

3. (Result)
The selection result is in set S.

Fig. 1. Forward-Backward Selection Strategy

It is noted that the selection result depends on the initialization of the input
set. In this paper, several options are considered and the options are discussed
more deeply in Section 3.3.
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The number of input sets to be evaluated varies and is dependent on the
initialization of the input set, the stopping criteria and the nature of the problem.
Still, it is not guaranteed that in all cases this selection method finds the global
optimal input set.

2.1 k-Nearest Neighbors

The k-Nearest Neighbors (k -NN) approximation method is a very simple but
powerful method. It has been used in many different applications, particularly for
classification tasks [3]. The key idea behind the k-NN is that samples with similar
inputs have similar output values. Nearest neighbors are selected, according to
Euclidean distance, and their corresponding output values are used to obtain
the approximation of the desired output.

In this paper, since the problem is a binary classification task, the estimated
output value of a sample is the class of the majority of the nearest neighbors k.
The k has to be determined beforehand.

3 Parallel Forward-Backward Selection

The following sections describe the modifications that have been done to the
original Forward-Backward in order to improve the performance in terms of
computational cost and classification accuracy. The parallel implementations
were done in MATLAB using the MPI standard and the interface used in [4].

3.1 Improvement 1: Efficient Computation of the Distance Matrix

As described in the previous Section, the k -NN has to be computed each time
a subset of variables has to be evaluated. This requires the computation of the
distances between an input vector and the others to determine the k closest
ones. This results in a heavy computational load and in order to save some
time, a distance matrix will be computed in advance. These calculations become
crucial when dealing with the feature selection using scaling, that is, weighting
the importance of a variable instead of merely selecting it. The distance matrix
will have an element for each couple of values, storing the distances separately
between each input and each sample.

Nonetheless, because the computation of this matrix is quite time consuming,
an another improvement has been done: parallel calculation of the distance ma-
trix. The matrix is divided between a set of processes and each one of them will
perform locally a part of the calculations. Once they are done, they will com-
municate with the other processes in a collective way so that all processes have
the complete matrix. Each process computes its starting and ending columns as
(rank) ∗ ceil(d/sizew) + 1 and (rank + 1) ∗ ceil(d/sizew), except for the last
process that ends in d, where d is the number of all possible input variables,
sizew is the number of all processes and rank is the process identifier from 0 to
sizew − 1.
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3.2 Improvement 2: Parallel FB

The search for the best solution is also distributed to several computers so that
more solutions can be evaluated in less time. The parallel implementation is
quite straightforward and consists of the division of the newly generated subset
of variables in the first iteration of the FB. This division is shown in Fig. 2.
Once each process has a part of the subset, they proceed as the original FB. The
algorithm stops when all the processes have converged to a solution. Then, the
best solution is found among the final solutions of the individual processes.

Fig. 2. Parallel scheme for the Forward-Backward Selection

The advantage of this approach is that each process has a different starting
solution. Thus, it is possible to find different local minima and have a more
thorough exploration of the solution space than in the original FB.

3.3 Improvement 3: FB Initialization

One of the main issues, when using the FB, is how to choose the initial solution
from where the search will begin. Due to the locality of the FB, the risk of falling
into a local minimum is quite high. Therefore, the starting point should be close
enough to a good local minimum in order to get proper results. In this paper,
two approaches are used: Mutual Information and Slice Division. A comparison
of their performances will be shown in the Experiments section.

Mutual Information Based Initialization. The Mutual Information (MI)
is used as a heuristic to find an adequate starting point for the FB selection. Let
Xl = {xl

m} with l ∈ 1, ..., d (i.e. Xl is the l-th input variable) and Y = {ym}
with {m = 1...M}. The Mutual Information between Xl and Y can be defined
as the amount of information that Xl provides about Y, and can be expressed
as:

I(Xl,Y) =
∑

y∈Y

∑

x∈X

µXl,Y(x, y) log
µXl,Y(x, y)

µXl(x)µY(y)
. (1)
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µXl,Y is the joint probability distribution function of X and Y, and µl
X(x) and

µY(y) are the marginal probability distribution functions of X and Y respectively.
Therefore, in order to obtain the MI between Xl and Y, only the estimate

of the joint probability density function is needed. This value can be computed
using several techniques based on histograms, kernels or the k-NN [5].

For each input variable, the MI between that variable and the output is com-
puted and, once finished, it is possible to rank all the input variables according
the values of MI. Then, the initial solution for the FB is defined as a number of
first variables in the ranking. The problem now is to determine the actual num-
ber of variables, since the value obtained by the MI is not enough to perform
this selection. Unfortunately, the only chance is to set this value manually, as it
will be shown in the experiments section.

Slice Division. Being aware of the two significant drawbacks of the used MI
heuristic (the determination of the k and the final number of variables to be
chosen), another heuristic is considered, which requires the definition of only one
parameter. This value can again be set manually as in the MI, or as a function
of the available resources making the heuristic more flexible when executed in
different computer architectures or systems.

