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This paper presents a methodology named Optimally Pruned K-Nearest Neighbors (OP-KNNs) which has the advantage of
competing with state-of-the-art methods while remaining fast. It builds a one hidden-layer feedforward neural network using
K-Nearest Neighbors as kernels to perform regression. Multiresponse Sparse Regression (MRSR) is used in order to rank each
kth nearest neighbor and finally Leave-One-Out estimation is used to select the optimal number of neighbors and to estimate the
generalization performances. Since computational time of this method is small, this paper presents a strategy using OP-KNN to
perform Variable Selection which is tested successfully on eight real-life data sets from different application fields. In summary, the
most significant characteristic of this method is that it provides good performance and a comparatively simple model at extremely
high-learning speed.

1. Introduction

In many application fields, the regression problem is widely
been paid attention to, in order to predict a dependent
variable (target) from a number of independent variables
(observations), or to model numerical data consisting of
values of variables (input) and of one or more variable
(output). However, there are two main difficulties facing
regression problems: accuracy and computational time.

In the recent years, many different techniques have been
investigated to solve the regression problems. Support Vector
Machines (SVMs) are one of the most popular ones among
these techniques, initially developed for classification tasks
and lately has been extended to the domain of regression [1].
Briefly, SVM is a universal constructive learning procedure
based on statistical learning theory. Its basic idea is to
transform the signal into a higher-dimensional feature
space and find the optimal hyperplane for classification
and regression problems. Different from Multiple Layer
Perception (MLP), the nonlinear classification and model
regression are solved using convex optimization leading
to a unique solution, which avoids the problem of local
minima of MLP [2]. Least Squares Support Vector Machines
(LS-SVMs) are reformulations of standard SVM [3]. In

LS-SVM, the complexity of solving quadratic programs
in SVM is deduced to solving linear Karush-Kuhu-Tucker
(KKT) conditions. Only linear equations need to be solved
which makes the approach much simpler. As a consequence,
LS-SVM loses the property of sparseness in SVM.

However, there are some limitations of SVM that weaken
its performance: the hyperparameters of the kernel have to
be chosen; the training speed is slow, especially when the
number of variables is large. Even from a practical point of
view perhaps the most serious problem with SVM is the high
algorithmic complexity and extensive memory requirements
of the required quadratic programming in large-scale tasks.
Thus, another group of methods like K-nearest neighbors
(KNNs) or Lazy Learning (LL) [4] is taken into account. The
key idea behind KNN is that similar training samples have
similar output values and it keeps avoiding the local minima
problem as SVM, but performs more simple and fast.

On the other hand, Variable Selection has several
important advantages when the number of input variables
increases. It helps to decrease the redundancy of the original
data. It can also reduce the complexity of the modeling
process. Moreover, it contributes to the interpretability of the
input variables.
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Figure 1: The three steps of the OP-KNN algorithm.

Thus, in this paper, we present a methodology: Optimally
Pruned K-Nearest Neighbors (OP-KNNs) which builds a
single-hidden layer feedforward neural networks (SLFNs)
using KNN as the kernel. The most significant characteristic
of this method is that it tends to provide good generalization
performance at a fast computing speed and select the most
important variables at the same time.

In the next section, the three steps of OP-KNN are
introduced. And the strategy we used to solve regression
problem using OP-KNN is showed in Section 3. Section 4
gives the results for a toy example and nine real-life datas
using OP-KNN and four other methods, and the last section
summarizes the whole methodology.

2. Optimal Pruned K-Nearest Neighbors

In this section, a methodology called Optimally Pruned K-
Nearest Neighbors (OP-KNNs) is presented. The three main
steps of the OP-KNN are summarized in Figure 1.

2.1. Single-Hidden Layer Feedforward Neural Networks
(SLFNs). Recently, Huang et al. in [5] proposed an original
algorithm called Extreme Learning Machine (ELM). This
method makes the selection of the weights of the hidden
neurons very fast in the case of single-layer feedforward
neural network (SLFN). A more thorough presentation of
the ELM algorithm can be found in the original paper [6,
7]. Furthermore, a methodology named Optimally Pruned
Extreme Learning Machine (OP-ELM) [8], based on the
original ELM algorithm, is proved to be more efficient when
encountering irrelevant or correlated data.

The first step of the OP-KNN algorithm is building a
single-layer feedforward neural network. This is similar to
the core of Extreme Learning Machine (ELM). The difference
is that OP-KNN is deterministic, rather than randomly
choosing hidden nodes like in ELM and OP-ELM.

In the context of a single-hidden layer perceptron
network, let us denote the inputs by x, outputs by y, and
the weight vectors between the hidden layer and the output
by b. Activation functions used with the OP-KNN differ
from the original SLFN choice since the original sigmoid
activation functions of the neurons are replaced by the K-
Nearest Neighbors, hence it named OP-KNN. For the output
layer, the activation function remains as a linear function,

meaning that the relationship between hidden layer and
output layer is linear.

