Solving Large Regression Problems using
an Ensemble of GPU-accelerated ELMs

Mark van Heeswijk! and Yoan Miche? and Erkki Oja' and Amaury Lendasse®

1 — Helsinki University of Technology - Dept. of Information and Computer Science
Konemiehentie 2, 02015 HUT - Finland

2 — Institut National Polytechnique de Grenoble - Gipsa-Lab
961 rue de la Houille Blanche, F-38402 Grenoble Cedex - France

Abstract. This paper presents an approach that allows for performing
regression on large data sets in reasonable time. The main component of
the approach consists in speeding up the slowest operation of the used al-
gorithm by running it on the Graphics Processing Unit (GPU) of the video
card, instead of the processor (CPU). The experiments show a speedup of
an order of magnitude by using the GPU, and competitive performance
on the regression task. Furthermore, the presented approach lends itself
for further parallelization, that has still to be investigated.

1 Introduction

Due to advances in technology, the size and dimensionality of data sets used in
machine learning tasks has grown very large and they continue to grow by the
day. Because of this, it is important to have efficient computational methods
and algorithms that are able to deal with very large data sets, such that it is
still possible to complete the machine learning tasks in reasonable time.

Meanwhile, video cards are increasing more rapidly in terms of performance
than typical desktop processors and they provide large amounts of computa-
tional power compared to typical desktop processors. For example, one of the
most high-end video card at the moment, the NVidia GTX295, has 2 Graphics
Processing Units (GPUs) which amount to a total of 1790 GFlops of compu-
tational power, compared to approximately 50 GFlops for a high-end Intel i7
Quad-core processor.

With the introduction of NVidia CUDA [1] in 2007, it has become easier
to use the GPU for general-purpose computation, since CUDA provides pro-
gramming primitives that allow you to run your code on highly-parallel GPUs
without needing to explicitly rewrite the algorithm in terms of video card op-
erations. Examples of succesful applications of CUDA include examples from
biotechnology, linear algebra [2], molecular dynamics simulations and machine
learning [3]. Depending on the application, speedups of 10-300 times are possi-
ble by executing code on a single GPU instead of a typical CPU, and by using
multiple GPUs it is possible to obtain even higher speedups. The introduction
of CUDA has also lead to the development of numerous libraries that use the
GPU in order to accelerate their execution by several orders of magnitude. An
overview of software and libraries using CUDA can be found on [1].

In this work, one of these libraries is used, namely CULA [4], which was
introduced in October 2009 and provides GPU-accelerated LAPACK functions.
Using this library the training of the models can be accelerated by an order of
magnitude. The particular models used in this work are a type of feedforward-
neural network, called Extreme Learning Machine (ELM) [5, 6]. The ELM is
well-suited for regression on large data sets, since it is relatively fast compared
to other methods and it has been shown to be a good approximator when it is
trained with a large number of samples [7]. Even though ELMs are fast, there
are several reasons to implement them on GPU and reduce their running time.
First of all, because the ELMs are applied to large data sets the running time is
still significant. Secondly, model structure selection needs to be performed (and
thus multiple models with different structure need to be executed) in order to
avoid under- and overfitting the data.

Experiments are performed on two large regression data sets: the first one is
the well-known Santa Fe Laser data set [8] for which the regression problem is
based on a time series; the second one is steganalysis data [8]. The steganalysis
data consist of data on a large number of images in which information has been
embedded. The task is to estimate the amount of information that has been
embedded in each image based on set of features extracted from that image.
Section 2 discusses the models used in this work and how to select an appropriate
model structure. Then an overview of the whole algorithm is given. Specifically,
how multiple individual models are combined into an ensemble model and what
parts are currently accelerated using GPU. Section 4 shows the results of using
this approach on the two mentioned large data sets. Finally, the results are
discussed and an overview of the work in progress is given.

2 Extreme Learning Machine for Large Dataset Regres-
sion

The problem of regression is about establishing a relationship between a set
of output variables (continuous) y; € R,1 < ¢ < M (single-output here) and
another set of input variables x; = (z},...,z¢) € R% In the regression cases
studied in the experiments, the number of samples M is large: 10000 for one
case and 60000 for the second.

