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Abstract

In this paper, a new method for the determination of missing values in temporal databases is presented. It is based on a robust
version of a nonlinear classification algorithm called Self-Organizing Maps and it consists of a combination of two classifications
in order to take advantage of spatial as well as temporal dependencies of the dataset. This double classification leads to a significant
improvement of the estimation of the missing values. An application of the missing value imputation for hedge fund returns is

presented.
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1. Introduction

The presence of missing values in the underlying time-series
is a recurrent problem when dealing with databases. Because
of the absolute need of complete time-series for most of the
models, a number of methods to handle missing data have been
proposed in the literature.

Self-organizing Maps [5] (SOM) aim ideally to group homo-
geneous individuals through a low-dimensional projection and
to highlight the neighborhood structure between classes. The
SOM networks have the ability to be robust, even when some
values are missing [9]. SOM-based methods for recovering the
missing values have already been proposed, in [9] and [12] for
instance. They usually make an intensive use of the spatial cor-
relation and fill the missing values of time-series by the corre-
sponding values of the network neurons after training.

However, one can mention two main drawbacks. First, the
dynamics of the time-series are not taken fully into account,
and secondly, the rebuilding process is discrete. We propose,
a combination of a transversal (X-SOM) and a longitudinal (L-
SOM) classifications allowing us to overcome the above limits
and to incorporate spatial as well as temporal dependencies.

The structure of this paper is as follows. In Section 2, the
SOM algorithm and its robust version are presented. The fol-
lowing section is dedicated to the presentation to the new al-
gorithm for conditional missing value recovery. The following
section is recalling various imputation methods. In the last sec-
tion, a financial time-series return dataset is used to illustrate
the accuracy of the method.
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2. Sdf-Organizing M aps

The SOM algorithm is based on an unsupervised learning
principle, where training is entirely data-driven and almost no
information about the input data is required [5]. Here, we use
a 2-dimensional network, compound in ¢ units (or code vec-
tors) shaped as a square lattice. Each unit of a network has as
many weights as the length T of the learning data samples, X,
forn =11, 2,...,N]. All units of a network can be collected to a
weight matrix denoted m (t) = [m (t), m2 (t), ..., m¢ (t)], where
m; (t) is the T-dimensional weight vector of unit i at time t and
t represents the steps of the learning process. Each unit is con-
nected to its neighboring units through a neighborhood function
A(m;, mj, t), which defines the shape and the size of the neigh-
borhood at time t.

First the network nodes are randomly initialized from the
data sample space. Then, the iterative learning process be-
gins. For a randomly selected sample xt.1, the Best Match-
ing Unit (BMU), which is the unit of the neuron whose
weights are closest to the sample is calculated as mgwy, , =
Argming, ic; {IXera — mi OI1}, where | = [1,2, ..., c] is the set of
network node indices, BMUy,,, (or BMU hereafter for the sake
of simplicity) denotes the index of the best matching node and
|.]| is standard Euclidean norm.

If the randomly selected sample includes missing values, the
BMU cannot be solved outright. Instead, an adapted SOM al-
gorithm [9] is used. For the randomly drawn sample, x,1 € RT,
having missing value(s), we split the original set into two sub-
sets RT = NMy,,, U My,,, where NMy, is the subset where the
values of X1 are not missing, and My, is the subset where
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the values of x,1 are missing. We define a norm on the subset
NMy,,, as

> Deax-mu®F, (@)

keNMy,,,

IXt+1 = Mi Dllnw,,, =

where x,1x denotes the k' value of the chosen data vector
and mi(t) is the k™ value of the i"" code vector, with k go-
ing through all the indexes in the subset NMy, ., when values are
not missing.

