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Abstract. Classical nonlinear models for time series prediction exhibit im-
proved capabilities compared to linear ones. Nonlinear regression has however
drawbacks, such as overfitting and local minima problems, user-adjusted pa-
rameters, higher computation times, etc. There is thus a need for simple nonlin-
ear models with a restricted number of learning parameters, high performances
and reasonable complexity. In this paper, we present a method for nonlinear
forecasting based on the quantization of vectors concatenating inputs (regres-
sors) and outputs (predictions). Weighting techniques are applied to give more
importance to inputs and outputs respectively.  The method is illustrated on
standard time series prediction benchmarks.

1   Introduction

Time series prediction is a problem with applications in various domains such as fi-
nance, electrical load and river flood forecasting, etc. The problem consists in pre-
dicting the next value of a series known up to a specific time, using the (known) past
values of the series, and possibly exogenous data.

Classical methods (AR, ARMA, Box-Jenkins methodology, etc.) have been used
with various successes for a while.  In some cases, linear models are sufficient to pre-
dict series with a reasonable accuracy.  In other cases, linear models reveal not suffi-
cient, making the use of nonlinear ones necessary.

The potential increased performances of nonlinear models, when dealing with
nonlinear processes, are balanced by their drawbacks what the learning concerns:
number of learning parameters to adjust, increased computation times, convergence
difficulties, overfitting, etc.  There is thus a need to develop simple nonlinear models,
with easy learning, a restricted number of user-adjusted parameters, but still showing
high performances on datasets that are inherently non linear.

This paper presents a nonlinear regression method, applied in our case to the time
series prediction problem, based on the completion of missing values and the quanti-
zation of concatenated vectors. Based on this general framework, different schemes
are proposed to weight the respective importance of each variable (inputs and output)
in the concatenated vectors to quantify.
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In the following of this paper, we will first present the Vector Quantization (VQ)
problem, and show how it can deal with missing values (section 2).  Next, we will
show how VQ with missing values can be used for regression in general, and time se-
ries prediction in particular (section 3), including weighting of the inputs and outputs.
In section 4, the weighting technique is applied to another non linear regression
model, Radial-Basis Function Networks.  The methods presented in the paper are il-
lustrated in running examples inserted in sections 3 and 4 for clarity.  Finally, section
5 draws some conclusions.

2   Vector Quantization

2.1   Definition

Vector quantization [3] is a way to summarize the information contained in a large
database.  Let us define a database through the following example:

Table 1. Database definition

variable 1 variable 2 … variable j … variable D
1st data 11 17 … V1j … 87
2nd data 12 34 … V2j … 7
3rd data 82 -32 … V3j … 92
4th data 34 65 … V4j … 42
… … … … … … …
ith data Vi1 Vi2 … Vij … ViD

… … … … …
Nth data -2 34 … VNj … VND

Elements (observations, or data, or vectors) of this database are thus lines Vi

(1≤i≤N), with elements Vij (1≤j≤D).  The principle of Vector Quantization (VQ) is to
replace this database by another one, containing fewer vectors Ck of the same dimen-
sion D (1≤k≤M, M<N).  The number M of vectors Ck is a parameter of the method.

The new vectors Ck, called centroids, are deemed to have a distribution similar to
the distribution of the initial Vi ones.  Once the centroids are fixed through some algo-
rithm, each vector Vi is then quantized by its “nearest-neighbor” centroid:

( ) 


 −= 2
minargVQ ki

k
i CVV . (1)

The Voronoi region associated to a centroid Ck is the region of the space associated
to Ck by equation (1).  In other words, it is the region of the space nearest to Ck than to
any other centroid.

