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Abstract—In this brief, the optimally pruned extreme learning machine
(OP-ELM) methodology is presented. It is based on the original extreme
learning machine (ELM) algorithm with additional steps to make it more
robust and generic. The whole methodology is presented in detail and then
applied to several regression and classification problems. Results for both
computational time and accuracy (mean square error) are compared to the
original ELM and to three other widely used methodologies: multilayer
perceptron (MLP), support vector machine (SVM), and Gaussian process
(GP). As the experiments for both regression and classification illustrate,
the proposed OP-ELM methodology performs several orders of magnitude
faster than the other algorithms used in this brief, except the original ELM.
Despite the simplicity and fast performance, the OP-ELM is still able to
maintain an accuracy that is comparable to the performance of the SVM.
A toolbox for the OP-ELM is publicly available online.

Index Terms—Classification, extreme learning machine (ELM), least
angle regression (LARS), optimally pruned extreme learning machine
(OP-ELM), regression, variable selection.

I. INTRODUCTION

Since the data can be collected automatically from various and nu-
merous sources, the global amount of information tends to grow rapidly
in many fields of science. Although these data most likely improve the
precision and details about the considered phenomena, they are also
raising many new challenges. Storing of large data sets can get diffi-
cult, while actual processing of it can only be automated and by using
very fast algorithms. “Manual” analysis is clearly impossible and the
computational complexity of the used methodologies have to be kept
as low as possible to be able to process even more data.

Among the most famous algorithms used for data processing
through machine learning techniques lie feedforward neural networks
[1]. While multilayer feedforward neural networks have been proven
to be universal approximators [2], they tend not to be widely used
when processing important data sets. Hence, linear models are often
preferred for industrial applications, because they are much faster to
build compared to the computational complexity required for a neural
network, or most nonlinear models in general.
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The slow building of these neural networks comes from a few facts
that remain inherent to the various existing training algorithms. Usu-
ally many parameters are required for a proper selection of the model
structure and afterwards, the training. Moreover, these parameters are
selected and tuned via slow algorithms and the whole model structure
and training has to be repeated many times to make sure the model is
fitting the data sufficiently well.

Recently, in [3], Huang et al. proposed an original algorithm called
extreme learning machine (ELM). This method makes the selection of
the weights of the hidden neurons very fast in the case of single-layer
feedforward neural network (SLFN). Hence, the overall computational
time for model structure selection and actual training of the model is
often reduced even by hundreds, compared to some classical methods
[2], [4]-[6]. Furthermore, the algorithm remains rather simple, which
makes its implementation easy.

It is believed though that the ELM algorithm can have some is-
sues when encountering irrelevant or correlated data. For this reason, a
methodology named optimally pruned extreme learning machine (OP-
ELM), based on the original ELM algorithm, is proposed in this brief.
The OP-ELM extends the original ELM algorithm and wraps this ex-
tended algorithm within a methodology using a pruning of the neurons,
leading to a more robust overall algorithm. Pruning of neurons in a net-
work built using ELM has been proposed recently by Rong ef al. in
[7], for classification purposes, and using statistical tests as a measure
of relevance of the neurons regarding the output. The OP-ELM pre-
sented here applies to both classification and regression problems and
uses a leave-one-out (LOO) criterion for the selection of an appropriate
number of neurons.

In the next section, the actual OP-ELM and the whole wrapping
methodology are presented, along with the original ELM. Section III
presents the data sets used for the experiments as well as results con-
cerning computational speed and accuracy for the OP-ELM, ELM,
multilayer perceptron network (MLP), Gaussian process (GP), and sup-
port vector machines (SVMs).

II. THE METHODOLOGY

The OP-ELM methodology is based on the original ELM algorithm
from which it borrows the original SLFN construction. In the fol-
lowing, the main concepts and theory of the ELM algorithm are shortly
reviewed, with an example on the possible problems encountered by
the ELM on data sets with irrelevant variables.

The OP-ELM algorithm is introduced as a more robust methodology
regarding irrelevant variables situation. The steps of the algorithm are
detailed and the network pruning algorithm, multiresponse sparse re-
gression (MRSR), is described, along with the validation method LOO.

There is a Matlab toolbox available online for performing the
OP-ELM methodology [8], along with a detailed user’s manual.! A
version of the toolbox translated to C language is coming soon.