Then the BMU is calculated with

Mawy,, = Argmin {ixeea = mi Ol |- @)
mj,ie
When the BMU is found the network weights are updated as,
YielandVYk e NM

Mik (t+ 1) = mix (1) — e(OA (Memu, Mi, 1) [Mik () = Xee1k] s
@)
where ¢(t) is the adaptation gain parameter, which is ]0, 1[-
valued, gradually decreasing with time. The number of neu-
rons taken into account during the weight update depends on
the neighborhood function A(.).

After the weight update, the next sample is randomly drawn
from the data matrix and the procedure starts again by finding
the BMU of the sample. The recursive learning procedure is
stopped when the SOM algorithm has converged.

Since our method is able to handle missing values by mak-
ing an intensive use of the SOM algorithm, issues regarding
the SOM convergence have a significant impact on the missing
value reconstruction quality. One way to ensure the conver-
gence is to use the Robust SOM (RSOM) [4].

The idea is to use a bootstrap process to ensure the conver-
gence. First, an empirical probability for any pair of input vari-
ables to be neighbors in the SOM map is estimated with a re-
sampling technique: 40% of observations and individuals are
removed, the SOM learning process is performed and finally
the removed individuals are projected onto the map, allowing
us to get the whole neighborhood structure. The above tech-
nique is repeated several times and the empirical estimate of
the probability is calculated. Then the SOM algorithm is exe-
cuted several times, but without resampling. From these maps,
we select the one whose neighborhood structure is the closest
to the empirical probability obtained at the previous step. The
benefits of such a procedure are double. First, the bootstrap
process applied during the step one allows the minimization of
the effect of possible outliers present in the database. Secondly,
the map chosen in the second step is the one that maximizes the
likelihood of the neighborhood structure.

3. X-SOM/L-SOM -based Estimation M ethodology

SOM-based estimation methods have already been proposed
(for instance, [3]). These methods typically classified time-
series and then, using peer-group peculiarities (as mean of in-
dividuals or the code vector itself), estimated candidates for the
missing values. However, one can mention two main draw-
backs. First, the dynamics of the time-series are not taken into

account, and secondly, the rebuilding process is discrete; miss-
ing values are filled with the corresponding values of the neu-
rons to which the time-series is the closest to. Thus, for all se-
ries belonging to the same cluster, the estimations are the same.
Following [10], we propose a double classification to over-
come these limits. As previously seen in [3], the first net-
work, identified by its code vector weights m* (each unit corre-
sponding to a T -dimensional weight vector), groups individuals
through a longitudinal classification (denoted L-SOM). Then,
for each time-series x; containing missing values, the weights
of the associated BMU are substituted for any missing values

Xik = MaMmU,, ks 4)

for k € My.

Simultaneously, we run another SOM classification m?, on
the transversal dataset x’ (each unit corresponds to an N-
dimensional weight vector, where N is the number of time-
series in x). The second cross-classification (denoted X-SOM)
no more clusters observations but realizations. Estimation of
missing values operates exactly as in Equation 4.

We have now, two nonlinear estimations for each missing
value x;yx of the dataset. The first one is accurate when con-
sidering spatial dependencies, whereas the second integrates
temporal correlations more efficiently. We propose to lin-
early combine these two candidates according to their dis-
tances to their respective BMUs. Let d; be the inverse of
the distance from the sample x; to its associated BMU in m?,

dl—l = ”Xi - méMUXi HNMx . We define d, equivalently as d2‘l =

’ 2
X = Mamu,, :
k 1INM,/
k

Then, for each missing value of x;y, we estimate the missing
values contained in the sample through the double classification
(denoted X-SOM/L-SOM) by

Xik = d1/ (d1 + dp) mlBMle,k +0do/ (dy +d) mZBMUX&,i' (5)

For the X-SOM/L-SOM, we still have to select the optimal
grid sizes ¢! and c2. This is done by using a cross-validation
principle. The X-SOM/L-SOM that gives the smallest valida-
tion error is used to perform the final completion of the data.