2.1 Extreme Learning Machine (ELM)

The ELM algorithm is proposed by Huang et al. in [5] and uses Single-Layer
Feedforward Neural Networks (SLFN); the key idea of ELM is the random ini-
tialization of a SLFN weights. Consider a SLFN with N hidden neurons; in the
case it perfectly approximates the data (meaning the error between the estimated
output g; and the actual output y; is zero), it satisfies

N+1

> Bif(wixy) = y;,5 € [1, M], (1)

i=1

with f the activation function, w; the input weights and (; the output weights.
This writes compactly as HZ =Y, with

fwixi) -+ flwaxg) 1
H= : - : E (2)
fwixar) - flwaxy) 1
with 3= (8 ... 65)" and Y = (y1...yar)".
The output weights 8 can be computed from the hidden layer output matrix
H and target values by using a Moore-Penrose generalized inverse of H, H [9].
Overall, the ELM algorithm is then:

Algorithm 1 ELM

Given a training set (x;,7;) € R? x R, an activation function f and the number
of hidden nodes N,

1: - Randomly assign input weights w;, i € [1, NJ;

2: - Calculate the hidden layer output matrix H;

3: - Calculate output weights matrix 5 = H'Y.

The only parameter of the ELM algorithm is therefore the number of neurons
to use in the SLFN. This is determined using an information criterion through
model structure selection.

2.2 Model Structure Selection

Model structure selection enables to determine an optimal number of neurons
for the ELM model. This is done using a specific criterion which estimates
the model generalization capabilities for each different number of neurons; the
classical Bayesian Information Criterion (BIC) [10, 11] has been used to select
an appropriate number of neurons for an ELM model. The BIC is defined as

BICZMXlog<]%Aig)+pxlogM, (3)

where RSS is the residual sum of squares, p the number of parameters of the
model (number of neurons for ELM) and M the number of samples.

3 Parallel Implementation of ELM

In order to minimize data transfer times, the H matrix is computed once on an
initially very large number of neurons using Eq. 2. It is then transfered fully to
the memory of the graphics card and the BIC is computed for varying number of
neurons. The minimization of the BIC enables to determine an optimal number
of neurons for the ELM. Figure 1 summarizes the overall implementation. The
parallelization possibilities appear clearly from this design.

minimizing
validation
error

Fig. 1: Block diagram of the parallel setup using ELMs.

Since ELM are partially random non-linear models, they provide a set of
quasi-independent models. For that reason, it is possible to use an ensemble
methodology in order to achieve better generalization performance. The inde-
pendence between the ELM is increased by using a random subset of variables
for the training of each ELM. A total of 100 ELM models are build and a val-
idation estimate of the output is computed on a validation set (subset of the
original data set, only used for validation) for each model. These validation
outputs (for the 100 ELMs) are used with the real output to solve the system
with positivity constraints on the weights. This creates a linear combination
with positive weights of the 100 ELM models.

The obtained combination is then evaluated on a test set (also subset of the
original data set). For the current version of our program and results presented
here, only the solution of the system H is computed on the GPU [4], since it
is the most time-consuming part of the ELM model construction. Furthermore,
the 100 models built are created sequentially on the same GPU core. Section 5
discusses future improvements of the current setup.

4 Experiments and Results

Experiments are performed on two relatively large regression data sets: the first
one is the full Santa Fe Laser data set [8] for which the regression problem
is based on a time series; the second one is steganalysis data [8] (information
has been embedded in a hidden manner in JPEG images and the amount of
information is estimated through a set of features extracted from each image).

Sizes of the data sets are given in Table 1: 75% is used for training, 10% for
validation and 15% for test.

The experiments have been repeated 10 times for the Santa Fe and the Ste-
ganalysis data. Table 2 gives the Normalized Mean Square Test Errors (NMSE)
and the computational times for both CPU (on an Intel Core i7 920) and GPU

Total Size Training | Validation | Test
(samplesx variables)

Santa Fe 10081 x 12 7561 1008 1512
Steganalysis 60000 x 275 45000 6000 9000

Table 1: Sizes of the used data sets. First column gives original total size of the
data, while the other columns only mention the number of samples used in each
type of set (training, validation, test).

implementation. Computational times are given for one ELM model (including
the model structure selection).

