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Abstract

We propose an automatic methodology framework for short- and long-term prediction of

time series by means of fuzzy inference systems. In this methodology, fuzzy techniques

and statistical techniques for nonparametric residual variance estimation are combined in

order to build autoregressive predictive models implemented as fuzzy inference systems.

Nonparametric residual variance estimation plays a key role in driving the identification

and learning procedures. Concrete criteria and procedures within the proposed methodol-

ogy framework are applied to a number of time series prediction problems. The learn from

examples method introduced by Wang and Mendel (W&M) is used for identification. The

Levenberg-Marquardt (L-M) optimization method is then applied for tuning. The W&M

method produces compact and potentially accurate inference systems when applied after

a proper variable selection stage. The L-M method yields the best compromise between

accuracy and interpretability of results, among a set of alternatives. Delta test based resid-

ual variance estimations are used in order to select the best subset of inputs to the fuzzy

inference systems as well as the number of linguistic labels for the inputs. Experiments on

a diverse set of time series prediction benchmarks are compared against least-squares sup-

port vector machines (LS-SVM), optimally-pruned extreme learning machine (OP-ELM),

and k-NN based autoregressors. The advantages of the proposed methodology are shown

in terms of linguistic interpretability, generalization capability and computational cost.

Furthermore, fuzzy models are shown to be consistently more accurate for prediction in

the case of time series coming from real-world applications

Key words

Fuzzy inference systems, Time series prediction, Nonparametric regression, Supervised

learning, Nonparametric residual variance estimation
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1 Introduction

Time series prediction and analysis in general is a recurrent problem in virtually all areas

of natural and social sciences as well as in engineering. In the time series prediction

field, prediction accuracy is not the only major goal. Understanding the behavior of time

series and gaining insight into their underlying dynamics is a highly desired capability of

time series prediction methods [52].

In the past, conventional statistical techniques such as AR and ARMA models have been

extensively used for forecasting [6]. However, these techniques have limited capabilities

for modeling time series data, and more advanced nonlinear methods including artificial

neural networks have been frequently applied with success [9].

Fuzzy logic based modeling techniques are appealing because of their interpretability

and potential to address a broad spectrum of problems. In particular, fuzzy inference

systems exhibit a combined description and prediction capability as a consequence of

their rule-based structure [50]. The application of fuzzy inference systems to time series

modeling and prediction dates back to [51], in which the authors develop the well known

learn from examples identification algorithm for fuzzy inference systems and use the

Mackey-Glass time series as a validation case. Nevertheless, despite its good

performance in terms of accuracy and interpretability, fuzzy inference systems have seen

little application in the field of time series prediction as compared to other nonlinear

modeling techniques such as artificial neural networks and support vector machines.

The methodology proposed in this paper is intended to apply to crisp time series, i.e.

those time series consisting of crisp values, as opposed to other kinds of values, such as

interval and fuzzy values. That is, we propose here an automatic methodology

framework to perform autoregressive prediction of crisp time series by means of fuzzy
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inference systems using nonparametric residual variance estimation [37]. We will call

fuzzy autoregressors those autoregressors implemented as fuzzy inference systems. This

is not to be confused with what is usually called fuzzy regression in the literature [8].

When developing fuzzy inference systems for time series prediction, many questions

remain still open: how many and what inputs to the inference system must be defined?

To what extent the theoretical universal approximation capability of fuzzy systems is

achieved with existing techniques? What are the best fuzzy techniques for these tasks?

How to perform long-term prediction?

In practice, one finds two problems when building a fuzzy model for a time series:

choosing variables or inputs to the inference system, and identifying the structure of the

system (linguistic labels and rule base). Once these steps have been accomplished, the

fuzzy model can be tuned through supervised learning techniques. We propose an

automatic methodology framework to address these two problems using fuzzy

techniques and nonparametric residual variance estimation techniques in an intertwined

manner.

The first problem can be addressed by means of a priori feature selection techniques

based on nonparametric residual variance estimation, which also provide an estimate of

the error of the most accurate nonlinear model that can be built without overfitting. The

second problem is addressed by data-driven techniques for identification of fuzzy

systems from numerical examples [16], such as the algorithm by Wang and Mendel

(W&M) [50,51] and the fuzzy identification algorithm based on clustering by

Chiu [12,36], two well established methods among the many alternatives proposed

throughout the years [23,19,43,34,2,26,44].

This paper also addresses a recent challenge in the field of time series prediction:

long-term prediction (as a generalization to short-term prediction), for which lack of
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information and accumulated errors pose additional difficulties. Furthermore, time series

coming from real world applications, in addition to series generated either numerically

or under controlled laboratory conditions are analyzed.

With these premises we propose a methodology for building simple, interpretable yet

highly accurate fuzzy inference models. These will be compared against least-squares

support vector machines (LS-SVM) [48], a well established method in the field of time

series prediction, that has been shown to be highly accurate. For further comparison, we

will also show the results obtained using optimally-pruned extreme learning machine

(OP-ELM) and k-nearest neighbors (k-NN) models.

The article is organized as follows. The next section outlines a nonparametric residual

variance estimation method that will be used for both variable and proper model

complexity selection. In section 3 we propose a methodology framework and one

concrete implementation that uses well known algorithms for identifying and optimizing

fuzzy inference systems. Section 4 illustrates the methodology through a case study.

Finally, sections 5 and 6 present and further discuss experimental results for a number of

time series benchmarks from diverse fields of application. In appendices A and B we

provide further comparisons of different modeling techniques.

2 Nonparametric Residual Variance Estimation: Delta Test

Nonparametric residual variance estimation (or nonparametric noise estimation, NNE) is

a well-known technique in statistics and machine learning, finding many applications in

nonlinear modeling [24]. NNE methods can be applied to recurrent problems such as

variable and model structure selection. These methods are not however in widespread

use in the machine learning community as most work has been done to date within the

statistics community.
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Delta Test (DT), introduced for time series in 1994 [41], is a NNE method, i.e., it

estimates the lowest mean square error (MSE) that can be achieved by a model without

overfitting the training set [24]. Given N multiple input-single output pairs,

(x̄i, yi) ∈ R
M × R, the theory behind the DT method considers that the mapping

between x̄i and yi is given by the following expression:

yi = f(x̄i) + ri,

where f is an unknown perfect fitting model and ri is the noise. DT is based on

hypothesis coming from the continuity of the regression function. When two inputs x

and x′ are close, the continuity of the regression function implies that the corresponding

outputs, f(x) and f(x′) will be close enough. When this implication does not hold, it is

due to the influence of the noise.

Let us denote the first nearest neighbor of the point x̄i in the set {x̄1, . . . , x̄N} by x̄NN .

Then the DT, δ, is defined as follows:

δ =
1

2N

N
∑

i=1

∣

∣

∣yNN(i) − yi

∣

∣

∣

2
,

where yNN(i) is the output corresponding to x̄NN(i). For a proof of convergence, refer

to [28,29]. DT is an unbiased and asymptotically perfect estimator with a relatively fast

convergence [29] and is useful for evaluating nonlinear correlations between two random

variables, namely, input-output pairs. DT can be seen as part of a more general NNE

framework known as the Gamma Test [24]. Despite the simplicity of DT, it has been

shown to be a robust method in real world applications [28]. This method will be used in

the next sections for a priori input selection.
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3 Methodology Framework for Time Series Prediction with Fuzzy Inference

Systems

Consider a discrete time series as a vector, ȳ = y1, y2, . . . , yt−1, yt, that represents an

ordered set of values, where t is the number of values in the series. The problem of

predicting one future value, yt+1, using an autoregressive model (autoregressor) with no

exogenous inputs can be stated as follows:

ŷt+1 = fr(yt, yt−1, . . . , yt−M+1),

where ŷt+1 is the prediction of model fr and M is the number of inputs to the regressor,

i.e., the regressor size.

Predicting the first unknown value requires building a model, fr, that maps regressor

inputs (known values) into regressor outputs (predictions). When a prediction horizon

higher than 1 is considered, the unknown values can be predicted following two main

strategies: recursive and direct prediction.

The recursive strategy applies the same model recursively, using predictions as known

data to predict the next unknown values. For instance, the third unknown value is

predicted as follows:

ŷt+3 = fr(ŷt+2, ŷt+1, yt, yt−1, . . . , yt−M+3).

Recursive prediction is the most simple and intuitive strategy and does not require any

additional modeling after an autoregressor for 1 step ahead prediction is built. However,

recursive prediction suffers from accumulation of errors. The longer the prediction

horizon is, the more predictions are used as inputs. In particular, for prediction horizons

greater than the regressor size, all inputs to the model are predictions.