4. About Imputation Methods

In this section, we briefly review some alternative methods
to deal with missing values. We begin with the Expectation
Maximization (EM) Algorithm. Indeed, it is very common to
apply this algorithm when dealing with financial asset returns.
We then summerize the Empirical Orthogonal Functions meth-
ods and show how this factorial decomposition can be applied
for missing value estimation. Finally, we present a method that
also attempts to capture special time-series structure of datasets
thought the combination of the SOM and EOF (see [11]).

4.1. Expectation Maximization Methods

The EM algorithm, presented by Dempster, Laird and Rubin
in [2], is a technique to find maximum likelihood estimates in a



missing data situation. Since the estimates of the mean and the

covariance matrix of an incomplete dataset depend on the un-

known missing values, and, conversely, estimates of the miss-

ing values depend on the unknown statistics of the data. This

estimation problem is nonlinear and has to be done iteratively.
The EM algorithm consists of two steps:

1. E-step calculates the expectation of the complete data suf-
ficient statistics given the observed data and current pa-
rameter estimates.

2. M-step updates the parameter estimates through the max-
imum likelihood approach based on the current values of
the complete sufficient statistics.

The algorithm proceeds in an iterative manner until the dif-
ference between the last two consecutive parameter estimates
converges to a specified criterion. The final E-step computes
the expectation of each missing value given the final parameter
estimates and the observed data. This result will be used as the
imputation value.

For each iteration (t), the E-step consists of

Q(6]6) = E[LOIV) [Yots. 69 6)

where

L (.]Y) denotes the likelihood function conditionally to Y,
0 the vector of parameter to be estimated,

Yobs the non-missing values,

Y the sample,

6O the last vector of estimated parameter.

Thus, the (t+1)" M-step finds 6D that maximizes
Q(#]6®) such that

Q (0(t+l) |9(t) ) = mg\x Q (0 |0(t) ) ' 0

The main drawback of the EM algorithm is when the M-step
isnotin a closed form. In this case, the M-step could be difficult
to perform.

Meng and Rubin [7] proposed an alternative algorithm called
the Expectation Conditional Maximization (ECM) to solve this
problem. The M-step is decomposed to multiple conditional
maximizations. Consider 8 = [01, 605, ...,6¢] a k-dimensional
vector of parameters. Then the Conditional M-step consists of
k successive maximizations, for i = 1, ..., k (with previous nota-
tions)

Q (0(t+1) |o® ) = max Q (9 |6® ) . 8)

Otherwise, the ECM algorithm performs in the same way
than the EM algorithm presented above.

4.2. Empirical Orthogonal Functions

Empirical Orthogonal Functions (EOF, [8]) allows us for fac-
torial decomposition. EOF are here used as a denoising tool and
for finding the missing values at the same time [1].

The EOF are calculated using standard and well-known Sin-
gular Value Decomposition (SVD) such as

K
X = UDV* = Z PkUkVi, 9)
k=1
where X is the (T x N) data matrix, U and V are collections
of singular vectors u and v in each dimension respectively, D
is a diagonal matrix with the singular values p in its diagonal
and K is the smaller dimension of X (or the number of nonzero
singular values if X is not full rank). The singular values and
the respective vectors are sorted in decreasing order.

When EOF are used to denoise the data, not all singular val-
ues and vectors are used to reconstruct the data matrix. Instead,
it is assumed that the vectors corresponding to larger singular
values contain more information with respect to the noise than
the ones corresponding to smaller values [8]. Therefore, it is
logical to select the q largest singular values and their corre-
sponding vectors and reconstruct the denoised data matrix only
using them.

In the case where g < K, the reconstructed data matrix is
obviously not the same as the original one. The smaller the g,
the more different is the new data, but the less noisy it is. The
optimal q is selected using validation methods, as for example
in [6].