Determining the “best” set of centroids, i.e. the set that minimizes, in average (on
all data contained in the original database), the quantization error defined by the dis-
tance in equation (1), is a nonlinear optimization problem.  Many algorithms have
been proposed in the literature to determine the centroids: batch algorithms, as
Lloyd’s one, or on-line adaptive ones, as the Competitive Learning method [5].
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As an example, competitive learning works as follows.  At each iteration, a data Vi

is drawn randomly from the initial database.  The nearest centroid C* is determined
(according to equation (1)) and moved (adapted) in the direction of data Vi:

( )*i** CVCC −α+= , (2)

where α is a time-decreasing adaptation factor.  The same operation is repeated sev-
eral times over the database.

Of course, all VQ algorithms find a set of centroids that correspond to a local
minimum of the quantization error criterion, not a global one.  Many initialization
methods and many adaptation rules have been proposed in the literature, aiming to
find a good compromise between the “quality” of the local minimum and the compu-
tational complexity (number of itaretions).

2.2   Missing Data

An easy-to-understand, but not so well known and used property of VQ is that data-
bases with missing data can be quantized easily.  Let us imagine that the initial data-
base is now of the following form:

Table 2. Database with missing data

variable 1 variable 2 … variable j … variable D
1st data 11 17 … V1j … 87
2nd data ? 34 … ? … 7
3rd data 82 ? … V3j … 92
4th data 34 65 … V4j … ?
… … … … … … …
ith data Vi1 Vi2 … Vij … ViD

… … … … …
Nth data -2 ? … VNj … VND

In Table 2, each ‘?’ corresponds to a value that was not measured, or not memo-
rized, for any reason; the ‘?’s are the missing values.  The VQ process defined by
equations (1) and (2) remains valid, if the computation of Euclidean distance in equa-
tion (1) is replaced by a distance computed only on the know variables and not on the
missing ones (of course, it is assumed that the centroids have no missing values).
Similarly, the adaptation of centroids by equation (2) is performed only using the cor-
responding existing coordinates of data Vi, and not on the missing ones.

Using VQ with missing data has proved to be efficient to find estimations of miss-
ing values in databases [4].  A missing value is replaced by the corresponding variable
of the centroid nearest to the observation.  This technique may be viewed as estimat-
ing a missing value with a function of the available variables in the same observation:

kjij CV̂ = , (3)

where Ck is the nearest centroid from Vi, according to equation (1) where the distance
computation is restricted to the known coordinates of Vi.  Using the known informa-
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tion from Vi is certainly more appropriate than replacing a missing value by the aver-
age of the corresponding variable from other observations (average on a column of
the database), as it is often the case when dealing with incomplete data.  VQ may be
viewed as a simple, but still efficient, way to use the information contained in the
known coordinates of vector Vi.

3   Prediction with VQ and Missing Data

3.1   Quantization without Weighting

Time series prediction may be viewed as a regression problem when expressed as
follows (without exogenous variables):

( )θ= +−−− ,y,...,,y,ygŷ Ntttt 121 . (4)

In this equation, tŷ is the estimation of the unknown value of the time series at
time t, while yt-1,…, yt-N+1 are the known N-1 past values of the series which form the
regressor.  θ is the set of parameters of the estimator g; the estimator can be linear or
nonlinear in the general case.

If the past knowledge on the series is concatenated into N-dimensional vectors of
the following form:

[ ]121 +−−−= Nttttt y...yyyY , (5)

the vectors Yt may be viewed as the vectors Vi from our initial database.  VQ can be
applied to these vectors. Next, the VQ model may be used on incomplete vectors,
where the missing value is precisely the yt one.  Therefore, model g in equation (4)
consists in the approximation of the missing value by the corresponding coordinate of
the nearest centroid, as given by equation (3).

This method is illustrated in this paper on a well-known time series benchmark, the
Mackey-Glass series [7].  The series has been generated according to

101 )t(y

)t(y
)t(y

dt

dy

δ−+
δ−α+β= (6)

with β = -0.1, α = 0.2 and δ = 17. The series is sampled with a sampling period of 6.
A part of the series is illustrated in Fig.1. 10000 points have been generated; the first
5000 ones are used for learning (VQ), the 5000 last ones for validation. Each regres-
sor contains the four last values of the series, as recommended in the literature [8].