A. ELM and OP-ELM

1) Extreme Learning Machine: The ELM algorithm was originally
proposed by Huang et al. in [3] and it makes use of the SLFN. The main
concept behind the ELM lies in the random initialization of the SLFN
weights and biases. Then, using Theorem 1 and under the conditions
of the theorem, the input weights and biases do not need to be adjusted

! Available at: http://www.cis.hut.fi/projects/tsp/index.php?page=OPELM
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and it is possible to calculate implicitly the hidden-layer output matrix
and hence the output weights. The network is obtained with very few
steps and very low computational cost.

Consider a set of M distinct samples (x;,y;) with x; € R% and
y: € HdQ; then, an SLFN with /V hidden neurons is modeled as the
following sum:

N
D Bif(wixj +bi),

=1

1<j<M )]

with f being the activation function, w; the input weights, b; the biases,
and 3, the output weights.

In the case where the SLFN perfectly approximates the data, the
errors between the estimated outputs ¥; and the actual outputs y; are
zero and the relation is

AF
S Bif(wixj+b)=y;, 1<j<M @)

=1
which writes compactly as HB = Y, with

f(wixy +b1) fwnxi +by)
H= z z @
Fwixar +b1) Fwnxa +bn)

and B = (3] - 80)" and Y = (y{ ---yin)".

With these notations, Theorem 1 is proposed in [3], which is the
pillar of the ELM idea. The theorem states that with randomly ini-
tialized input weights and biases for the SLFN, and under the con-
dition that the activation function is infinitely differentiable, then the
hidden-layer output matrix can be determined and will provide an ap-
proximation of the target values as good as wished (nonzero).

Theorem 1: Given any ¢ > 0 and an activation function f : R — R
infinitely differentiable in any interval, there exists n < A such that for
M distinct samples (x;,y:), x; € R™, y; € R™2, for any w; € R™
and b; € R, |H{asrxn)Binxds) — Yimrxasll < e.

The way to calculate the output weights 3 from the knowledge of the
hidden-layer output matrix H and target values is proposed with the use
of a Moore—Penrose generalized inverse of the matrix H, denoted as
H [9]. Overall, the ELM algorithm is summarized as follows.

Algorithm 1: ELM

Given a training set (X;,y;), X; € R%, y; € R?2, an activation
function f : R — R, and the number of hidden nodes N:

1: Randomly assign input weights w; and biases b;, 1 < i < N;
2: Calculate the hidden-layer output matrix H;

3: Calculate output weights matrix 5 = H'Y.

The proposed solution to the equation H3 = Y in the ELM algo-
rithm, as 3 = HY has three main properties making it an appealing
solution.

1) It is one of the least squares solutions of the mentioned equation,
hence the minimum training error can be reached with this solu-
tion.

2) It is the solution with the smallest norm among the least squares
solutions.

3) The smallest norm solution among the least squares solutions is
unique and itis 8 = HYY.
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Sum of Two Sines

Fig. 1. Example of a training result using ELM, on a sum of two sines. Dots
represent the ELM model fitting the data points (crosses).

Sum of Two Sines

Fig. 2. Example using the same sum of sine as in Fig. 1 and an additional noisy
variable (not represented here) for training. The obtained ELM model is much
more spread and approximate, due to the irrelevant variable included.

Theoretical proofs and a more thorough presentation of the ELM
algorithm are detailed in the original paper [3]. In Huang et al.’s later
work, it has been proved that the ELM is able to perform universal
function approximation [10].

2) The Problem of ELM With Irrelevant Variables: As already men-
tioned, the ELM models tend to have problems when irrelevant or cor-
related variables are present in the training data set. As an illustration
of this, a toy example with two cases, without and with an irrelevant
variable, are tested and compared.

Fig. 1 shows the ELM model obtained by training on the sum of sines
example. In this case, the ELM model fits very well to the training data,
with no apparent perturbation or distortion.

In Fig. 2, an additional variable containing a pure Gaussian noise,
totally unrelated to the actual data, is also used as an input. The addi-
tional noise variable is not shown in the figure. The ELM model on top
of the data is much more spread and approximate than in the previous
case. Overall, the global fitting of the ELM model to the actual data is
not as good as before.