Direct prediction requires that the process of building an autoregressor be applied for
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each unknown future value. Thus, for a maximum prediction horizon H , H direct

models are built, one for each prediction horizon h:

ŷt+h = fh(yt, yt−1, . . . , yt−M+1), with 1 ≤ h ≤ H.

While building a prediction system through direct prediction is more computationally

intensive (as many times as values are to be predicted) it is also straightforward to

parallelize. As opposed to recursive prediction, direct prediction does not suffer from

accumulation of prediction errors.

In this paper, we follow the direct prediction strategy. In order to build each

autoregressor, a fuzzy inference system is defined as a mapping between a vector of crisp

inputs and a crisp output. Let us rename the inputs yt, yt−1, . . . , yt−M+1 as y1, . . . , yM for

simplicity. This way, assuming all (M ) inputs are used, the fuzzy autoregressor for

prediction horizon h can be expressed as a set of Nh fuzzy rules of the following form:

Rh
i : IF y1 is Li,h

1 AND y2 is Li,h
2 AND . . . AND yM is Li,h

M THEN ŷt+h ← µRh
i
,

where i = 1, . . . , Nh, and the fuzzy sets Li,h
j ∈ {L

h
j,k}, k = 1 . . . , nh

j , j = 1, . . . ,M, with

nh
j being the number of linguistic labels defined for the jth input variable. Li,h

j are the

fuzzy sets representing the linguistic terms used for the jth input in the ith rule of the

fuzzy model for prediction horizon h. µRh
i

are the consequents of the rules and can take

different forms. For example, in a system with two inputs, if Li,h
1 is renamed LOW1 and

Li,h
2 is renamed HIGH2, the ith rule for horizon 1, R1

i , would have the following form:

IF yt was LOW1 AND yt−1 was HIGH2 THEN ŷt+h ← µRh
i
.

Depending on the fuzzy operators, inference model and type of membership functions

(MFs) employed, the mapping between inputs and outputs can have different

formulations. In principle, the methodology proposed in this paper can be applied for
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any combination of types of MFs, operators and inference model, but the selection can

have a significant impact on practical results.

As a concrete implementation for this paper, we use the minimum as T-norm for

conjunction operations, Gaussian MFs for inputs, singleton outputs, and product

inference of rules. Defuzzification is performed using the fuzzy mean method, i.e.,

zero-order Takagi-Sugeno systems are defined. Thus, the result of the inference process

is a weighted average of the singleton consequents. This inference scheme was chosen in

order to keep systems as simple and interpretable as possible.

Therefore, in this particular case a fuzzy autoregressor for prediction horizon h can be

formulated as follows:

Fh(ȳ) =

Nh
∑

i=1

(

µRh
i
· min

1≤j≤M
µ

L
i,h
j

(yj)
)

Nh
∑

i=1

min
1≤j≤M

µ
L

i,h

j

(yj)

, (1)

where Nh is the number of rules in the rule base for horizon h, µRh
i

are singleton output

values, and µ
L

i,h

j

are Gaussian MFs for the inputs. Thus, each fuzzy set defined for the

input linguistic terms, Lh
j,k (for horizon h, and the kth term defined for the jth input), is

characterized by an MF having the following form:

µLh
j,k

= exp
[

−(yj − cj,k,h)
2/2σ2

j,k,h

]

, k = 1 . . . , nh
j , j = 1, . . . ,M, h = 1, . . . , H,

where cj,k,h are the centers of the MFs and σj,k are the widths.

Together with the number of rules of a system, the total number of MFs can be seen as a

measure of the complexity of a fuzzy inference system, or the structure of the equivalent

artificial neural network. If the same nh
j number of linguistic terms is set for every input,

then the total number of input MFs per prediction horizon is M · nh
j .

The problem of building a regressor can be precisely stated as that of defining a proper
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number and configuration of MFs and building a fuzzy rule base from a data set

comprising t samples from a time series such that the fuzzy systems Fh(ȳ) closely

predict the hth next values of the time series. The error metric to be minimized is the

mean squared error (MSE).

In this paper, we propose a methodology framework in which a fuzzy inference system is

defined for each prediction horizon throughout the stages shown in figure 1. These stages

and how they are specifically implemented in this paper are detailed in the following

subsections.

3.1 Variable Selection

In principle, the whole set of known past values of a time series may influence the

unknown future values. However, using all known values as inputs to a time series

autoregressor does not necessarily improve its accuracy. As the number of inputs

increases, and the known data become more sparse in a high-dimensional space, building

a model gets more and more complex. This is the well known “curse of dimensionality”

problem [5].

In the time series prediction field, the application of variable selection methods has been

shown to provide several advantages, such as reducing the model complexity and

increasing the accuracy of predictions [46]. A proper choice of input variables can

alleviate the curse of dimensionality problem while all the relevant data are still available

for building a model. As first step in the methodology, DT estimates are employed so as

to perform an a priori selection of the optimal subset of inputs from the initial set of M

inputs, given a maximum regressor size M .

Variable selection requires a selection criterion. We use the result of the DT applied to a
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particular variable selection as a measure of the goodness of the selection. The input

selection that minimizes the DT estimate, and thus the achievable MSE, is chosen for the

next stages.

In addition, a selection procedure is required. For small (roughly up to around 10-20)

regressor sizes, an exhaustive evaluation of DT for all the possible selections (a total of

2M − 1) is feasible. We will call this procedure exhaustive DT search. Its main advantage

is that the optimal selection is guaranteed. However, its algorithmic order is exponential

and it is thus unfeasible for high regressor sizes.

For higher regressor sizes, different search methods that partially scan the space of

possible selections can be applied. In particular, forward-backward search of selections

(FBS) [46] provides good results while being simple and efficient. This procedure

combines both forward and backward selection. FBS can be started alternatively from

random selections or selections for lower regressor sizes performed by means of

exhaustive search. As a partial search procedure, FBS does not guarantee the optimality

of the selection, however it provides a convenient balance between performance and

computational requirements.

NNE based selection can be classified into the set of model independent methods for

input selection. These methods select inputs a priori, i.e., the selection stage is based

only on the dataset and does not require to build models. Thus, the computational cost of

DT based selection is lower than that of the model dependent cases, in which input

selection is addressed as a generalization error minimization problem, using

leave-one-out, bootstrap or other resampling techniques [28].
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3.2 System Identification and Tuning

Usually, defining a fuzzy inference model from data requires two steps: the identification

of the structure and the optimization of parameters [23,43]. The identification and tuning

stage of our methodology comprises three substages, see figure 1, that are performed

iteratively and in a coordinated manner. The whole process is driven by the third

(complexity selection) substage, until a system that satisfies a training error condition

derived from the DT estimate is constructed.

3.2.1 Substage 2.1: System identification

In this substage, the structure of the inference system (linguistic labels and rule base) is

defined by means of an automatic fuzzy systems identification algorithm. The set of

inputs is fixed after the previous (variable selection) stage. Regardless of the

identification algorithm used, one or more parameters are usually required that specify

the potential complexity of the inference system. Thus, the desired boundaries of

complexity for the systems being built are additional inputs to the identification process.

The identification substage, as well as the next (tuning) substage are iteratively

performed for increasing degrees of complexity. The concrete procedure used to explore

different complexities depends on the identification and tuning algorithms applied.

For the concrete implementation analyzed in this paper, identification is performed using

the W&M algorithm driven by the DT estimate. The W&M algorithm is based on the

“learn by example” principle and considers a uniform grid partition of the universes of

discourse of the inputs, which are proper characteristics for modeling time series in an

interpretable manner. Though a number of modifications and derived algorithms have

been proposed, for the sake of simplicity and interpretability we adhere to the original
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specification of the algorithm for generating fuzzy inference rules directly from

input-output data pairs [50] as implemented in version 3.2 of the Xfuzzy design

environment [40].

In the case of the W&M algorithm, the number of MFs per input must be specified a

priori. This can be done in an automated manner thanks to the use of the DT estimate in

the iterative identification and tuning process. Our approach is to explore the set of

possible systems starting from the lowest possible number of linguistic labels. This is an

iterative process driven by the third substage (complexity selection), as explained below.

For simplicity, the same number of linguistic labels is used for each input. In this case,

the complexity boundaries would be thus specified as a maximum number of linguistic

labels to explore.