A theorem proposed in [5] states that the output weights
b can be computed from the real output and the hidden
layer output matrix H, where the columns hi of H are the
corresponding output of the K-nearest neighbors. Finally, the
output weights b are computed by b = H†y, where H† stands
for the Moore-Penrose inverse [9] and y = (y1, . . . , yM)T is
the output.

The only remaining parameter in this process is the initial
number of neurons N of the hidden layer.

2.2. K-Nearest Neighbors. The K-Nearest Neighbors (KNNs)
model is a very simple, but powerful tool. It has been used in
many different applications and particularly in classification
tasks. The key idea behind the KNN is that similar training
samples have similar output values for regression problems
[10]. In OP-KNN, the approximation of the output is the
weighted sum of the outputs of the k-nearest neighbors. The
model introduced in the previous section becomes

ŷi =
k∑

j=1

bj yP(i, j), (1)

where ŷi represents the output estimation, P(i, j) is the
index number of the jth nearest neighbor of sample xi,
and b represents the results of the Moore-Penrose inverse
introduced in the previous section.

In this sense, for each different neuron, different nearest
neighbors are used, in other words, the only remaining
hyperparameter that has to be chosen is the neighborhood
size K . Besides choosing K , there is no other hyperparameter
in method KNN, as well as in OP-KNN.

2.3. Multiresponse Sparse Regression (MRSR). For the
removal of the useless neurons of the hidden layer, the
Multiresponse Sparse Regression proposed by Similä and
Tikka in [11] is used. It is an extension of the Least Angle
Regression (LARS) algorithm [12] and hence it is actually a
variable ranking technique, rather than a selection one. The
main idea of this algorithm is the following: denote by T =
[t1 · · · tp] the n× p matrix of targets, and by X = [x1 · · · xm]
the n ×m regressors matrix. MRSR adds each regressor one
by one to the model Yk = XWk, where Yk = [yk

1 . . . yk
p] is the

target approximation by the model. The Wk weight matrix
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has k nonzero rows at kth step of the MRSR. With each new
step a new nonzero row, and a new regressor to the total
model, is added.

An important detail shared by the MRSR and the LARS is
that the ranking obtained is exact in the case where the prob-
lem is linear. In fact, this is the case, since the neural network
built in the previous step is linear between the hidden layer
and the output layer. Therefore, the MRSR provides the exact
ranking of the neurons for the problem [12].

Details on the definition of a cumulative correlation
between the considered regressor and the current model’s
residuals and on the determination of the next regressor to
be added to the model can be found in the original paper
about the MRSR [11].

MRSR is hence used to rank the kernels of the model: the
target is the actual output yi while the “variables” considered
by MRSR are the outputs of the k-nearest neighbors.

2.4. Leave-One-Out (LOO) Method. Since the MRSR only
provides a ranking of the kernels, the decision over the actual
best number of neurons for the model is taken using a
Leave-One-Out method. One problem with the LOO error
is that it can get very time consuming if the dataset tends
to have a high number of samples. Fortunately, the (or
PREdiction Sum of Squares) PRESSs statistics provides a
direct and exact formula for the calculation of the LOO error
for linear models. See [4, 13] for details on this formula and
implementations:

εPRESS = yi − hib
1− hiPhT

i
, (2)

where P is defined as P = (HTH)−1 and H the hidden layer
output matrix is defined in Section 2.1.

The final decision over the appropriate number of
neurons for the model can then be taken by evaluating the
LOO error versus the number of neurons used (properly
ranked by MRSR already).

3. Strategy for Regression Using OP-KNN

3.1. Variable Selection (VS). Variable Selection is one of the
most important issues in machine learning, especially when
the number of observations (samples) is relatively small
compared to the numbers of input variables. It has been
the subject in application domains like pattern recognition,
time series modeling, and econometrics. The necessary size
of the data set increases exponentially with the number of
dimensions. To circumvent this, one solution is to select a
subset of the features or variables which best describes the
output variables (targets) [14]. Then, it is possible to capture
and reconstruct the underlying regularity or relationship
(that is approximated by the regression model) between
input variables and output variables.

Variable Selection has several important advantages. It
helps to decrease the redundancy of the original data. It
can also reduce the complexity of the modeling process.
Moreover, it contributes to the interpretability of the input
variables.