For this reason, it is proposed in the OP-ELM methodology, to per-
form a pruning of the irrelevant variables, via pruning of the related
neurons of the SLEN built by the ELM.

3) Optimally Pruned ELM: The OP-ELM is made of three main
steps summarized in Fig. 3.

The very first step of the OP-ELM methodology is the actual con-
struction of the SLFN using the original ELM algorithm with a lot of
neurons.

Second and third steps are presented in more details in Sections II-A4
and II-AS5 and are meant for an effective pruning of the possibly un-
useful neurons of the SLFN: MRSR algorithm enables to obtain a
ranking of the neurons according to their usefulness, while the actual
pruning is performed using the results of the LOO validation.

The OP-ELM algorithm uses a combination of three different types
of kernels, for robustness and more generality, where the original ELM
proposed to use only sigmoid kernels. The used types are linear, sig-
moid, and Gaussian kernels. Having the linear kernels included in the
network helps when the problem is linear or nearly linear.

The Gaussian kernels have their centers taken randomly from the
data points, similarly as in [11], and widths randomly drawn between
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MLP construction
using Extreme Learning

Data —>

Ranking of the best
neurons using MRSR

Selection of the optimal

—> | number of neurons by LOO LD Model

Fig. 3. Three steps of the OP-ELM algorithm.

percentile 20% and percentile 80% of the distance distribution of the
input space, as suggested in [12].

The sigmoid weights are drawn randomly from a uniform distribu-
tion in the interval [—5, 5] in order to cover the whole zero mean and
unit variance data range.

The OP-ELM methodology can also handle multiple-output—mul-
tiple-class problems in both regression and classification using multiple
inputs.

4) Multiresponse Sparse Regression: In order to get rid of the un-
useful neurons of the hidden layer, the MRSR, proposed by Simild and
Tikka [13], is used.

The main idea of the algorithm is as follows. Denote by
X = [xi...Xm] the n X m regressor matrix. MRSR adds each
column of the regressor matrix one by one to the model YF = XW*F,
where Y* = [§% ... ¥+] is the target approximation of the model. The
W* weight matrix has k nonzero rows at kth step of the MRSR. With
each new step, a new nonzero row and a new column of the regressor
matrix are added to the model.

More specific details of the MRSR algorithm can be found from the
original paper [13].

It can be noted that the MRSR is mainly an extension of the least
angle regression (LARS) algorithm [14] and hence, it is actually a vari-
able ranking technique, rather than a selection one. An important de-
tail shared by the MRSR and the LARS is that the ranking obtained is
exact, if the problem is linear. In fact, this is the case with the OP-ELM,
since the neural network built in the previous step is linear between the
hidden layer and the output. Therefore, the MRSR provides an exact
ranking of the neurons for our problem. Because of the exact ranking
provided by the MRSR, it is used to rank the kernels of the model. The
target is the actual output y;, while the “variables” considered by the
MRSR are the outputs of the kernels h; = Ker(x! ), the columns of
H.

5) Leave-One-Out: Since the MRSR only provides a ranking of
the kernels, the decision over the actual best number of neurons for the
model is taken using an LOO validation method.

One problem with the LOO error is that it can be very time con-
suming, if the data set has a high number of samples. Fortunately, the
PREdiction Sum of Squares (PRESS) statistics provide a direct and
exact formula for the calculation of the LOO error for linear models
(see [15] and [16] for details of this formula and its implementations)

preEss _ ¥i —h;b;
- T 1-h,Ph’ “®
where P is defined as P =
output matrix.

The final decision over the appropriate number of neurons for the
model can then be taken by evaluating the LOO error versus the number
of neurons used. Here, the neurons are already ranked by the MRSR.

In order to give an overview of the usefulness of the ranking step
performed by the MRSR algorithm, the final model structure selection
for the OP-ELM model using the Ailerons data set (see Section III) is
shown in Fig. 4.

It can be seen from Fig. 4 that the OP-ELM benefits greatly from
the MRSR ranking step. The convergence is faster, because the LOO
error gets to the minimum faster when the MRSR is used than when
it is not. Also, the number of neurons is far fewer in the LOO error

(HTH) ! and H is the hidden-layer

x107®

LOOQO Error
A OO N 0 ©

L L T T

20 40 60 80 100 120 140
Number of Neurons

Fig. 4. Comparison of LOO error with and without the MRSR ranking. The
solid line represents the LOO error without and the dashed line with the MRSR
ranking.