3.2.2 Substage 2.2: System Tuning

We consider a tuning step in the methodology as a substage separated from the

identification substage. Note that in some cases (as for example in the algorithm by

Higgins and Goodman [18]), these two substages can be integrated into a standalone

algorithm. The tuning process is driven by one or more error metrics.

As concrete implementation for this paper we apply the Levenberg-Marquardt second

order optimization method [3] for supervised learning, driven by the normalized MSE

(NMSE) 1 . A number of supervised learning and optimization methods have been

compared for this study, including gradient descent, probabilistic, second order, and

conjugate gradient methods. The Levenberg-Marquardt method was selected on the basis

of the following observations. First, it produces systems with the lowest number of MFs

among the set of alternatives tested. Second, it yields systems almost as accurate as the

1 Normalization is performed against the squared range of the series.
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most accurate alternative. This is further discussed in appendix B, where several

methods are compared.

All the parameters of the MFs of every input and output are adjusted so that the training

error is minimized, i.e., self-tuning inference systems are defined. The learning

algorithm applied is the Levenberg-Marquardt method as implemented in Xfuzzy [39].

3.2.3 Substage 2.3: Complexity Selection

As last step in the process of identifying and tuning fuzzy autoregressors, the proper

complexity of the estimated best autoregressor is selected depending on the DT estimate.

The iterative identification and tuning stage stops when a system is built such that its

training error is equal to or lower than the DT estimate or a threshold based on the DT

estimate. Since identification and tuning iterations are performed for increasing

complexities, the simplest system that satisfies the DT based error condition is selected.

For the particular implementation used in this paper, the complexity of fuzzy systems is

measured as the number of linguistic labels per input. Thus, this substage selects the

system with the lowest number of labels per input that has a training error equal to or

lower than an optimal error threshold based on the DT estimate.

We note that the DT estimate is an estimate of the lowest possible error, i.e, the error that

an optimal model would achieve. Since we cannot expect the models we will apply to be

perfect, we introduce a DT based threshold. The DT based threshold, equal to or greater

than the DT estimate, will be defined and validated experimentally in the next section.

Regarding the convergence and guarantee of finalization of this iterative process, neither

the identification algorithm or the optimization method used here guarantee any error

bound. However, it should be noted that fuzzy inference systems of the class being
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designed here are universal approximators [54,23]. Thus, for a sufficiently large number

of MFs and rules, any input-output mapping should be approximated with an arbitrary

accuracy after the identification and optimization stage, i.e., the training error should be

as small as required. In practice, it will be shown that the iterative identification and

tuning process proposed here converges fast and the number of MFs required per input is

in most cases below 5, with very few exceptions.

4 Case Study and Validation: ESTSP 2007 Competition Dataset

For the purposes of validating and illustrating the proposed methodology framework and

concrete algorithms and criteria used in this paper, we analyze the data set from the

competition of the first European Symposium on Time Series Prediction (ESTSP

2007) [14]. This data set, see figure 2, consists of 875 samples of weekly temperatures of

the El Niño-Southern Oscillation phenomenon.

In this section we analyze the original ESTSP 2007 series split into two subsets: a

training set (first 475 samples) and a second set (last 400 samples) that will be used for

validation. We will call this series ENSO. Though one of the major goals of the proposed

methodology is to avoid the requirement of validation and test series, we define two

subsets in order to validate the methodology with the residual noise estimator and

algorithms being used. In this case study, it will be shown that the delta test as well as the

fuzzy systems identification and optimization methods used are appropriate for

implementing the proposed methodology framework.

For this case study, a maximum regressor size of 10 and a prediction horizon of 50 are

considered, i.e., the last 10 known values will be used for predicting the next 50

(unknown) values. To this end, 50 different fuzzy inference systems have to be built in

order to model the dynamics of the system for prediction horizons 1 through 50.
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4.1 Variable Selection

Following the flow depicted in figure 1, in the first stage of our methodology, DT is

performed on the training set for all the possible variable selections (210 − 1) and the one

that leads to the lowest DT estimate is chosen. This process is performed independently

for each prediction horizon. The number of selected variables is shown in figure 3.

Between 3 and 5 variables are selected out of a maximum of 10. Thus, the employment

of DT based variable selection leads to a significant decrease of the complexity of the

fuzzy inference systems in terms of number of inputs. This fact, in turn, relieves the

curse of dimensionality problem. Thus, for a given maximum regressor size, an initial

input selection stage allows for a better fitting of the model.

We should note that a maximum regressor size larger than 10 could be considered. When

there are enough data samples, a larger regressor size could be expected to provide

accuracy improvements. However, for sizes above 15 or 20 approximately, an exhaustive

search becomes too computationally expensive and finally unfeasible with current

computational resources. A regressor size of 10 has thus been selected as a twofold

heuristic compromise. First, the whole space of possible selections can be explored

within a reasonable amount of time (approximately 1 hour for 50 models in a current

general purpose computer). Second, after variable selection, the number of inputs is

sufficiently small so that the curse of dimensionality problem in nonlinear models does

not have a severe impact. Larger regressor sizes, for which the DT estimate is lower,

usually lead however to little improvement or even poorer performance of the models.

We thus, have selected 10 as an initial regressor size. As we will see later on in this

section, in the case of fuzzy inference models this leads to systems with a number of

inputs and rules sufficiently small so as to be easy to read by humans. The effect that

different maximum regressor sizes can have on model performance will be illustrated
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with several cases in section 5.

4.2 Identification and Tuning

As second stage, once input variables have been selected, an iterative identification and

tuning process is carried out in three substages, as shown in figure 1. In the first substage,

the W&M algorithm is applied to the training set in order to identify fuzzy inference

systems. These models are then tuned in the second substage through supervised

learning using the Levenberg-Marquardt algorithm over the training set. The process is

repeated for increasing numbers of linguistic labels (or MFs) per input, starting from 2.

Within this iterative process, in the third substage (complexity selection) the DT estimate

is used to check whether the best possible approximation has been achieved, i.e., the

right compromise between model complexity and training error has been found.

For the horizon 1 regressor, table 1 shows the number of rules identified for different

numbers of linguistic labels per input (between 2 and 15). Training and validation errors

are shown as well. The two columns labeled “before tuning” show the errors for the

fuzzy systems as identified by means of the W&M algorithm, while the columns labeled

“after tuning” show the errors for the systems tuned by means of supervised learning.

After the tuning substage, there is a considerable accuracy improvement. In particular, it

can be seen that tuned systems with a low number of rules perform better than untuned

systems with a much greater complexity. Thus, the supervised learning substage also

contributes to reducing model complexity.

We also note that systems with a low number of linguistic labels per input (particularly

between 2 and 5) are only rough approximators before tuning. However, after the tuning

substage their accuracy is improved significantly while keeping the same rule base. This
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fact suggests that the rule bases correctly reflect the underlying dynamics of the series,

though tuning the membership function parameters is no doubt required in order to build

accurate models with such a low number of linguistic labels.

Within the methodology proposed here, in this case the identification and tuning stage

proceeds as follows. First, in the identification substage a fuzzy inference system is

identified using the W&M algorithm with 2 MFs per input. The system consists of 6

rules. After the tuning substage, the system yields a training MSE higher than the DT

estimate. Thus, this system is rejected in the complexity selection substage. Then, the

process is repeated for a system with 3 MFs per input, for which 15 rules are identified.

In this case, the system yields an MSE lower than the DT estimate after being tuned.

Thus, it qualifies as a proper model in the complexity selection substage and the

identification and tuning stage finishes 2 .

4.3 Interpretability Issues and Examples

The number of MFs or linguistic labels defined for each input has significant

consequences on accuracy and interpretability. If it is too low, the accuracy of the system

will not suffice. If it is high, the linguistic labels will become too specific, and the

number of fuzzy rules identified can be overwhelming, since it can grow up to the

product of the number of MFs of every input.

Let us now consider the interpretability issues that arise after the tuning substage. Fuzzy

inference systems are inherently comprehensible, specially when the rules are defined by

human experts. However, when rules are automatically identified from data and

optimization methods are applied, as is the case of the proposed methodology,

2 In practice, as detailed later on in this section, we use a certain error threshold based on the DT

estimate rather than the estimate itself.
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interpretability cannot be guaranteed in general [7].

Since the identification substage is implemented using the W&M method, the initial

input MFs, of Gaussian type, define a grid uniform partition of the input domain. The

output MFs, of singleton type. correspond to output values identified on the training data.