3.2. Variable Selection Using OP-KNN. Whether using KNN,
OP-KNN, SVM, LS-SVM, or some other regression method,
an optimization criterion is needed to do Variable Selection.
In fact, there are many ways to deal with the Variable
Selection problem, a common one is using the generalization
error estimation. In this methodology, the set of features that
minimizes the generalization error is selected using Leave
one out. Other techniques such as Bootstrap or resampling
techniques [15, 16] exist but they are very time consuming
and may lead to an unacceptable computational time. In this
paper, Variable Selection is performed using the Leave-One-
Out error of OP-KNN as criterion, since OP-KNN is very
fast.

3.2.1. Wrapper Method. As is well known, Variable Selection
can be roughly divided into two broad classes: filter method
and wrapper method. As the name implies, our strategy
belongs to the wrapper methods which means that the
variables are selected according to the criterion directly from
the training algorithm.

In other words, our strategy is to select the input subset
that can give the best OP-KNN result. Once the input
subset is fixed, OP-KNN is repeated to build the model.
Furthermore, for the training set and test set, selection
procedure is performed on the training set, and then OP-
KNN is used on the selected variables of the test set. In
this paper, the input subset is selected by means of Forward
Selection algorithm.

3.2.2. Forward Selection. This algorithm starts from the
empty set S which represents the selected set of the input
variables. Then the best available variable is added to the set
S one by one until running through all the variables.

To clarify Forward selection, suppose a set of inputs
Xi, i = 1, 2, . . . ,M, and the output Y , then the algorithm is
as follows.

(1) Set F to be the initial set of the original M input
variables, and S to be the empty set like mentioned
before.

(2) Find

XS = arg min
xi

{
Opknn(S∪ Xi)

}
, xi ∈ F, (3)

where XS represents the selected variable, save the
OP-KNN results, and move XS from F to S.

(3) Continue the same procedure, till the size of S is M.

(4) Compare the OP-KNN values for all the sizes of the
sets S, the final selection result is the set S which the
corresponding OP-KNN gives the smallest value.

Forward-Backward Selection [17] can be also used
instead of Forward Selection in the algorithm but will
increase the computational time.

4. Experiments

This section shows the speed and accuracy of the OP-KNN
method, as well as the strategy we introduced before, using
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Figure 2: Sine Toy example. Original data is depicted by green
points and the model in blue crosses.
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Figure 3: Comparison of LOO error with (dashed blue line) and
without (continuous red line) the MRSR.

several different regression data sets. For the comparison,
Section 4.2 provides also the performances using Support
Vector Machine (SVM) [18].

The following subsection shows a toy example to illus-
trate the performance of OP-KNN on a simple case that can
be plotted.

4.1. Sine Example. In this toy example, a set of 1000 training
points (x) are generated (and represented as green points in
Figure 2), the output y is a sum of two sines. This single
dimension example is used to test the method without the
need for variable selection beforehand.

The model built by OP-KNN is showed as blue crosses
in Figure 2. As seen from the figure, it approximates the data
very well.

The dashed blue line in Figure 3 shows the LOO error
for different numbers of nearest neighbors. From the analysis
of the figure, by using 16 nearest neighbors, the algorithm
reaches the smallest LOO error (0.0666) which is close to
the real noise introduced in the dataset which is 0.0625. The
computational time for the whole OP-KNN is one second
(using Matlab implementation).

Thus, in order to have a very fast and still accurate
algorithm, each of the three presented steps has a special
importance in the whole OP-KNN methodology. The K-
nearest neighbor ranking by the MRSR is one of the fastest
ranking methods providing the exact best ranking, since
the model is linear (for the output layer), when creating
the neural network using KNN. Without MRSR, which can

Table 1: Key information about the data sets and number of
selected variables on average.

Regression
Data Variables selected by

Train Test Variable OP-KNN on average

Abalone 2784 1393 8 4.4
Ailerons 4752 2377 5 3.4
Elevators 6344 3173 6 4
Auto Price 106 53 15 2.4
Servo 111 56 4 1.5
Breast cancer 129 65 32 8.9
Bank 2999 1500 8 4
Stocks 633 317 9 7.7
Delve 2000 20732 104 3

Table 2: Test error comparison for the 9 data sets with 5 methods.

Regression
Test error

SVM OP-ELM ELM MLP OP-KNN

Abalone 4.5 4.9 8.3 4.6 4.8
Ailerons 1.3e − 7 2.8e − 7 3.3e − 8 2.7e − 7 2.7e − 8
Elevators 6.2e − 6 2.0e − 6 2.2e − 6 2.0e − 6 7.5e − 5
Auto price 2.8e + 7 9.5e + 7 7.9e + 9 2.2e + 7 3.1e + 9
Servo 6.9e − 1 8.0e − 1 7.1 2.2e − 1 9.7
Breast cancer 1.2e + 3 1.4e + 3 7.7e + 3 1.5e + 3 1.5e + 3
Bank 2.7e − 2 1.1e − 3 6.7e − 3 9.1e − 4 1.2e − 3
Stocks 5.1e − 1 9.8e − 1 3.4e − 1 8.8e − 1 9.0e − 2
Delve 1.1e + 9 9.2e + 8 2.5e + 9 2.4e + 8 6.8e + 7

be seen in the solid red line in Figure 3, the number of
nearest neighbor that minimizes the Leave-One-Out error
is not optimal and the Leave One Out error curve has
several local minima instead of a single global minimum. The
linearity also enables the model structure selection step using
the Leave-One-Out, which is usually very time-consuming.
Thanks to the PRESS statistics formula for the LOO error
calculation, the structure selection can be done in a small
computational time.