TABLE I
INFORMATION ABOUT THE SELECTED DATA SETS. NUMBER OF VARIABLES
AND NUMBER OF SAMPLES FOR BOTH TRAINING AND TESTING, TWO
THIRDS OF THE WHOLE SET FOR TRAINING AND ONE THIRD
FOR TEST. FOR CLASSIFICATION PROBLEMS, THE VARIABLES
COLUMN ALSO INCLUDES THE NUMBER OF
CLASSES IN THE DATA SET

Samples

Regression # of Variables | Train  Test
Abalone 8 2784 1393
Ailerons 5 4752 2377
Elevators 6 6344 3173
Computer 12 5461 2731
Auto price 15 106 53
CPU 6 139 70
Servo 4 111 56
Breast Cancer 32 129 65
Bank 8 2999 1500
Stocks 9 633 317
Boston 13 337 169
Classification

Iris 4/3 100 50
Wisconsin Breast Cancer 30/2 379 190
Pima Indians Diabetes 8/2 512 256
Wine 13/3 118 60

minimum point when using the MRSR ranking, thus leading to more
sparse network with the same performance.

In the end, an SLFN possibly using a mix of linear, sigmoid, and
Gaussian kernels is obtained, with a highly reduced number of neurons,
all within a small computational time.

III. EXPERIMENTS

In the following, five methodologies are compared using several re-
gression and classification tasks. The compared methods are GP, SVM,
MLP, the original ELM, and the proposed OP-ELM.

A. Data Sets

Fifteen different data sets have been chosen for the experiments, 11
for regression and four for classification problems. The data sets are
collected from the University of California at Irvine (UCI) Machine
Learning Repository [17] and they have been chosen by the overall
heterogeneity in terms of number of samples, variables, and classes for
classification problems.

Table I summarizes the different attributes for the 15 data sets. All
data sets have been preprocessed in the same way. Ten different random
permutations of the whole data set are taken without replacement, and
two thirds are used to create the training set and the remaining third is
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TABLE II
COMPUTATIONAL TIMES (IN SECONDS) FOR ALL FIVE METHODOLOGIES ON THE REGRESSION DATA SETS. ALGORITHMS HAVE BEEN SORTED BY COMPUTATIONAL
TIME. “AUTO P.” STANDS FOR AUTO PRICE DATA SET AND “BREAST C.” FOR BREAST CANCER DATA SET

|| Abalone | Ailerons | Elevators | Computer | Auto P. | CPU | Servo | Breast C. | Bank | Stocks | Boston
SVM 6.6e+4 4.2e+2 5.8e+2 3.2¢+5 2.6et2 | 3.2e+2 | 1.3e+2 3.2et2 1.6e+3 | 2.3e+3 | 8.5¢+2
MLP 2.1e+3 3.5e+3 3.5¢+3 8.2¢+3 7.3et+2 | 5.8¢+2 | 5.2e+2 8.0et2 2.7e+3 | 1.2e+3 | 8.2e+2
GP 9.5e+2 2.9e+3 6.5e+3 6.3e+3 2.9 32 2.2 8.8 1.7e+3 | 4.letl 8.5
OPELM 5.7 16.8 29.8 26.2 2.7e-1 2.0e-1 2.1e-1 4.2e-1 8.03 1.54 7.0e-1
ELM 4.0e-1 9.0e-1 1.6 1.2 3.8e-2 4.2e-2 3.9¢e-2 4.8¢e-2 4.7e-1 1.le-1 7.4e-2
used for the test set. Then, the training set is normalized, zero mean, and TABLE III

unit variance, and the test set is also normalized using the same mean
and variance used for the training set. Because the test set is normalized
using the same normalization parameters as for the training, it is most
likely not exactly zero mean and unit variance.

It should also be noted that the proportions of the classes, for the
classifications cases, have been kept balanced: each class is represented
in an equal proportion, in both training and test sets. This is important
in order to have relevant test results.