EOF (or SVD) cannot be directly used with databases includ-
ing missing values. The missing values must be replaced by
some initial values in order to use the EOF. This replacement
can be for example the mean value of the whole data matrix X
or the mean in one direction, row wise or column wise. The
latter approach is more logical when the data matrix has some
temporal or spatial structure in its columns or rows.

After the initial value substitution, the EOF process begins
by performing the SVD and the selected g singular values and
vectors are used to build the reconstruction. In order not to lose
any information, only the missing values of X are replaced with
the values from the reconstruction. After their replacement, the
new data matrix is again broken down into singular values and
vectors with the SVD and rebuilt again. The procedure is re-
peated until a convergence criterion is fulfilled.

The procedure is summarized in Table 1.

4.3. SOM+EOF

The combinaition of the last two methodologies (see [11])
leads to an improvement of the accuracy of the rebuilt process.
The SOM algorithm for missing values is first ran through per-
forming a nonlinear projection for finding the missing values.
Then, the result of the SOM estimation is used as initialization
for the EOF method. This methodology is summarized in Fig-
ure 1.

SOM EOF
Dataset with Nonlinear, Linear, Completed
Missing =—b> discrete, Y continuous, —p Data
Values low-dimensional high-dimensional Sample
projection projection

Figure 1: Summary of the (SOM+EOF) Global Methodology.



Table 1: Summary of the EOF method for finding missing values.

1 Initial values are substituted into missing values of
the original data matrix X

2 Foreachqfrom1ltoK
2.1 SVD algorithm calculates g singular values
and eigenvectors
2.2 A number of values and vectors are used to make
the reconstruction
2.3 The missing values from the original data are filled
with the values from the reconstruction

3 The g with the smallest validation error is used to
reconstruct the final filling of the missing values in X

For the SOM, we must select the optimal grid size ¢ and for
the EOF the optimal number of singular values and vectors g to
be used. This is done using the same validation set for all com-
binations of the parameters c and g. Finally, the combination of
SOM and EOF that gives the smallest validation error is used
to perform the final completion of the data.

Even the SOM as well as the EOF are able to fill the miss-
ing values alone, the experimental results demonstrate that to-
gether the accuracy is better. The fact that these two algorithms
suit well together is not surprising. Two approaches are indeed
complementarity.

First, the SOM algorithm allows us for a nonlinear projec-
tion. In that sense, even for dataset with complex and non-
linear structure, the SOM code vectors will succeed to cap-
ture the nonlinear characteristics of the inputs. However, the
projection is done on a low-dimensional grid (in our case two-
dimensional) with the possibility of losing some of the intrinsic
information of the data.

Secondly, the EOF method is based on a linear transforma-
tion using the Singular Value Decomposition. Because of the
linearity of the EOF approach, it will not reflect the non-linear
structures of the dataset, but the projection space can be as high
as the dimension of the input data and remains continuous.

At this stage, one can wonder about the efficiency of an
EOF method for missing values initialized with X-SOM/L-
SOM candidates (the method is straight forward and doesn’t
need to be presented here). The method will be tested in the ex-
periment section but we expect a low improvement since spatial
and temporal structure are already take into account by the X-
SOM/L-SOM.

5. Experimental Results

In the following application, we illustrate our imputation
method on a dataset of hedge fund returns! composed of 120
funds containing 121 monthly returns from a 10-year period.

Lthis database can be download at
http://wwuw.cis.hut.fi/projects/tsp/downloads/Finance?2.tar.gz

Since the hedge fund strategies are well diversified, such as-
sets guarantee us that the time-series are not (too much) inter-
dependent. The observed correlations between the assets re-
main reasonable; the mean, minimum and maximum correla-
tions are respectively .10, —.62 and .77. Regarding the correla-
tions of the transposed dataset, we find that the mean, minimum
and maximum cross-correlations are .00, —.75 and .74, respec-
tively.