‘ NMSE (std) ‘ GPU timing ‘ CPU timing ‘ Speedup
Santa Fe 2.9E-3 (7.2E-4) 3.2 33 10.3
Steganalysis 3.9E-1 (1.2E-1) 41 309 7.54

Table 2: Results for both data sets: Normalized Mean Square Test Error and
standard deviation (in parenthesis), timing of one ELM execution for the GPU
and CPU (in seconds), and speedup factor.

It should be noted that the CPU implementation of the ELM algorithm is
using Matlab. While it could be argued that a pure C code implementation might
be more efficient, the current Matlab computations use highly tuned LAPACK
and BLAS routines which would be similar to a C version. For comparison, a
SVM built on a similar steganalysis data set using the same number of variables,
but only 10000 samples, would require 600 days for both training and selection
of the hyperparameters of the SVM using 10-fold cross-validation [11, 12].

5 Discussion and Future Work

The experiments show a speedup of an order of magnitude, by using the GPU to
speed up the slowest part of the algorithm. Furthermore, the proposed approach
is able to achieve results on the regression task comparable to other algorithms.
Although in the experiments only a data set of 6 - 10* samples is used, the
approach used can scale up to 2 - 10° samples on the currently used hardware
(NVidia GTX295). Using a NVidia Tesla C1060 GPU with more memory, it
would scale to a data set of approximately 10 samples.

At the moment, some improvements are currently being implemented. In-
stead of just running the most time-consuming part of the algorithm on the GPU
(i.e. solving the linear system to train the ELM), the entire ELM will run on the
GPU. Furthermore, the parallelization of the algorithm across different GPUs
is being implemented such that several ELMs can be evaluated in parallel. Fi-
nally, other models than the ELM (such as Reservoir Computing methods [13])
are considered to be implemented on the GPU to create an ensemble of models
as in this paper.

References

1]
2]

[12]

[13]

NVidia CUDA Zone: http://www.nvidia.com/object/cuda_home.html.

V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE SCI’08, pages
1-11, Piscataway, NJ, USA. IEEE Press.

B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine
training and classification on graphics processors. In Proceedings of the
25th International Conference on Machine Learning (ICML 2008), pages
104-111, Helsinki, Finland, 2008.

CULA (GPU-Accelerated LAPACK): http://www.culatools.com/.

G-B. Huang, Q-Y. Zhu, and C-K. Siew. Extreme learning machine: Theory
and applications. Neurocomputing, 70(1-3):489 — 501, 2006.

M. van Heeswijk, Y. Miche, T. Lindh-Knuutila, P. Hilbers, T. Honkela,
E. Oja, and A. Lendasse. Adaptive ensemble models of extreme learning
machines for time series prediction. In 19th International Conf. on Artificial
Neural Networks, Limassol, Cyprus, 9 2009.

G-B. Huang, L. Chen, and C-K. Siew. Universal approximation using in-
cremental constructive feedforward networks with random hidden nodes.
IEEE TNN, 17(4):879-892, 2006.

Santa Fe and Steganalysis data available at: http://www.cis.hut.fi/
projects/tsp/index.php?page=research&subpage=datasets.

C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and Its Appli-
cations. John Wiley & Sons Inc, January 1972.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6:461-464, 1978.

Y. Miche and A. Lendasse. A faster model selection criterion for OP-
ELM and OP-KNN: Hannan-quinn criterion. In Michel Verleysen, edi-
tor, ESANN’09: European Symposium on Artificial Neural Networks, pages
177-182. d-side publications, April 22-24 2009.

Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse.
Op-elm: Optimally pruned extreme learning machine. IEEFE Transactions
on Neural Networks, 2009. DOI: 10.1109/TNN.2009.2036259.

D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An ex-
perimental unification of reservoir computing methods. Neural Networks,
20(3):391 — 403, 2007. Echo State Networks and Liquid State Machines.