In order to validate the method, we define the Normalized Mean Square Error
(NMSE) on the NV data in the validation set as follows [9]:
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Fig. 1. Mackey-Glass series (see text for parameters).

Remind that the number of centroids is a parameter of the VQ method.  The NMSE
on the validation set with respect to this number of centroids is illustrated in Fig.2.
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Fig. 2. NMSE of the Mackey-Glass series prediction with VQ.

Figure 2 surprisingly shows that the optimal number of centroids is as high as…
the number of learning data!  This result is not so surprising when considered the fact
that data generated by equation (6) are noiseless. With so many centroids, the VQ
method becomes equivalent to lazy learning [2], a method which consists in looking
in the learning data the one closest from the regressor. Lazy learning has proved to be
efficient in noiseless problems.

The same method, applied to the same series with added 0.25 variance noise, gives
the results illustrated in Fig.3. The optimal number of centroids is now 20, and the
optimal NMSE 0.30. For the sake of comparison, a linear model using the same re-
gressor gives NMSE=0.36 (using the same learning and validation sets).

As a general comment, the number of centroids decreases with the amount of
noise, as the VQ allows to “eliminate” the noise by averaging it in each Voronoi re-
gion.  Of course, the price paid for this is an increased quantization error on the
noiseless equivalent problem. This is nothing else than an illustration of the well-
known bias-variance dilemma.
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Fig. 3. NMSE of the Mackey-Glass with additive noise series prediction with VQ.

3.2   Quantization with Weighting of the Output

The method illustrated in the previous section has an obvious limitation: if the size of
the regressor is large, the relative weight given to the yt predictions in the quantization
of vectors Yt (equation (5)) decreases (it counts for one coordinate, with regards to
N-1 coordinated for the regressor).

A straightforward extension of the method is then to give a different weight to the
quantization of the yt predictions by building the Yt vectors as follows:

[ ]121 +−−−= Nttttt y...yykyY . (8)

Increasing k means that the VQ is biased to give more importance to the prediction.
Parameter k may be determined in the same way as the number M of centroids in the
VQ: by optimization on a validation set.  Nevertheless, as the optimization is realized
in practice by scanning the range of parameters, a double optimization can be time-
consuming.  It is therefore suggested to optimize the two parameters consecutively,
possibly in an iterative way.  This way of optimizing the parameters does not guaran-
tee to find a global minimum for both of them, but is a reasonable compromise be-
tween the quality of the optimization and the computational load.

On the noisy Mackey-Glass series, starting with M=20 (the result found in the pre-
vious section for k=1), an optimization on k gives k=0.5.  This value is then used for
another optimization on M, which results in M=60 (see Fig. 4).  Further optimizations
do not improve the result anymore.

3.3   Quantization with Weighting of the Inputs

The VQ process (3) implements a particular nonlinear model as defined in equation
(4). Nevertheless, compared to other nonlinear models, such as MLP (Multi-Layer
Perceptrons), equation (3) has the drawback that all inputs (all coordinates of Yt vec-
tors (5) but yt) are weighted equally. This is evidently not optimal. A further step is
thus to weight also the inputs, building the Yt vectors as follows:
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Fig. 4. NMSE of the Mackey-Glass with additive noise series prediction with weighted VQ,
k=0.5.

[ ]112211 +−−−−= NtNtttt yk...ykykkyY . (9)

However, the optimization of all ki parameters is heavy.  A full search is often not
practicable, while a gradient descent (computed by finite differences on the validation
set results) may be very slow.  For this reason, we suggest the use of the weights
given by the following method.

3.4   Quantization with Weighting of the Inputs by a Linear Model

When building a linear model

112211 +−−−− +++= NtNttt ya...yayaŷ , (10)

the ai coefficients may be considered as the importance (weighting) that variable yt-i

plays on the output.  In other words, it is the first partial derivative of the output with
respect to a specific input. The ai coefficients can therefore be considered as a first-
order approximation of the ki coefficients needed in (9). Of course, the ai resulting
from a linear hypothesis, they will not be optimum in the sense defined in the previ-
ous section. Nevertheless, again, we are looking for a good compromise between an
impracticable full search and an inefficient a priori choice such as ki=1.  The coeffi-
cients given by linear model (10) appear to be efficient regarding this compromise.