Figure 2 shows some of the fund performances?®. We ob-
serve that the fund returns under studies are low-correlated
time-series. This highlights the fact that numbers of underly-
ing factors (exchange rates, interest rates, credit grades, stocks
on various markets, country and sector bets, styles drifts, uses
of derivatives...) are considered in hedge fund industry. This
also leads to a more difficult completion task, due to the hetero-
geneity of implicit risk factors.
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Figure 2: Rescaled asset values of 15 funds present in the database.

It is to be noticed that the initial database does not contain
any missing values. For the following experiments, we arti-
ficially remove some values from the original dataset. More
precisely, we generate two sets of data with different kinds of
deletion. The first set contains missing values that appear ran-
domly whereas the second set contains missing values that ap-
pears at the beginning of time-series. This second set is more
realistic of a practical financial missing value issue, since fund
return time-series often suffer from a lack of reporting due to a
too recent inception date.

For the first test set, we randomly removed 7.5 percent of the
data. The test set contains 1,080 values. For the validation, the
same amount of data is removed from the dataset. Therefore,
for the model selection and learning we have a database with a
total of 15 percent missing values.

The Monte Carlo Cross-validation with 20 folds is used to
select the optimal parameters for the L-SOM, the X-SOM, the
EOF, the SOM+EOF and the X-SOM/L-SOM method. The
20 selected validation sets are the same for each method. The
validation errors are shown in Figure 3. In the case of the X-
SOMY/L-SOM, the errors shown are the minimum errors after
the X-SOM with different L-SOM sizes.

The optimal size of the L-SOM grid is found to be 10x10,
representing a total of 100 units. We have roughly as many

2for the sake of simplicity, we rescaled the initial performances to 100 such
asv; = 100 H}:l (1 + rj), with r; the return of a fund at the time i.



code vectors in the map as observations (120). Regarding the
cross-classification, the X-SOM, we find an optimal size of the
grid to be 6x6. It means that we have a nonlinear interpolation
between observations and a better approximation of the missing
values with more units than data.
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Figure 3: Validation errors against SOM grid sizes. The L-SOM validation
error is the solid line, X-SOM is the dotted line and the X-SOM/L-SOM is the
dashed line.

The smallest error achieved with the X-SOM/L-SOM
method is with the L-SOM grid size 17x17 and with the X-
SOM grid size 8x8. The number of neurons is larger for both
methods when combining than the L-SOM or X-SOM classifi-
cation alone. It suggests that the local approximations reduce
errors from both L-SOM and X-SOM estimations and enable
finer interpolations. From the Figure 3, it is clearly notice-
able that with any SOM size the X-SOM/L-SOM method gives
lower validation error than either L- or X-SOM alone.

Table 2: Learning and Test Root Mean Squared Errors for the ECM, the L-
SOM, the X-SOM, the EOF, the SOM+EOF, the X-SOM/L-SOM and the X-
SOM/L-SOM+EOF.

103 | Learning Error  Test Error
ECM 2.8 3.7
L-SOM 1.6 1.7
X-SOM 1.8 19
EOF 1.6 1.7
SOM+EOF 14 1.6
X-SOM/L-SOM 13 14
X-SOM/L-SOM+EOF 13 15

Table 2 contains the validation and test errors of all three
methods. We can see that the X-SOM/L-SOM outperforms the
L-SOM and the X-SOM reducing the validation error by 19
and 28 percent, respectively, and the test error by 23 and 31
percent. The EOF initialized with a X-SOM/L-SOM does not
outperform the estimation with a X-SOM/L-SOM.

For the second test set, we also removed 7.5 percent of the
data. We choose a constrained randomisation process in order
to get missing value at the begining of time-series and to ensure
that at least one third of the time-series remains complete. The
same cross-validation procedure has been followed.

Regarding the second experiment, the qualities of rebuilt pro-
cesses are slightly downgraded. The concentration of missing
values at the beginning of time-series especially penalizes the

Table 3: Learning and Test Root Mean Squared Errors for the ECM, the L-
SOM, the X-SOM, the EOF, the SOM+EOF, the X-SOM/L-SOM and the X-
SOM/L-SOM+EOF.