The W&M method also guarantees the consistency of the rule base. In a system of this

kind, linguistic labels can be easily assigned to each input MF by domain experts, or

simply by using the common “LOW”, “MEDIUM”, etc. labels. The meaning of

singleton output values is evident as well. In addition, the rules identified are of the

if-then type with only conjunction operations in the premise. Thus, these systems can be

expected to be easy to read and potentially lead to a physical interpretation.

However, the tuning substage consists in changing the parameters of the input and output

MFs with the objective of finding the lowest MSE. After the tuning stage, interpretability

could be thus severely compromised. A variety of approaches and methods have been

proposed to improve or guarantee interpretability to some extent [7]. Nonetheless, in our

application it can be found in practice that the parameter changes do not modify the

initial uniform partition of the input space to an extent significant for approximate,

linguistic human interpretation. On the one hand, changes in the output MFs should not

decrease interpretability in an automated methodology. On the other hand, the changes in

the input MFs do not modify the initial partition in a severe manner. The shape and

distribution of the tuned MFs of the regressor for horizon 1 are shown in figure 4. In this

case, the widths change by 12.9% on average, while the centers of the MFs are shifted on

average by 3.1% of the range of the series, with respect to the initial grid uniform

partition. More general results for the set of series analyzed in this paper are given in

appendix B, table 6.

For the 1 step ahead regressor, considering the notation for discrete time series
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introduced in section 3, three input variables are selected to predict yt+1: yt, yt−2 and

yt−7. This selection indicates that the next weekly temperature depends only on the

values of the last week as well as 2 and 7 weeks before. In addition, the relations

between the inputs and the output can be interpreted linguistically. Three linguistic terms

are defined for each input, as shown in figure 4, that can be thought as “LOW”,

“MEDIUM” and “HIGH”, represented by Gaussian MFs in the range of observed values,

[18.9, 29.2]. For instance, a rule that has the highest output temperature as consequent

reads as follows:

IF yt−7 was HIGH1 AND yt−2 was HIGH2 AND yt was HIGH3 THEN yt+1 ← “29.2°C”,

where “29.2°C” is used as linguistic label for a singleton output centered at 29.2.

Of course, this example can be regarded only as a simple particular case. The procedure

required to provide a physical interpretation of the models is case dependent to a great

extent. In the interpretation process, additional techniques for simplification of fuzzy

inference systems can be of considerable help [4]. For instance, if the system is pruned

in order to keep only the six best rules with respect to the training set, a system with a

test MSE only 6.3% higher than that of the original system is obtained.

Let us now illustrate with an example the process of fuzzification, inference and

defuzzification. Consider the application of the previous fuzzy rule to a data point in the

test series such that yt+1 = 28.8 has to be predicted from the following previous values:

yt−7 = 28.9, yt−2 = 29.2, yt = 29.1. Given these input values, the membership degrees

for the fuzzy sets involved in the rule premise are

µHIGH1
(28.9) = 0.925, µHIGH2

(29.2) = 0.990, µHIGH3
(29.1) = 0.997, and thus the

firing degree of the rule is 0.925, resulting from applying the minimum conjunction

operator on the membership degrees of the premise of the rule. This is the firing degree

of the rule, and weights the contribution of the rule consequent to the final output of the
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system. In this case, it is the rule that activates the most, since the three input values

clearly fall within the “HIGH” region of the input space. In order to perform an

inference, the 15 rules in the rule base are aggregated using the fuzzy mean

defuzzification method, i.e., the singleton conclusions of the rules are averaged using

their respective firing degrees as weight over the sum of the 15 firing degrees, according

to equation 1, yielding ŷt+1 = 28.728 as prediction of the inference model for this

particular data sample of the ENSO series.

The significant contribution of the application of an input selection stage based on an

effective, nonlinear method can be clearly seen in this case. If we use the DT estimate to

select the complexity of the system but no input selection is performed, and thus the

inference system has 10 inputs, 3 MFs per input and 98 rules are identified, while the test

error is 26% higher and the computational cost increases by more than an order of

magnitude. If instead only the three last known values are considered as inputs, 8 MFs

per input and 65 rules are identified, while the test error is 31% higher. In the latter case,

the use of techniques for finding a better embedding delay [25] and selecting the three

inputs accordingly do not provide significant improvements.

4.4 Model Selection

Let us now consider the use of the DT estimate for selecting the proper complexity of the

tuned fuzzy systems. Rather than using the DT estimate itself, a tolerance band above it

is considered. This band is defined by a threshold (DT based threshold, DTBTh) which

increases with increasing horizons h according to equation 2, where DTh is the DT

estimate for horizon h.

DTBTh = (1 + min(0.90, 0.15 · h)) · DTh (2)
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For each horizon h, the simplest system that satisfies MSEh ≤ DTBTh, where MSEh

is the training mean square error, is selected as the best autoregressor. This threshold has

been defined on the basis of trial and error as a soft limit that favors simplicity to the

detriment of accuracy. However, it was found to be robust for all the series analyzed. The

definition is based on the following empirical observations:

• A tolerance of approximately 15% over the DT estimate for horizon 1 is appropriate.

• The best results can be achieved with tolerances increasing with the prediction horizon

(particularly for the first 10 predictions approximately).

• A tolerance between 80%-100% over the DT estimates provides good results for

long-term prediction.

We note though that the impact of the threshold is not determining for accuracy (the

error increase is of the order of 10-20% at most for any prediction horizon). Similar

results can be achieved by selecting a fixed adjustment factor of around 50%-75%. We

chose the particular values in equation 2 so as to favor model simplicity to the detriment

of accuracy. This is further discussed in section 6.

For the ENSO series, DTBT1 ≈ 1.26 · 10−3 and, as shown in figure 5, the fuzzy system

with 3 linguistic labels per input is chosen as the best autoregressor for horizon 1.

4.5 Results and Accuracy Comparison

Considering now the performance of our methodology for short- and long-term

prediction, figure 6 shows the normalized DT NNE estimates (NDT-NNE) for prediction

horizons up to 50 as well as the training and validation errors of the fuzzy autoregressors

built.

We note that besides the limitations of the fuzzy modeling techniques being employed,
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an additional source of error has been introduced in the proposed methodology: the DT

based selection of complexity does not guarantee optimal selection under all conditions.

Although the fuzzy regressor for horizon 1 prediction that is chosen is the one with the

lowest validation error, this is not the case for all horizons. In general, the deviation from

the optimal selection depends on the time series being modeled and the prediction

horizon.

Let us now compare the validation errors of the systems actually selected against the

lowest validation errors that could have been achieved for any complexity. This way we

can know the order of magnitude of the error due to the imperfection of the DT based

complexity selection. Figure 7 compares the NDT estimate (a robust estimation of the

lowest training error that can be achieved without overfitting), the validation errors of the

fuzzy autoregressors selected according to the DT estimate, and the lowest possible

validation errors for any number of linguistic labels.

Figure 8 shows the predictions for the first 50 values after the training set together with a

fragment of the actual time series.

Finally, we compare the accuracy of fuzzy models against LS-SVM models with the

same autoregressor size and input selection. Other models are compared in appendix A.

LS-SVMs were built for the same training subset selecting Radial Basis Function (RBF)

kernels, grid search as optimization routine and cross-validation as cost function,

see [48] for a detailed specification of these and other options. Concrete implementation

details will be given in section 6. Figure 9 shows the training and generalization errors

for LS-SVM and fuzzy models. Averages errors are listed in table 2. Two main

conclusions can be drawn from the comparison:

• As for generalization capability, the performance of fuzzy autoregressors is clearly

better than that of LS-SVM models. There are 4 exceptions: test errors of fuzzy

23



autoregressors are slightly higher (less than 5%) for horizons 14, 18 and 19. However,

the overall superiority of fuzzy regressors is clear and specially evident for long-term

prediction (beyond horizon 25).

• Training and generalization errors are much closer for fuzzy models than for LS-SVM

models. For long-term prediction, generalization errors may be even lower than

training errors. Also, generalization errors are within approximately 160% of training

errors for the worst cases. Thus, training errors of fuzzy models can be trusted as more

realistic estimations of the order of the out-of-sample prediction errors.

5 Experimental Results

In this section, the proposed concrete implementation of the methodology framework

described is applied to a number of varied time series prediction problems from different

fields of application, namely the Poland electricity time series prediction benchmark, the

monthly averaged sunspot number, the daily averaged aggregated traffic in the Internet2

backbone network, the laser generated data set of the Santa Fe time series competition,

and the Mackey-Glass series. In order to ensure reproducibility, the relevant data

sources, methods, software tools and parameters used are specified.