A linear model with a four-dimensional regressor on our previous example, the
noisy Mackey-Glass series, gives roughly identical ai coefficients. As a consequence,
the use of these coefficients does not improve the previously presented results.  To
illustrate the weighting of the VQ by the coefficients of a linear model, we thus use
another well-known time series prediction benchmark, the SantaFe A series. Noise
with variance=80 has been added.  A part of this series is illustrated in Fig. 5. As for
the previous example, 5000 points have been used for learning and 5000 for valida-
tion.  The regressor size is 6.  Fig.6 shows the NMSE resulting from the weighting
with the coefficients of a linear model; the improvement is significant. The k weight-
ing of the output yt has been obtained with the method described in section 3.2.
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Fig. 5. SantaFe A series.
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Fig. 6. NMSE obtained on the prediction of the noisy Santa Fe A series with a VQ model;
dashed: without weighting of the inputs; plain: with weighting of the inputs by the coefficient
of a linear model.

4   Radial-Basis Function Networks (RBFN) with Weighted Inputs

Radial-Basis Function Networks (RBFN) are another class of nonlinear approxima-
tors, defined by:

2

2

1

i

it Cx
M

i
it eŷ σ

−
−

=
∑ λ= .

(11)

The coefficients of the model are the centers Ci (often resulting from vector quanti-
zation of the inputs), the standard deviations σi, and the multiplying factors λi.
Learning of RBFN models may be achieved in several ways; see for example [1]. In
our time series prediction problem, the vector inputs xt are replaced by the regressors.

RBFN are not so different from VQ methods.  In both cases, the underlying princi-
ple is to divide the space spanned by the inputs into Voronoi regions. Next, there are
two differences between VQ and RBFN.
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1. VQ applies a specific and exclusive model in each of the M Voronoi regions, while
the models around each centroid in the RBFN equation (the Gaussian functions in
(11)) are overlapping between adjacent Voronoi zones.

2. The region-specific model in VQ is a constant equal to the first coordinate of the
centroid (see equations (3) and (5)), while the equivalent in RBFN is a Gaussian
functions with σi and λi parameters.
With regard to these two comments, RBFN can be viewed as a generalization of

VQ models, with smoother approximation capabilities.
Weighting the output in a RBFN model has no sense, as appropriate output weights

are computed through the optimization of λI, which is a standard procedure in RBFN
learning. However, RBFN suffer from the same drawback as VQ what concerns the a
priori identical weighting given to all inputs.  In the RBFN context, this is illustrated
by the use of a scalar σi standard deviation, instead of a variance/covariance matrix.

The principle of weighting the inputs, presented in the context of VQ, may how-
ever be applied to RBFN [6]. Fig. 7 shows the results of a RBFN model trained on the
noisy SantaFe A series; inputs have been weighted according to the coefficients of a
linear model.  The training of the RBFN model has been realized according to [1].
Again, the improvement due to weighting is clear.
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Fig. 7. NMSE obtained on the prediction of the noisy Santa Fe A series with a RBFN model;
dashed: without weighting of the inputs; plain: with weighting of the inputs by the coefficient
of a linear model.

5   Conclusion

This paper presents a nonlinear time series prediction method based on the quantiza-
tion of vectors with missing data. These vectors concatenate inputs (regressors) and
outputs (predictions). Estimating missing values is here used to predict the outputs.

The method presented in this paper is not restricted to times series prediction, and
may be applied to regression problems.

Weighting the regressor values and/or the predictions is proposed to improve the
quality of the estimation. The same weighting scheme is used to give adequate im-
portance to the inputs of a RBFN model.

The method is illustrated on standard time series prediction benchmarks; the results
show clear improvements, decreasing the prediction error on validation sets.
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