4.2. Real-Data Sets. For the comparison of OP-KNN and
four other methods, nine data sets are selected from different
application for regression problems [19]. Each data set is
randomly permuted (without repetitions) and then divided
into training set (two-thirds of the data set) and testing set
(one-third of the data set). 10 such rounds are performed
(different permutations) such that the results have statistical
significance. In this sense, the test error we calculate finally is
the average of 10 trials.

The only exception here is the data “Delve,” which has
2000 samples in training and 20732 samples in testing. 10-
fold test in Monte Carlo way is not necessary in this case since
the number of samples in testing is very large.

Table 1 shows some key information about the data sets
and the variables selected on average, while Tables 2 and
3 illustrate the test error and Computational time for all
methods, respectively.
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Table 3: Computational time comparison for the 9 data sets with 5
methods.

Regression
Computational time (in seconds)

SVM OP-ELM ELM MLP OP-KNN

Abalone 6.6e + 4 5.7 4.0e − 1 2.1e + 3 5.1e + 1
Ailerons 4.2e + 2 16.8 9.0e − 1 3.5e + 3 5.3e + 1
Elevators 5.7e + 2 2.9e + 1 1.6 3.5e + 3 8.2e + 1
Auto price 2.6e + 2 2.7e − 1 3.8e − 2 7.3e + 2 7.8e − 1
Servo 1.3e + 2 2.1e − 1 3.9e − 2 5.2e + 2 2.1e − 1
Breast cancer 3.2e + 2 4.2e − 1 4.8e − 2 8.0e + 2 2.6
Bank 1.6e + 3 8.03 4.7e − 1 2.7e + 3 4.39e + 1
Stocks 2.3e + 3 1.54 1.1e − 1 1.2e + 3 6.69
Delve 4.5e + 2 8.6 5.7e − 1 2.9e + 4 8.75e + 3

As seen from Table 2, the OP-KNN holds the best
performance level in most of the cases except two datasets.
According to these results, SVM and OP-ELM are reliable
in general. However, considering the computational time
shown in Table 3, the OP-KNN method clearly has its own
advantage. It is faster than SVM, with several orders of
magnitude. For example, in the Abalone data set using the
OP-KNN is more than 200 times faster than the SVM.

On the other hand, the speed is not the only advantage
of OP-KNN; OP-KNN also selects the most significant input
variables. This operation highly simplifies the final model,
and moreover, makes the data and model more interpretable.
The cost is the computational time. According to the forward
strategy we used in variable selection part, the higher the
dimensionality of the data, the more rounds of OP-KNN.
Therefore, OP-KNN is not as fast as OP-ELM in some cases
while selecting variables. However, for example, we select
3 most important variables from the original 104 in Delve
data, which highly reduces the complexity. This selection
of variables was tested with the other methods and yielded
much better results—decreasing to 5.6e + 7 the test error for
the MLP for example.

5. Conclusions

It is usual to have very long-computational time for training
a feedforward network using existing classic learning algo-
rithms even for simple problems, especially when the num-
ber of observations (samples) is relatively small compared
to the numbers of input variables. Thus, this paper presents
OP-KNN method as well as a strategy using OP-KNN to
do Variable Selection. This algorithm has several notable
achievements:

(i) keeping good performance while being simpler than
most learning algorithms for feedforward neural
networks,

(ii) using KNN as the deterministic initialization,

(iii) the computational time of OP-KNN being extremely
low,

(iv) variable selection highly simplifies the final model,
and moreover, makes the data and model more
interpretable.

In the experiment section, we have demonstrated the
speed and accuracy of the OP-KNN methodology in nine
real applications. The aim of OP-KNN is not to be the best
method in terms of error, but to prove that OP-KNN is
a good tradeoff between performance, computational time,
and variable selection possibility. In a word, this makes OP-
KNN a valuable tool for real applications.
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Canada, 2007.

[18] C. C. Chang and C. J. Lin, “LIBSVM: a library for
support vector machines,” 2001, http://www.csie.ntu
.edu.tw/∼cjlin/libsvm.

[19] http://archive.ics.uci.edu/ml/datasets.html.