For every series, models are built to predict the next 50 values. Though one of the major

goals of the methodology proposed here is to avoid the need for validation and test

series, we will split the series into two subsets in order to assess the out-of-sample

prediction performance of the methods being used. Following the methodology

illustrated in the previous section, we will summarize the results of the input selection

stage and the training and test errors. Results will be compared against those of

analogous LS-SVM models built using the same input selection scheme, RBF kernels,

grid search as optimization routine and cross-validation as cost function. In appendix A

24



we show a further comparison with other modeling techniques.

5.1 Poland Electricity Benchmark

This time series (PolElec henceforward) represents the normalized average daily

electricity demand in Poland in the 1990´s. The benchmark consists of a training set of

1400 samples, shown in figure 10(a), and a test set of 201 samples, shown in

figure 10(b). It has been shown that the dynamics of this time series is nearly linear [27].

Besides the yearly periodicity, a clear weekly periodicity can be seen on smaller time

scales (see figure 10(b)).

We will show the results obtained for two different maximum regressor sizes: 7 and 14.

In both cases, input selection was performed by exhaustive search of the lowest DT

estimate. The number of selected variables is shown in figure 11

Training and test errors of a set of fuzzy autoregressors for horizon 1 are shown in

figure 12(a) for different numbers of linguistic labels per input, in the case of a

maximum regressor size of 7. The regressor with 5 MFs is selected according to the DT

based threshold.

Figure 12(b) shows the training and test errors of fuzzy regressors with different

numbers of linguistic labels for prediction horizon 7 (also in the case of a maximum

regressor size of 7). The system with 2 linguistic labels is selected according to the DT

based threshold. However, the system with 3 linguistic labels achieves the lowest test

error. This is an illustrative case in which a simpler and less accurate model is selected

because of the permissive nature of the DT based threshold. Besides a lower number of

linguistic labels, the system with 2 linguistic labels per input has 8 rules, whereas the

system with 3 linguistic labels per input has 15 rules.
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Figure 13 shows the DT estimates as well as training and test errors for the two regressor

sizes considered. The average training and test error of LS-SVM models are shown

together with the errors of fuzzy models in table 2. Fuzzy autoregressors achieve a

greater approximation accuracy for the test subset. In this case, there are no exceptions

for any prediction horizon, and the differences are higher than in the case of the ENSO

series. We also note that for this series test errors are bounded within a range of 133% of

training errors.

5.2 Sunspot Numbers

The series of sunspot numbers is a periodic measure of the sunspot activity as a function

of the number of spots visible on the face of the sun and the number of groups into

which they cluster. Values from this series (Sunspots) are subject to uncertainty and

noise, particularly during the past centuries. We analyze a series of monthly averaged

sunspot numbers covering from January 1749 to December 2007, as provided by the

National Geographical Data Center from the US National Oceanic and Atmospheric

Administration 3 . The series is split into a set of 1000 values for training and a set of

2908 values for testing. The whole series is shown in figure 14.

Figure 15 shows the number of variables selected for the two maximum regressor sizes

considered for the Sunspots series: 9 and 12. Figure 16 shows the DT estimates as well

as training and test errors for the two maximum regressor sizes chosen. The average

training and test error of LS-SVM models are shown together with the errors of fuzzy

models in table 2. For both regressor sizes, fuzzy autoregressors provide more accurate

3 The series used here can be obtained from http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html.

The International Sunspot Number is produced by the Solar Influence Data Analysis Center

(SIDC) at the Royal Observatory of Belgium [49].
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out-of-sample predictions with no exception for any of the prediction horizons.

5.3 Aggregated Incoming Traffic in the Internet2 Backbone Network

This series, Internet2 henceforward, represents the total amount of aggregated incoming

traffic in the routers of the Abilene network, the Internet2 backbone, during several

years. The Internet2 series consists of 1458 daily averages (in bps), shown in figure 17

covering from the 4th of January of 2003 to the 31st of December of 2006. The data are

available from the Abilene Observatory [21]. The daily averages for years 2003 and

2004 (the first 728 values) were selected as training set, whereas the daily averages for

years 2005 and 2006 (the last 730 values) were selected as test set.

Figure 18 shows the number of variables selected for the two maximum regressor sizes

considered for the Internet2 series: 7 and 12. For these two cases, figure 19 shows the DT

estimates as well as training and test errors. The average training and test error of

LS-SVM models are shown together with the errors of fuzzy models in table 2. Again,

for both regressor sizes, fuzzy autoregressors are more accurate with no exception for

any of the prediction horizons.

5.4 Santa Fe Time Series Competition: Laser Dataset

The laser data set of the Santa Fe Laser time series competition [45] (SFL) consists of

1000 training samples and 9000 test samples, as shown in figure 20. The series

represents the intensity of a far-infrared-laser in a chaotic state, measured in a physics

laboratory experiment. This time series is a cross-cut through periodic to chaotic

pulsations of the laser. In this case, as opposed to the previous series, the underlying

system can be described as a low dimensional deterministic system using three coupled
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ordinary differential equations. Indeed, chaotic pulsations can be closely modeled using

the theoretical Lorenz model of a two level system [52,25], since the experiment was

designed to fulfill the condition of being describable by this model as closely as possible.

This series is a remarkable example of noise-free complicated behavior in a clean,

stationary, low-dimensional physical system for which the underlying dynamics is well

understood. The data set is very predictable on short time scales because of the relatively

simple oscillations. However, the rapid decay of the oscillations are events harder to

predict.

In this case, two maximum sizes are considered: 10 (for which exhaustive search of DT

estimates is applied) and 16 (for which the exhaustive search is extended with a

forward-backward search up to size 16). The number of variables selected for both cases

is shown in figure 21.

Figure 22 shows the DT estimates as well as training and test errors for the two regressor

sizes considered. As shown in table 2, for this series LS-SVM based autoregressors

clearly outperform their fuzzy counterpart in terms of accuracy.

5.5 Mackey-Glass Series

The Mackey-Glass time series [31] (MG henceforth) is another case of fully

deterministic dynamics. However, this series is generated numerically. It is often used in

the literature for evaluating nonlinear methods and fuzzy systems identification and

prediction methods in particular [51,26,44,22,12]. The MG series is defined by the

following differential equation:

dy(t)

dt
=

0.2y(t− τ)

1 + y10(t− τ)
− 0.1y(t).

28



When τ > 17, the series exhibits chaotic behavior. Higher values of τ yield higher

dimensional chaos. In this section, a discrete time series is generated using the 4th order

Runge-Kutta numerical integration method with τ = 30.

A series of 1500 values (see figure 23) was generated and splitted into a set of 500

samples for training and a set comprising the remaining 1000 samples for test. As

in [51], we use a maximum regressor size of 9.

Figure 24 shows the number of selected variables for horizons up to 50. Figure 25 shows

the training and test errors together with the DT estimates. From table 2, it is evident that

LS-SVM models achieve a greater accuracy averaged for horizons 1 through 50.

For comparison purposes with the literature about fuzzy modeling of the Mackey-Glass

series, we consider the 1 step ahead autoregressor for the MG series. For a regressor size

of 9, the inference system has only two inputs, both with 5 linguistic labels, and 13 rules.

In spite of the simplicity of this system, its test error is approximately 9% lower than the

DT estimate.

6 Discussion

In this study, no preprocessing stage has been performed on the datasets. Preprocessing

techniques, such as detrending, rescaling, seasonal adjustment, noise reduction, and

wavelet decomposition, among many others [9,25], can be useful depending on the

dataset characteristics and particular field of application. The extent to which predictions

can be improved with preprocessing techniques is however difficult to quantify in

general, specially when nonlinear models are used. In particular, it is worth to mention

that the presence of outliers can have a significant impact on the results [10,9]. First, the

modeling techniques used here rely on the MSE as an error measure and are thus
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inherently sensitive to outliers. Furthermore, the results from the DT are also sensitive to

outliers, both for input selection and residual variance estimation. Therefore, the

presence of outliers should not be disregarded in a general context, and outlier detection

algorithms [10,9] should be employed in the preprocessing stage in applications where

outliers are involved.

The combined use of a nonparametric noise estimation method with fuzzy modeling

techniques has been experimentally shown to perform well for long-term time series

prediction. The methodology developed does not require a validation stage and thus the

whole available data set can be used as training data to build autoregressive models.