B. Experiments

Experiments have been conducted using the online versions of the
methodologies, unaltered. All experiments have been run on the same
x86_64 Linux machine with at least 4 GB of memory (no swapping
for any of the experiments) and 2+ GHz processor. It should be noted
that even though some methodologies are using parallelization of the
tasks, the computational times are reported considering single-threaded
execution on one single core, for the sake of comparisons.

The hyperparameters for the SVM and the MLP are selected using a
tenfold cross validation.

The SVM is performed using the SVM toolbox [6] with the default
settings for the hyperparameters and the grid search: the grid is log-
arithmic between 272 and 2'° for each hyperparameter; nu-SVC has
been used for classification and epsilon-SVR for regression, with radial
basis function kernel. The original grid search has been replaced by a
parallelization process, which distributes parts of the grid over different
machines.

The MLP [4] is performed using a neural network toolbox, which is
part of the Matlab© software from the MathWorks, Inc. (Natick, MA).
The training of the MLP is performed using the Levenberg—Marquardt
backpropagation.

In order to decrease the possibility of local minima with the MLP,
the training is repeated ten times for each fold and the best network
according to the training error is selected for validation. For example,
in order to validate the MLP network using 12 hidden neurons, we
have to train a total of 100 MLP networks with 12 hidden neurons to
evaluate the validation error. This procedure is done for each number
of hidden nodes from 1 to 20 and the appropriate number according to
the validation MSE is selected.

The GP is performed using a GPML toolbox for Matlab from Ras-
mussen and Williams [5]. The GP is performed using the default set-
tings taken from the examples of usage of the toolbox.

Finally, the OP-ELM was used with all possible kernels, linear, sig-
moid, and Gaussian, using a maximum number of 100 neurons.

1) Computational Times: Computational times are first reviewed
for all five methodologies. Tables II and III give the computational
times for training and test steps (sum of both), for each methodology.
It can be noted that for all five methodologies, the computational times
for the test steps are negligible compared to the training times; this is
especially clear for large training times, like the SVM or MLP ones.

According to Tables II and III, the ELM is the fastest algorithm by
several orders of magnitude compared, for example, to the SVM. This
is in line with the claims of the ELM authors. The proposed OP-ELM
is between one and three orders of magnitude slower than the original

COMPUTATIONAL TIMES (IN SECONDS) COMPARED FOR ALL FIVE
METHODOLOGIES FOR CLASSIFICATION DATA SETS. “Wisc. B.C.”
FOR WISCONSIN BREAST CANCER DATA SET AND “PIMA 1.D.”
FOR PIMA INDIANS DIABETES DATA SET

|| Iris | Wisc. B.C. | Pima LD. | Wine
SVM 2.3e+2 2.9¢+3 3.3e+3 3.8e+2
MLP 7.6e+2 1.7e+3 4.1et2 1.2e+3
GP 7.6e-1 6.1 5.8 1.9
OPELM 7.4e-2 1.1 9.6e-1 4.4e-1
ELM 2.4e-2 4.3e-2 4.8e-2 2.7e-2

ELM, but still much faster than the rest of the compared methods in all
data sets.

However, the ranking of the SVM, MLP, and GP regarding the com-
putational times is not exactly the same in all data sets, but in every
case they are clearly slower than the ELM and OP-ELM.

The main reason why the OP-ELM has been designed in the first
place is to add more robustness to the very simple and fast ELM
algorithm. Experimental results for this robustness are presented in
Section III-B2 through test results.

2) Test Errors: Because the validation results, while providing a
good measure of the model fit to the data, do not measure the actual
interpolation properties of the model, only the test results for the five
models are presented in Tables IV and V.

According to the test results, the SVM is very reliable on average.
Meanwhile, as mentioned earlier, the ELM can have good results with
respect to its computational speed, but also it can have very high mean
square errors (MSEs) on some test sets, for example, in Auto price and
central processing unit (CPU) data sets.

In this regard, the OP-ELM manages to keep a good MSE, when
comparing to other algorithms, and even rather close to the perfor-
mance of the SVM (and of the GP) on many data sets used in the experi-
ments. This comforts the earlier claims that the OP-ELM keeps a part of
the speed of the ELM and, therefore, is much faster than most common
algorithms, while remaining robust and accurate and providing good
interpolation models.

