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Abstract. This paper presents a short introduction to the Reservoir
Computing and Extreme Learning Machine main ideas and developments.
While both methods make use of Neural Networks and Random Projec-
tions, Reservoir Computing allows the network to have a recurrent struc-
ture, while the Extreme Learning Machine is a Feedforward neural network
only. Some state of the art techniques are briefly presented and this special
session papers are finally briefly described, in the terms of this introductory

paper.

1 Introduction

“Neural Networks and Machine Learning techniques are too slow and complicated
to build, for our application”’While this sentence might be controversial, it is
nevertheless heard quite often when talking with people using large data sets on
a daily basis.

Indeed, thanks to improvements in acquisition processes it is possible to ob-
tain large quantities of information about a specific phenomenon, making the
data to analyze more abundant, both in terms of number of variables and sam-
ples. And therefore, it becomes possible to train much more precise and finely
tuned models. This unfortunately has a cost, which lies in the computational
time required for such training, often related (at least) to the square of the
number of variables and/or samples.

A seemingly easy solution to this situation is to decrease the number of
variables to only the most useful and required ones for the considered problem.
Two general ideas can be used: pruning the variables, or “combining” them,
for example by projection. The problem remains however similar, for one has
to either select which variables are relevant using a pruning strategy and a
criterion, or find a way of combining which can be very time taking (optimizing
a projection matrix for example).

For the matter of projecting to a lower dimensional space, Johnson and Lin-
denstrauss [13]| have shown that for a set of N points in d-dimensional space (us-
ing an Euclidean norm), there exists a linear transformation of the data toward
a d¢-dimensional space, with df > O(s72log(N)) which preserves the distances



(and hopefully the “topology” of the data) to a 1 £ ¢ factor. Achlioptas [1]| has
recently extended this result and proposed a very simple projection matrix that
preserves the distances to the same factor than the J-L theorem mentions, at
the expense of a probability on the distance conservation.

While such simple projections are attractive for they are very fast to build,
their performances remain below the ones of state of the art techniques [6].

With this double requirement in mind (performance and speed), Machine
Learning techniques based on Random Projections have been developing at an
increasing rate recently, leading to two main frameworks:

e Reservoir Computing (RC) methods;
e Extreme Learning Machine (ELM) methods.

While this list is not exhaustive, most of the current and past machine learning
techniques using random projections can be sorted into these categories. This
paper aims at giving a short survey on the most promising techniques emerging
from these categories and presenting the papers of this special session.

Section 2 discusses the Reservoir Computing framework, which comprises
various specific methods such as Echo-State Networks (ESN) or Liquid-State
Machines (LSM) for example. Section 3 proposes a description of the main ELM
results and some recent techniques derived from it, such as OP-ELM, EM-ELM,
etc.

Finally, Section 4 introduces the papers presented in this special session.

2 Reservoir Computing

The main difference between Reservoir Computing techniques and Extreme
Learning Machine ones, lie in the recurrence of the underlying neural network.
Indeed, Reservoir Computing makes use of a “pool” of neurons, randomly in-
terconnected with each other, which can be described as a Recurrent Neural
Network (RNN).

Theoretically, RNNs are powerful tools for solving complex spatio-temporal
machine learning tasks. The application of RNNs to real-world machine learning
problems is however not always feasible due to the high training costs and poor
training convergence. The principal problem for RNN training is the so-called
fading gradient: the error gradient vanishes or gets distorted by bifurcations,
making training very slow, even with convergence improvements as in [2].

Reservoir Computing globally proposes a solution to finding the weights: do
not adapt the internal connection weights (i.e. initialize them randomly) and
train the output directly, using a specific classifier or regression method.

In the case of input data x = (x1,...,xx5)7,x; € R, with output to model
y = (y1,...,y~n)T the output of the reservoir ¥ at step k + 1 can be seen as
yk+1) = fout(wout. [x(k+ 1), fr(Win.x(k+1)

FWs(k) + Wy (k). y (k). M



with x(k) denoting the input data x fed to the network at step k, WUt Wi*,
W and WP2<k the output weight matrix, input weight matrix, internal weight
matrix and back-projection of output to internal network weight matrix respec-
tively (random), fi* and f°U* the internal network activation function (usually
sigmoid) and readout function respectively and finally s denoting the internal
network state.

Note that in the case where f°"¢ is a linear classifier, this Reservoir Computing
framework is described as Echo State Networks [11, 14, 12].

Liquid State Machines (LSM) [16] are rather similar to the ESN, except for
the fact that the function fi» is usually a spiking neural network [15] or a network
of threshold logic gates.

3 Extreme Learning Machine

The Extreme Learning Machine (ELM) algorithm is proposed by Huang et al.
in [10] and uses Single-Layer Feedforward Neural Networks (SLEN). Hence, con-
trary to the Reservoir Computing, there is no recurrence in the neural network
of ELM-based techniques. The key idea of ELM is the random initialization of
the SLEN weights. Consider a SLFN with M hidden neurons; in the case it per-
fectly approximates the data (meaning the error between the estimated output
¥; and the actual output y; is zero), satisfies

M
Zﬁif(Win +bi) =y;, 1 <j <N, (2)
i=1
with f the activation function, w; the input weights and (; the output
weights. This writes compactly as HB =y, with

f(w1x1 +bl) f(WMX1 +bM)
H- S z )
f(W1XN +b1) f(WMXN+bM)

and 8 = (B ...8%)T.

With these notations, the theorem presented in [10] states that with randomly
initialized input weights and biases for the SLFN, and under the condition that
the activation function f is infinitely differentiable, then the hidden layer output
matrix can be determined and will provide an approximation of the target values
with arbitrary precision (non-zero).