The use of an a priori approach for both variable selection and structure selection

drastically reduces the computational cost. Furthermore, the use of DT estimates in a

first input selection stage as well as in the identification and tuning stage has been shown

to be advantageous in two main aspects:

• The use of DT for input selection improves the interpretability of the fuzzy models

built since only the relevant variables are inputs to the inference systems. This fact, in

turn, greatly simplifies the whole structure of the inference system and alleviates the

curse of dimensionality problem. Input selection allows for a drastic reduction of the

number of inputs. For instance, this is specially clear for the MG series, for which

only 2 inputs out of 9 are selected for short-term prediction (horizons 1 through 4).

• It has been shown to be a robust solution to the problem of selecting the proper system

complexity, providing satisfactory performance for heterogeneous experimental data.

In general, the optimal DTBTh threshold in terms of accuracy is dependent on the data

set, the nonlinear approximation technique as well as the particular parameters

employed, i.e., fuzzy operators, MFs, inference model, and the identification and tuning

methods. The definition of a particular threshold can be thus understood as a hint on what

30



degree of accuracy is expected when a particular fuzzy modeling technique is applied.

In this paper, a tolerant DT based threshold has been defined. With a more strict

threshold, more accurate models could be built. However, by using a tolerant DT based

threshold, we have favored simplicity to the detriment of accuracy. This way, linguistic

interpretation of the models is easier and we can thus exploit in practice a fundamental

advantage of fuzzy inference models.

All these factors contribute to a methodology for building fuzzy inference models that

are both accurate and interpretable for both short-term and long-term prediction. In

addition, fuzzy models have been shown to clearly outperform LS-SVM models in terms

of prediction accuracy in the case of noisy time series for which there are no satisfactory

deterministic models available. For the series shown in table 2 and excluding the SFL

and MG series, the average test error of LS-SVM models is 52% higher than that of

fuzzy models. For further comparison with other, less accurate modeling techniques,

results for OP-ELM and k-NN models are given in appendix A.

A remarkable property of the fuzzy regressors developed with our methodology is their

generalization capability. Test errors have been found to be very close to training errors.

The difference between them is typically no more than 20-30% except in the case of the

Sunspots series, where test errors are approximately 60% higher than training errors.

While LS-SVM are usually praised for their good generalization performance, fuzzy

autoregressors exhibit a much lower degree of overfitting.

On the other hand, It has been shown that LS-SVM models achieve a greater accuracy

than fuzzy models for a specific type of series represented by the SFL and MG series.

Both are noise-free, stationary, low-dimensionally chaotic, can be predicted with

relatively simple analytical models and can be approximated with a very high accuracy.

Similar results can be obtained for a wide range of series of the same class. This fact
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leads us to conclude that in the absence of noise and perturbations, fuzzy inference based

autoregression may not be a proper technique if the main objective is approximation

accuracy and interpretability is a secondary objective. This type of series is however not

common in many real world applications. In addition, the higher accuracy of LS-SVM

does not come at no cost. For the MG (9), SFL (10), and SFL (16) series, the

construction and optimization of the LS-SVM model requires approximately 37, 35 and

103 times more run time respectively, as shown in table 3. Thus, the methodology

proposed here, while clearly less accurate for this kind of series, is still significantly

faster and exhibits less overfitting.

As far as computational requirements is concerned, the proposed methodology has a

very low cost compared against the LS-SVM method. This factor has important practical

implications that are often neglected or only partially addressed in the literature. In fact,

the high and often unaffordable cost of the LS-SVM and other accurate modeling

techniques has recently motivated the development of faster nonlinear learning machines

for time series applications [47,20].

A tool, xftsp [38], has been developed that implements the methodology proposed in this

paper and provides support for the identification and tuning algorithms included in the

Xfuzzy development environment for fuzzy systems [53]. The design of the xftsp tool

allows for the use of the wide set of tools available in the Xfuzzy environment for

complementary tasks such as visualization, simplification and code generation. This Java

based implementation of the methodology presented here is consistently between 1 and 2

orders of magnitude faster than the implementation of LS-SVM used for this study: the

optimized C version of the LS-SVMlab1.5 Matlab/C toolbox [30]. Table 3 shows the

time required to build models with both methods for a subset of the time series

considered in this paper. Memory consumption is also much lower for the fuzzy

methodology, which enables it to be applied to large training series beyond the few
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thousand samples current practical limitation of LS-SVM models.

The fact that the test results are improved when a DT based threshold higher than the DT

estimate itself is introduced, leads us to two remarks on the performance of the

identification and tuning stage:

• There is likely room for improvement of the identification and tuning procedures.

• The DT based threshold can be seen as an aggressiveness index. 1 would be the most

aggressive option, most often leading to overfitting and high complexity. Values in the

range [1.2, 2]DTh are reasonable for the identification and learning techniques

employed, most often leading to both low complexity and overfitting.

The fact that the impact of the DT based threshold is very similar for all the series

analyzed leads us to conclude that it is a factor eminently dependent on the identification

and learning procedure and its inner limitations. Other methods for fuzzy inference

systems identification, tuning and simplification exist, and the ones used in this paper

could be improved. This is an area of future research.

For complex and noisy time series, it is common that the most simple fuzzy system that

can be built (the one with 2 linguistic labels per input) is comparable in accuracy to the

LS-SVM model. For example, the fuzzy system with 2 linguistic labels per input for

horizon 1 prediction of the PolElec series outperforms LS-SVM with the same input

selection. In this case, the test error of the fuzzy regressor is approximately 35% lower.

In general, it can be concluded that fuzzy systems with the minimum number of

linguistic terms, though not optimal in terms of accuracy, provide a reasonable

approximation to the best system that can be built. Thus, it is easy to obtain very simple

approximate models that ease the understanding of the time series dynamics.
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7 Conclusion

We have proposed an automatic methodology framework for long-term time series

prediction by means of fuzzy inference systems. The use of a nonlinear input selection

method yields improved accuracy and interpretability. Experimental results for a

concrete implementation of the methodology confirm the satisfactory approximation

accuracy and generalization capability of fuzzy regressors. Linguistic interpretability and

significantly lower computational requirements are two remarkable advantages over

common time series prediction methods.

A fundamental advantage of autoregressive time series prediction with fuzzy inference

systems is the fact that the models constructed consist of linguistic rules that can be

interpreted by humans. For some time series, the most accurate rule bases have a low

number of rules (below 10-15 rules), making it easy to draw a linguistic explanation of

the system dynamics.

Several procedures have been shown to play a key role in achieving good approximation

accuracy and low overfitting while keeping the complexity low: variable selection,

application of a supervised learning method for tuning after identification, and using

DT-NNE for selecting the proper number of linguistic labels per input. Also, when

systems have a high number of rules and are thus not interpretable by humans in

practice, there is still the possibility to build simpler, approximate models with a degree

of accuracy of the same order.

The proposed methodology has been shown to clearly outperform LS-SVM based

predictions in terms of approximation accuracy except in the particular case of

noise-free, stationary and deterministic time series, where fuzzy autoregressors are still

significantly faster to build and exhibit less overfitting.
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A Accuracy Comparison of Different Methods

For further comparison, the modeling and prediction accuracy of different modeling

techniques for the series analyzed in this paper are shown in table 4. Two alternatives are

considered in addition to LS-SVM: OP-ELM and k-NN models. Errors are shown in

units relative to that of fuzzy models.

The extreme learning machine (ELM) [20] is a simple yet effective learning algorithm

for training single-hidden-layer feed-forward artificial neural networks with random

hidden nodes. OP-ELM [47] is a methodology based on the ELM, that has been shown

to produce models competitive against well-known, accurate techniques, such as

LS-SVM and Multilayer Perceptron, while being significantly faster. OP-ELM models

were built using the OP-ELM toolbox [33] with the following configuration options: a

combination of linear, Gaussian and sigmoid kernels, a maximum of 100 neurons, and

data normalization before modeling. k-NN models were generated with 10 as maximum

number of neighbors, using the Euclidean distance and 10-fold cross-validation for

selecting the best k. LS-SVM models were generated as detailed in sections 5 and 6.

Considering the out-of-sample or test error, LS-SVM and OP-ELM are in general more

accurate than k-NN models, with only a slight exception for the SFL (16) series.

LS-SVM are in general more accurate than OP-ELM models, with the clear exceptions

of the Sunspots (9) and Sunspots (12) series, where OP-ELM models are the most

accurate and also outperform fuzzy models. OP-ELM are also slightly more accurate

than LS-SVM for the AbileneI (7) series and slightly less accurate for the AbileneI (14).