Fig. 3. Scheme of the algorithm using the Slice Division heuristic to initialize the
starting point for the FB

The heuristic works as follows: it performs a preinitialization by dividing the
original input vector into subvectors of a smaller dimension. Then, the local
search is applied to each subvector although, the evaluation of a subvector im-
plies the evaluation of the complete set of variables. Therefore, four starting
alternatives arise: 1) all zeros, 2) subvectors ones, the rest zeros, 3) all ones, 4)
subvectors zeros, the rest ones. Although the first one seems the most reasonable,
since it is easier to find a local minimum with a reduced set of variables, the
different alternatives were studied in the experiments. The issue remains, how
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large the subvectors should be? This value can be set manually or as a function
of the number of available processors.

In the scheme shown in Fig. 3, the initial solutions are divided into slices of size
3 (depicted as x) and the remaining values are not changed (depicted as -) during
the first FB. This first FB is done sequentially and separately in each process.
Once all the processes have converged to a local optima, the processes perform
a collective communication and share the results found by the other processes.
Then, the initial starting point for the parallel FB (named middlesolution in
Fig. 3) is computed by concatenating all local solutions.

4 Experiments

Two experiments are shown in order to illustrate the benefits of the newly added
features: analysis of the computational cost and number of evaluations, and the
accuracy of the classifications.

The dataset has been taken from a real-life steganalysis problem, where a
set of features are extracted from an image. The dataset contains 10000 images
from the BOWS2 challenge [6] database, hosted by Andreas Westfeld and it is
publicly available in [7]. All images are 512 × 512 greyscale (color versions are
also available). The steganographic algorithms have been used only on these
specific dimensions of the images from the database, but any size would work
just as well.

For half of the whole base of images, chosen randomly, steganography is ap-
plied. For this application, one well-known steganographic algorithm, called Out-
Guess [8], has been used. The OutGuess algorithm is known to be rather weak
in steganalysis. An embedding rate of 15% of the maximum capacity of the
OutGuess has been used.

Once half of the images are stego, the feature extraction is performed [1],
leading to 274 features for each image. This feature extraction process is also
carried out on the non-stego images. The final dataset is obtained by joining the
two halves, giving a total of 10000 samples in 274-dimensional space.

The dataset is further divided into training and test sets, 1000 samples and
roughly 9000 samples, respectively. Both sets are normalized using the mean and
standard deviation of the training set.

4.1 Experiment 1: Parallel Performance Evaluation

The original FB algorithm and the improved versions were executed in identical
machines in order to compare the computational times. The results are shown
in Table 1.

In Table 1, the Variable Selection time measured depends greatly on when
the search converges to a local optimum. Regarding the time consumed for the
calculation of the distances, the proposed parallel implementation turns out to be
efficient and scalable. The scalability remains good also in terms of the number
of solutions evaluated, which is growing linearly with the number of processes.
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Table 1. Times (in minutes) spent on the distance matrix calculation and in the
variable selection and the number of solutions of the sequential and the parallel imple-
mentations using the MI and the FBS methodologies

Distance Variable Selection # Evaluated Solutions

Sequential 15 238 1650
Parallel 2p 11 297 3848
Parallel 4p 5 284 6596
Parallel 6p 4 273 10169
Parallel 8p 3 348 13742

4.2 Experiment 2: Classification Accuracy

The second experiment concentrates to the results obtained by the classifier after
the feature selection. Table 2 shows the errors obtained for both training and
test subsets for the algorithm using different heuristics to set the initial starting
point.

Table 2. Results of the variable selection. For each variable selection scheme the
following results are shown: a number of initial and finally selected variables, respective
k -NN classification error and training and test errors of the OP-KNN classification
methodology.

Variables k -NN OP-KNN
Initial Selected Train Train Test

All Variables 274 274 0.190 0.172 0.210

FBS 30 33 0.118 0.120 0.146
50 52 0.122 0.110 0.141
70 73 0.131 0.134 0.145
100 102 0.134 0.127 0.155

pFBS 30 35 0.113 0.115 0.141
50 52 0.115 0.125 0.135
70 73 0.126 0.130 0.145
100 103 0.118 0.120 0.141

pFBSv2 All Ones 245 0.157 0.142 0.192
All Zeros 56 0.114 0.110 0.138

The classification errors using the k-NN algorithm and the OP-KNN [9] show,
how important it is to perform feature selection beforehand: all the models that
were trained after the dimensionality reduction outperform the ones trained with
all the variables. The results also show, how the two initialization heuristics have
a good behavior, although it is remarkable that the last one, based on a local slice
optimization, has the best performance. Furthermore, this initialization, starting
from the empty subset of variables, was able to select 50 variables, avoiding many
local minima.
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5 Conclusions

The problem of identifying if an image has a hidden message is really interesting,
because of its possible applications, specially in the World Wide Web. The work
presented in this paper proposes a methodology for the dimensionality reduction
in order to make the data samples easier to learn by the artificial models.

Regarding the feature selection problem, the Forward-Backward algorithm
was used as a first choice, but it provided poor results requiring a significant
computational cost. Therefore, three major improvements were presented in this
paper: parallel implementation of the computation of the distance matrix, par-
allelization of the search methodology and two new heuristics to determine the
starting point of the search. This last element is crucial due to the large amount
of local minima in the solution space.

The results have shown how the new elements allow the algorithm to per-
form an adequate feature selection, allowing the models to provide accurate
classifications.
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