The output weights 5 can be computed from the hidden layer output matrix
H and target values by using a Moore-Penrose generalized inverse of H, HT.
Overall, the ELM algorithm is then:



Algorithm 1 ELM.

Given a training set (x;,%;) € R? x R, an activation function f and the number
of hidden nodes M,

e Randomly assign input weights w;, 1 <i < M;
e Calculate the hidden layer output matrix H;

e Calculate output weights matrix 3 = HY.

The only parameter of the ELM algorithm is therefore the number of neurons
to use in the SLFN. This is determined using an information criterion through
model structure selection.

The proposed solution to the equation HS = y in the ELM algorithm, as
8 = H'y has three main properties making it a rather appealing solution:

e It is one of the least-squares solutions to the mentioned equation, hence
the minimum training error can be reached with this solution;

e It is the solution with smallest norm among the least-squares solutions;

e The smallest norm solution among the least-squares solutions is unique
and is § = H'y.

More recently, some possible improvements to the ELM have been proposed, in
the form of wrappers, mostly.

Feng presents in [5] the Error Minimized Extreme Learning Machine, which
proposes to add random neurons (one-by-one or group-by-group) to the ELM
once the original training has been performed. The authors prove that this
EM-ELM actually converges. The main interest in this development is in the
fact that the computational time is minimal while adding new random neurons
to the ELM. That is, the whole pseudo-inverse matrix does not need to be
recomputed, but weights only have to be updated using fast update rules derived
in the original paper. The main interest lies in the fact that one does not have to
know beforehand the exact best number of neurons required for ELM to perform
well. Neurons can anyway be added to the ELM without long computations
afterwards.

Another example is the Optimally-Pruned Extreme Learning Machine (OP-
ELM) [18, 17, 19, 21], which is designed to overcome an early problem encoun-
tered with ELM for irrelevant variables in the data set. The OP-ELM uses a
large ELM (in the sense of a large number of neurons) of which it first ranks the
neurons exactly (i.e. the ranking is exact) thanks to the Multiresponse Sparse
Regression algorithm [20, 4]. The neurons are then pruned out using a Leave-
One-Out criterion. The main goal of OP-ELM is neither to be the most accurate
algorithm nor the fastest. It provides on the other hand, one of the best perfor-
mance/speed ratio existing, even when compared with state of the art methods,
such as Gaussian Processes or SVM.



4 Presented papers

In this special session, six different papers are presented, of which three deal
with Reservoir approaches and three with ELM.

Gallichio and Micheli in A Markovian Characterization of Redundancy
in Echo State Networks by PCA [8] make use of PCA applied to the matrix
holding all the ESN internal network states S = (s(1),...,s(k),...,s(K))T, if
K represents the total number of steps considered. Interestingly, they show on
a practical example that most of the variance of the internal network states S
lies in only very few principal components; proving that the internal structure
is highly redundant. Also, the Markovianity of the reservoir seems to be linked
to the redundancy, as can be read in the paper.

The same authors in TreeESN: a Preliminary Experimental Analysis
[9] propose an efficient approach to Recursive Neural Networks (RecNN, which
are a generalization of Recurrent Neural Networks), of which the training can be
even more time-consuming than RNN. The ESN approach is here extended to
trees, with various possible state mappings. From the conducted experiments, it
would seem that this approach while promising for some applications, depends
currently highly on the Markovianity of the tasks at hand.

Butcher et al. make a smooth transition between RC and ELM methods,
by presenting Extending reservoir computing with random static pro-
jections: a hybrid between OP-ELM and RC [3]|. The idea is similar in
concepts to the OP-ELM methodology, but applied on a Reservoir, instead of
an ELM. Indeed, the authors present a technique named Reservoir with Ran-
dom Static Projections making use of a standard reservoir and two static non-
recurrent hidden layers with no layers interconnections. The first static layer is
connected to both the input layer and the output layer, while the second static
layer is connected to the reservoir and the output layer. The goal being to have a
direct influence of the input data on the output, as well as a reservoir influence.
The conducted experiments lead to significantly better results than a standard
reservoir technique.

In Using SVMs with randomised feature spaces: and extreme learn-
ing approach [7], Frénay and Verleysen introduce a new kernel for Support
Vector Machines: the ELM. By computing only the first layer of the ELM (that
is, the random projection) and applying a SVM on it, the authors make a new
kernel which is both much faster and as accurate (from their experiments) as
the classical RBF. It is also shown experimentally that the chosen number of
neurons for the ELM part (which represents the projecting dimensionality here)
highly influences the performance of the model. It is then advised to use a large
number of neurons in the first place to ensure a good accuracy through the SVM.

The mentioned EM-ELM gets an improvement in the form of the EEM-
ELM proposed by Lan et al. in Random Search Enhancement of Error
Minimized Extreme Learning Machine [23]. The enhancement of EM-ELM



lies in the idea of pruning the group of randomly generated neurons before they
are added to the ELM. From the newly generated group of neurons, only the
node leading to lowest residual error will be finally added to the ELM. This
leads to a more compact structure of the network while actually increasing its
performance, as the authors demonstrate through numerous experiments in their
paper.

Finally, a practical implementation of the ELM on graphics computing units
(GPU) is developed in Solving Large Regression Problems using an En-
semble of GPU-accelerated ELMs [22] by Heeswijk et al. The paper not
only deals with the implementation of ELM on GPU, but also about making
an ensemble of many ELMs created on the GPU, to finally create linear combi-
nation of them with positive weights. The weights are obtained by solving the
linear system composed of the validation outputs of all the created ELMs and
the actual output, in a Non-Negative Least Squares sense (NNLS). The use of
this methodology enables the authors to perform well while decreasing compu-
tational times (compared to a CPU version of the algorithm) in a 7 to 10-fold
fashion.
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