It should be noted that the Sunspots series is considerably nonstationary and the test set

differs from the training set significantly.

35



B Comparison of Different Neuro-Fuzzy Methods

In the particular implementation of the proposed methodology used in this paper, the

W&M and Levenberg-Marquardt methods have been employed for identification and

tuning. This selection has been made on the basis of their satisfactory results in terms of

both accuracy and interpretability. Here we compare the performance of these two

methods against some other alternatives.

Table 5 compares the test errors obtained with different methods for identification and

tuning of fuzzy inference systems. For easier comparison, errors are shown relative to

the errors of the inference models built using the W&M and Levenberg-Marquardt

methods within the methodology proposed in this paper. For instance, the 50 fuzzy

inference models for the ENSO series, when identified using the W&M method and

optimized using the Rprop method, have an average test error 3.8% higher than that

shown in section 5, table 2 for the W&M and Levenberg-Marquardt methods.

Two identification methods are considered in the table: W&M and the method based on

subtractive clustering (SC) proposed by Chiu [11]. The W&M method was found to

consistently provide better results than other grid partition based methods, such as the

algorithm by Higgins and Goodman [18]. The SC method was found to consistently

provide better accuracy than other clustering based identification alternatives using the

Gath-Geva [1,15], Gustafson-Kessel [17], hard and fuzzy C-means [13] clustering

methods.

A number of supervised learning algorithms were tested for the tuning substage. For this

study, we used the implementations in the Xfuzzy environment, see [39] for a more

detailed description of the wide range of methods supported. Among them, we

distinguish four classes of methods: gradient descent [32], conjugate gradient, second
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order or quasi-Newton [3], and algorithms with no derivatives. Table 5 shows the test

errors for the best option from each of the first three classes of algorithms: Resilient

Propagation (Rprop) [42,32], from the gradient descent class, Scaled Conjugated

Gradient (SCG) [35], from the conjugate gradient class, and Levenberg-Marquardt

(L-M) [3], from the second order class of methods. The following parameters were used

for the L-M method: initial Hessian addition 0.1, increase factor 10.0 and decrease factor

0.2. It is worth to mention that none of the statistical or probabilistic methods was found

to be competitive in terms of performance, being unable to achieve training errors below

the DT based threshold in most cases, within reasonable time bounds. These include the

Simulated Annealing method with different cooling schemes, Downhill Simplex and

Powell´s methods [39]. We note however that these methods are highly dependent on the

values of several parameters that could be explored only partially.

From table 5, it is clear that the most accurate models can be obtained with the W&M

identification method. Regarding the tuning method, the SCG method is only slightly

less accurate than the L-M method, while the Rprop method is slightly more accurate

than L-M. The three options have been selected as the most accurate among the set of

methods tested, achieving in practice very similar results in terms of accuracy.

However, one of the main objectives of this study is to build models that are accurate, yet

as simple as possible. If we look at the number of MFs required to achieve such degrees

of accuracy, the L-M method is more efficient, as can be seen in table 6. The table shows

three measures of complexity of the fuzzy systems generated with each method: the

number of MFs, as well as the percent shift of the centers and the percent change of

widths of the MFs after tuning, with respect to the initial uniform grid partition. For a

lower number of input MFs, higher changes in the shapes of the MFs can be expected.

As a conclusion, we used the L-M method in this work because it produces systems with
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the lowest number of MFs, while being almost as accurate as possible with the methods

tested. We note however that the Rprop method is almost equivalent in terms of the

number of MFs required. Rprop would be thus a good alternative, yielding models that

are slightly more complex and accurate.

Acknowledgements

The first author is supported by a Marie Curie Intra-European Fellowship for Career

Development (grant agreement PIEF-GA-2009-237450) within the European

Community´s Seventh Framework Programme (FP7/20072013). Most of this work was

done while the first author was with the Microelectronics Institute of Seville,

IMSE-CNM, CSIC – Scientific Research Council. C. Americo Vespucio s/n. Parque

Tecnologico Cartuja. E-41092 Seville, Spain.

This work has been supported in part by project TEC2008-04920/MICINN from the

Spanish Ministry of Science and Innovation, as well as project P08-TIC-03674 and

grants IAC07-I-0205:33080 and IAC08-II-3347:56263 from the Andalusian regional

Government.

38



References

[1] J. Abonyi, R. Babuska, F. Szeifert, Modified Gath-Geva Fuzzy Clustering for Identification

of Takagi-Sugeno Fuzzy Models, IEEE Transactions on Systems, Man and Cybernetics, Part

B 32 (5) (2002) 612–621.

[2] P. P. Angelov, D. P. Filev, An approach to online identification of takagi-sugeno fuzzy

models, IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 34 (1)

(2004) 484–498.

[3] R. Battiti, First and Second Order Methods for Learning: Between Steepest Descent and

Newton’s Method, Neural Computation 4 (2) (1992) 141–166.

[4] I. Baturone, F. J. Moreno-Velo, A. Gersnoviez, A CAD Approach to Simplify Fuzzy System

Descriptions, in: 15th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’06),

2006.

[5] R. E. Bellman, Dynamic Programming, 1957th ed., Republished, Dover Publications Inc.,

2003, ISBN: 0486428095.

[6] G. Box, G. M. Jenkins, G. Reinsel, Time Series Analysis: Forecasting & Control, Prentice

Hall; 3rd edition, 1994, ISBN: 0130607746.

[7] J. Casillas, O. Cordón, F. Herrera, L. Magdalena (eds.), Interpretability Issues in Fuzzy

Modeling, Studies in Fuzziness and Soft Computing, Springer Verlag, Berlin, Germany,

2003, ISBN: 978-3-540-02932-8.

[8] Y.-H. O. Chang, B. M. Ayyub, Fuzzy regression methods - a comparative assessment, Fuzzy

Sets and Systems 119 (2) (2001) 187–203.

[9] C. Chatfield, The Analysis of Time Series. An Introduction, CRC Press, 2003, Sixth edition,

ISBN: 1-58488-317-0.

[10] C. Chen, L.-M. Liu, Joint Estimation of Model Parameters and Outlier Effects in Time

Series, Journal of the American Statistical Association 88 (421) (1993) 284–297.

39



[11] S. L. Chiu, A Cluster Estimation Method with Extension to Fuzzy Model Identification, in:

IEEE Conference on Fuzzy Systems, 1994. IEEE World Congress on Computational

Intelligence, Orlando, FL, USA, 1994.

[12] S. L. Chiu, Fuzzy Model Identification Based on Cluster Estimation, Journal of Intelligent &

Fuzzy Systems 2 (3) (1994) 267–278.

[13] J. V. de Oliveira, W. Pedrycz (eds.), Advances in Fuzzy Clustering and its Applications, John

Wiley & Sons, Ltd., West Sussex, England, 2007, ISBN: 978-0-470-02760-8.

[14] ESTSP´07 European Symposium on Time Series Prediction: Prediction Competition (Mar.

2008).

URL http://www.estsp.org

[15] I. Gath, A. B. Geva, Unsupervised Optimal Fuzzy Clustering, IEEE Transactions on Pattern

Analysis and Machine Intelligence 11 (7) (1989) 773–780.

[16] S. Guillaume, Designing fuzzy inference systems from data: An interpretability-oriented

review, IEEE Transactions on Fuzzy Systems 9 (3) (2001) 426–443.

[17] E. E. Gustafson, W. C. Kessel, Fuzzy Clustering with a Fuzzy Covariance Matrix, in: 17th

Symposium on Adaptive Processes, 1978 IEEE Conference on Decision and Control , San

Diego, CA, 1978.

[18] C. M. Higgins, R. M. Goodman, Fuzzy Rule-Based Networks for Control, IEEE

Transactions on Fuzzy Systems 2 (1) (1994) 82–88.

[19] T.-P. Hong, C.-Y. Lee, Induction of fuzzy rules and membership functions from training

examples, Fuzzy Sets and Systems 84 (1) (1996) 33–47.

[20] G.-B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications,

Neurocomputing 70 (1–3) (2006) 489–501.

[21] The Internet2 Observatory (Jul. 2008).

URL http://www.internet2.edu/observatory/

40

http://www.estsp.org
http://www.internet2.edu/observatory/


[22] J.-S. R. Jang, ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions

on Systems, Man and Cybernetics 23 (3) (1993) 665–685.

[23] J.-S. R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing A Computational

Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River, New

Jersey, 1997, ISBN 0-13-261066-3.

[24] A. J. Jones, New Tools in Non-linear Modelling and Prediction, Computational Management

Science 2 (1) (2004) 109–149.