103 | Learning Error  Test Error
ECM 3.0 3.8
L-SOM 16 18
X-SOM 2.0 2.0
EOF 19 2.0
SOM+EOF 1.7 18
X-SOM/L-SOM 15 1.6
X-SOM/L-SOM+EOF 16 1.7

L-SOM and the SOM+EOF. In this second experiment, the
EOF applied to the X-SOM/L-SOM does not lead to any im-
provement. We performed additional tests® onto some other
databases and our results remain consistent with those pre-
sented in Tables 2 and 3.

6. Conclusion

In this paper, we have proposed a new X-SOM/L-SOM-
based method for finding missing values. The L-SOM clas-
sification provides efficient missing value estimations that re-
spect spatial dependency structures, whereas the estimations
obtained through the X-SOM integrate efficiently the temporal
correlations. The combination of these two approaches allows
us to overcome the main drawback of the SOM-based impu-
tation methods: the fact that the missing value estimations are
discrete. Indeed, considering the distance between series and
their associated Best Matching Units make it possible to ob-
tain local continuous approximations of the missing values. As
we have shown in the experiments, the combined approach pro-
vided estimations that are more accurated than those obtained
with others missing value estimation methods.

References

[1] J. Boyd, E. Kennelly, P. Pistek, Estimation of EOF expansion coefficients
from incomplete data, Deep Sea Research 41 (1994) 1479-1488.

[2] A. Dempster, N. Laird, D. Rubin, Maximum likelihood from incomplete
data via EM algorithm, Journal of the Royal Statistical Society 39 (1977)
1-38.

[3] F. Fessant, S. Midenet, Self-Organising map for data imputation and cor-
rection in surveys, Neural Computing & Applications 10 (2002) 300-310.

[4] C. Guinot, B. Maillet, P. Rousset, Understanding and reducing variability
of SOM neighbourhood structure, Neural Networks 19 (2006) 838-846.

[5] T. Kohonen, Self-organizing Maps, Springer-Verlag (Germany, Berlin,
1995).

3The other database for which the completion algorithms were tested was
containing the weekly net asset value times-series of 100 long-only stock funds
investing on the American market on the period 2003-2007. The same rank-
ing of the compared methodologies is observed, and the same magnitude was
obtained regarding the improvement provided by the X-SOM/L-SOM method
compared to the traditional ECM one. Detailled results are available from au-
thors on demand.



[6] A. Lendasse, V. Wertz, M. Verleysen, Model selection with cross-
validations and bootstraps - Application to time series prediction with
RBFN models, in Proc. ICANN’03, Lecture Notes in Computer Science,
\ol. 2714 (Springer-Verlag, Berlin, 2003) 573-580.

[7] X. Meng, D. Rubin, Maximum likelihood estimation via the ECM algo-
rithm, Biometrika 80 (1993) 267-278.

[8] R. Preisendorfer, Principal Component Analysis in Meteorology and
Oceanography, Elsevier Science Pub. Co. (U.S.A, New York, 1988).

[9] T. Samad, S. Harp, Self-organization with partial data, Network 3 (1992)
205-212.

[10] G. Simon, A. Lendasse, M. Cottrell, J.-C. Fort, M. Verleysen, Double
SOM for long-term time series prediction, Proceedings of the Workshop
on Self-Organizing Maps (Japan, Kitakyushu, 2003), 35-40.

[11] A. Sorjamaa, B. Maillet, P. Merlin, A. Lendasse, SOM+EOF for find-
ing missing values, Proceedings of the European Symposium on Atrtificial
Neural Networks (Belgium, Brugges, 2007) 115-120.

[12] S. Wang, Application of self-organising maps for data mining with in-
complete data sets, Neural Computing and Applications 12 (2003) 42-48.