Finally, in order to give an overview of the pruning result for the
OP-ELM, Table VI lists the selected neurons for two data sets, one for
regression and one for classification, namely, Ailerons and Iris.

One can see that the total number of kept neurons is fairly stable,
and so is the number of linear neurons. It is interesting to note that the
amount of neurons for each type is more stable for classification data
sets than for regression one. On average, the situation depicted here is
globally similar for other data sets.

Whether the stability of the number of neurons is a consequence of
the size of the data set or the type of the problem, warrants further
investigation.

IV. CONCLUSION

In this brief, the OP-ELM methodology has been detailed through
the presentation of the three steps: the plain original ELM as the first
step to build the SLFN, followed by a ranking of the neurons by the
MRSR algorithm, and finally, the selection of the neurons that will re-
main in the final model through LOO validation.
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TABLE IV
MEAN SQUARE ERROR RESULTS IN BOLDFACE (AND STANDARD DEVIATIONS IN REGULAR) FOR ALL FIVE METHODOLOGIES FOR THE REGRESSION DATA SETS.
“AUTO P.” STANDS FOR AUTO PRICE DATA SET AND “BREAST C.” FOR BREAST CANCER DATA SET

|| Abalone | Ailerons | Elevators | Computer | Auto P. | CPU | Servo | Breast C. | Bank | Stocks | Boston
SVM 4.5 1.3e-7 6.2e-6 1.2e+2 2.8¢+7 | 6.5e+3 | 6.9¢-1 1.2¢+3 2.7e-2 | S.de-1 | 3.detl
2.7e-1 2.6e-8 6.8¢-7 8.1et+l 8.4e+7 | 5.1et3 | 3.3e-1 7.2e-1 8.0e-4 | 9.0e-2 | 3.le+l
OPELM 4.9 2.8e-7 2.0e-6 3.1e+1 9.5¢+7 | 5.3e+3 | 8.0e-1 1.4e+3 1.1e-3 | 9.8¢-1 | 1.9e+1
6.6¢e-1 1.5e-9 5.4e-8 7.4 4.0e+6 | 5.2e+3 | 3.3e-1 3.6e+2 1.0e-6 | 1.le-1 2.9
ELM 8.3 3.3e-8 2.2e-6 4.9e+2 7.9e+9 | 4.7e+4 7.1 7.7e+3 6.7¢e-3 | 3.4e+l | 1.2e+2
7.5e-1 2.5e-9 7.0e-8 6.2e+1 7.2e+9 | 2.5et+4 55 2.0e+3 Te-4 9.35 2.1e+1
GP 4.5 2.7e-8 2.0e-6 7.7 2.0e+7 | 6.7e+3 | 4.8e-1 1.3e+3 8.7e-4 | 4.de-1 | 1.1e+l
2.4e-1 1.9¢-9 5.0e-8 2.9e-1 1.0e+7 | 6.6e+3 | 3.5e-1 1.9e+2 5.1e-5 | 5.0e-2 3.5
MLP 4.6 2.7e-7 2.6e-6 9.8 2.2¢+7 | l.detd | 2.2e-1 1.5¢+3 9.1e-4 | 8.8¢-1 | 2.2e+1
5.8e-1 4.4e-9 9.0e-8 1.1 9.8¢+6 | 1.8e+4 | 8.1e-2 4.4e+2 4.2e-5 | 2.1e-1 8.8
TABLE V REFERENCES

CORRECT CLASSIFICATION RATES IN BOLDFACE (AND STANDARD DEVIATIONS
IN REGULAR) FOR ALL FIVE METHODOLOGIES FOR CLASSIFICATION DATA
SETS. “WIsC. B.C.” FOR WISCONSIN BREAST CANCER DATA SET
AND “PIMA L.D.” FOR PIMA INDIANS DIABETES DATA SET

|| Iris | Wisconsin B.C. | Pima LLD. | Wine

SVM 95.4 91.6 72.7 95.83
1.9 1.7 1.5 2.9

OPELM 95.0 95.6 74.9 90.7
2.1 1.3 2.4 4.9

ELM 72.2 95.6 72.2 81.8
1.01 1.2 1.9 6.2

GP 95.6 97.3 76.3 96.1
2.3 0.9 1.8 2.1

MLP 94.8 95.6 75.2 96.0
3.8 1.9 1.9 2.4

TABLE VI

DETAILS OF NUMBERS OF SELECTED NEURONS IN OP-ELM FOR THE DELTA
AILERONS AND IRIS DATA SETS. “L” STANDS FOR LINEAR NEURONS,
“S” FOR SIGMOID ONES, AND “G” FOR GAUSSIAN ONES

Ailerons Iris
Run # | L S G | Total L S G | Total
1 515025 80 2116 | 6 24
2 5|50 | 30 85 3 17 | 4 24
3 5149 |21 75 2116 | 6 24
4 5150 | 45 100 2 8 4 14
5 5 | 50 | 40 95 2113 | 4 19
6 4 |43 | 13 60 2 4 3 9
7 S| 48 | 17 70 2 7 5 14
8 4136 | 10 50 2 5 2 9
9 5|50 | 45 100 2110 | 2 14
10 3127 5 35 211314 19

By the use of these steps, the speed and accuracy of the OP-ELM
methodology has been demonstrated, through experiments using 12
different data sets for both regression and classification problems, all
very different in terms of number of samples, variables, and outputs.
The OP-ELM achieves roughly the same level of accuracy than the
other well-known methods such as SVM, MLP, or GP. Even though the
original ELM is much faster than the OP-ELM based on it, the accu-
racy of the ELM can be problematic in many cases, while the OP-ELM
remains robust to all tested data sets.

The main goal in this brief was not to show that the OP-ELM is
either the best in terms of MSE or the computational time. The main
goal is to prove that it is a very good compromise between the speed of
the ELM and the accuracy and robustness of much slower and compli-
cated methods. Indeed, very accurate results, close to the SVM accu-
racy, can be obtained in a very small computational time. This makes
the OP-ELM a valuable tool for the applications in need for a small
response time with a good accuracy.

[1] S.Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 1998.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward

networks are universal approximators,” Neural Netw., vol. 2, no. 5, pp.

359-366, 1989.

[3] G.B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp.
489-501, Dec. 2006.

[4] C. M. Bishop, Neural Networks for Pattern Recognition.
U.K.: Oxford Univ. Press, 1995.

[5] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-
chine Learning. Cambridge, MA: MIT Press, 2006.

[6] C. C. Chang and C. J. Lin, LIBSVM: A Library for Support Vector
Machines, 2001 [Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/
libsvm

[7] H. jun Rong, Y.-S. Ong, A.-W. Tan, and Z. Zhu, “A fast pruned-ex-
treme learning machine for classification problem,” Neurocomputing,
vol. 72, no. 1-3, pp. 359-366, 2008.

[8] A. Lendasse, A. Sorjamaa, and Y. Miche, OP-ELM Toolbox,

2008 [Online]. Available: http://www.cis.hut.fi/projects/tsp/index.

php?page=OPELM

C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its

Applications. New York: Wiley, 1972.

[10] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation
using incremental constructive feedforward networks with random
hidden nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892,
Jul. 2006.

[11] T.Poggio and F. Girosi, A Theory of Networks for Approximation and
Learning. Cambridge, MA: MIT Press, 1989, vol. 1140.

[12] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond (Adaptive Com-
putation and Machine Learning). Cambridge, MA: MIT Press, Dec.
2001, 0262194759.

[13] T. Simild and J. Tikka, “Multiresponse sparse regression with appli-
cation to multidimensional scaling,” in Proc. Int. Conf. Artif. Neural
Netw., 2005, vol. 3697/2005, pp. 97-102.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-
gression,” Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004.

[15] R. Myers, Classical and Modern Regression With Applications, 2nd
ed. Pacific Grove, CA: Duxbury, 1990.

[16] G. Bontempi, M. Birattari, and H. Bersini, “Recursive lazy learning
for modeling and control,” in Proc. Eur. Conf. Mach. Learn., 1998, pp.
292-303.

[17] A. Asuncion and D. Newman, UCI Machine Learning Reposi-
tory, Univ. California Irvine, Irvine, CA, 2007 [Online]. Available:
http://archive.ics.uci.edu/ml/

[2

—

Oxford,

[9

—

Authorized licensed use limited to: Teknillinen Korkeakoulu. Downloaded on January 12, 2010 at 07:05 from IEEE Xplore. Restrictions apply.