[25] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd ed., Cambridge University

Press, Cambridge, UK, 2004.

[26] N. K. Kasabov, Q. Song, DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and

Its Application for Time-Series Prediction, IEEE Transactions on Fuzzy Systems 10 (2)

(2002) 144–154.

[27] A. Lendasse, J. Lee, V. Wertz, M. Verleyssen, Forecasting Electricity Consumption using

Nonlinear Projection and Self-Organizing Maps, Neurocomputing 48 (1) (2002) 299–311.
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Table 1

ENSO series: number of membership functions and rules as well as errors for prediction horizon

1. Exhaustive DT based selection of inputs. All errors are given as NMSE.

Before tuning After tuning

#MF #Rules Training Validation Training Validation

2 6 2.833 · 10−2 2.899 · 10−2 1.479 · 10−3 1.705 · 10−3

3 15 8.813 · 10−3 1.016 · 10−2 1.250 · 10−3 1.558 · 10−3

4 20 4.190 · 10−3 4.884 · 10−3 1.189 · 10−3 1.580 · 10−3

5 31 2.709 · 10−3 3.113 · 10−3 1.082 · 10−3 1.616 · 10−3

6 44 1.986 · 10−3 2.466 · 10−3 1.009 · 10−3 1.738 · 10−3

7 56 1.868 · 10−3 2.617 · 10−3 9.228 · 10−4 1.794 · 10−3

8 66 1.453 · 10−3 1.978 · 10−3 9.509 · 10−4 1.869 · 10−3

9 85 1.289 · 10−3 1.915 · 10−3 8.676 · 10−4 1.979 · 10−3

10 101 1.229 · 10−3 1.920 · 10−3 7.509 · 10−4 2.153 · 10−3

11 128 1.130 · 10−3 2.043 · 10−3 6.104 · 10−4 2.602 · 10−3

12 132 1.114 · 10−3 2.113 · 10−3 5.848 · 10−4 2.491 · 10−3

13 175 1.121 · 10−3 2.139 · 10−3 4.902 · 10−4 2.816 · 10−3

14 178 1.006 · 10−3 2.194 · 10−3 4.426 · 10−4 3.455 · 10−3

15 191 9.713 · 10−4 2.126 · 10−3 4.793 · 10−4 2.865 · 10−3
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Table 2

Training and test errors of LS-SVM and fuzzy models averaged for prediction horizons 1 through

50. All errors are given as NMSE. Maximum regressor size specified between parenthesis.

LS-SVM Fuzzy inference

Series Training Test Training Test

ENSO (10) 8.055 · 10−3 3.192 · 10−2 1.943 · 10−2 2.043 · 10−2

PolElec (7) 1.158 · 10−2 3.566 · 10−2 1.696 · 10−2 1.779 · 10−2

PolElec (14) 1.037 · 10−2 3.241 · 10−2 1.582 · 10−2 1.816 · 10−2

Sunspots (9) 1.338 · 10−2 3.284 · 10−2 1.691 · 10−2 2.623 · 10−2

Sunspots (12) 9.637 · 10−3 3.024 · 10−2 1.590 · 10−2 2.546 · 10−2

AbileneI (7) 8.587 · 10−3 2.476 · 10−2 1.448 · 10−2 1.732 · 10−2

AbileneI (12) 6.771 · 10−3 2.153 · 10−2 1.228 · 10−2 1.506 · 10−2

SFL (10) 1.481 · 10−3 6.578 · 10−3 1.020 · 10−2 1.285 · 10−2

SFL (16) 5.275 · 10−4 5.290 · 10−3 8.791 · 10−3 1.202 · 10−2

MG (9) 7.881 · 10−4 3.658 · 10−3 1.385 · 10−2 1.775 · 10−2
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Table 3

Run time (in seconds) required to build models for prediction horizons 1-50. All tests were run on

the same system, with no significant competing load. Maximum regressor size specified between

parenthesis.

Series LS-SVMlab1.5 Fuzzy inference

ENSO (10) 3.45 · 105 1.05 · 104

PolElec (7) 3.04 · 105 1.05 · 104

PolElec (14) 9.91 · 105 2.30 · 104

Sunspots (9) 3.10 · 105 1.04 · 104

Sunspots (12) 2.42 · 105 1.22 · 104

AbileneI (7) 1.40 · 105 1.75 · 103

AbileneI (12) 1.27 · 105 4.69 · 103

SFL (10) 1.28 · 106 3.49 · 104

SFL (16) 1.61 · 106 4.55 · 104

MG (9) 3.64 · 105 3.54 · 103
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Table 4

Accuracy comparison of different nonlinear modeling techniques. Training and test errors, av-

eraged for horizons 1 through 50, of different nonlinear models. Training and test errors are

expressed relative to the training and test errors, respectively, of fuzzy models built using the

W&M and Levenberg-Marquardt methods within the proposed methodology. Absolute errors for

the fuzzy and LS-SVM models were given in section 5, table 2.

LS-SVM OP-ELM k-NN

Series Training Test Training Test Training Test

ENSO (10) 0.41 1.56 0.76 1.91 0.18 2.30

PolElec (7) 0.68 1.99 0.89 2.52 0.39 2.87

PolElec (14) 0.66 1.78 0.71 2.29 0.34 2.86

Sunspots (9) 0.79 1.25 0.92 0.88 0.22 1.34

Sunspots (12) 0.61 1.19 0.90 0.93 0.13 1.66

AbileneI (7) 0.59 1.43 0.74 1.39 0.44 2.32

AbileneI (12) 0.55 1.43 0.85 1.51 0.29 2.06

SFL (10) 0.15 0.51 1.23 1.14 0.27 1.26

SFL (16) 0.06 0.45 1.56 1.18 0.22 1.16

MG (9) 0.06 0.21 0.25 1.52 0.19 1.63
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Table 5

Accuracy comparison of different methods for building fuzzy inference models. Test errors, av-

eraged for horizons 1 through 50, are expressed relative to the test errors of the equivalent fuzzy

models built using the W&M and Levenberg-Marquardt methods within the proposed method-

ology. Results are shown for two identification methods: W&M and Subtractive Clustering (SC)

based, as well as three tuning methods: Levenberg-Marquardt (L-M), Scaled Conjugated Gradient

(SCG), and Resilient Propagation (Rprop).

W&M SC

SCG Rprop L-M SCG Rprop

ENSO (10) 1.003 1.038 1.120 1.065 1.249

PolElec (7) 0.958 0.991 1.035 1.062 1.058

PolElec (14) 0.941 0.964 1.045 1.085 1.070

Sunspots (9) 1.038 0.997 1.139 1.132 1.148

Sunspots (12) 0.996 0.953 1.068 1.100 1.061

AbileneI (7) 1.004 0.922 2.258 2.739 1.080

AbileneI (12) 1.157 1.112 3.177 3.092 1.381

SFL (10) 1.000 0.988 1.055 1.169 1.102

SFL (16) 0.995 0.982 1.089 1.183 1.215

MG (9) 1.051 1.011 1.082 1.184 1.123

Average 1.014 0.997 1.407 1.481 1.153
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Table 6

Complexity comparison of different methods for building fuzzy inference models. Three super-

vised learning methods are compared: Levenberg-Marquardt (L-M), Scaled Conjugated Gradient

(SCG), and Resilient Propagation (Rprop). Three measures of complexity and interpretability are

shown: number of membership functions (#MFs), percent center shift (∆cj,k), and percent width

change (∆σj,k).

L-M SCG Rprop

#MF ∆cj,k ∆σj,k #MF ∆cj,k ∆σj,k #MF ∆cj,k ∆σj,k

ENSO (10) 3.84 8.53 21.7 4.26 6.35 21.2 4.18 7.40 18.0

PolElec (7) 3.08 12.3 13.2 3.14 6.11 8.82 3.10 11.0 10.3

PolElec (14) 3.10 12.8 15.8 3.08 5.38 9.12 3.20 11.4 10.7

Sunspots (9) 3.02 7.40 9.72 3.02 4.66 7.14 3.00 5.89 9.72

Sunspots (12) 3.03 9.20 12.1 3.03 5.64 8.04 3.02 6.25 10.2

AbileneI (7) 3.13 5.87 9.72 3.40 4.02 8.88 3.12 6.60 8.94

AbileneI (12) 4.60 5.13 10.9 5.26 4.99 15.4 4.44 6.73 15.2

SFL (10) 5.03 6.03 26.5 5.94 5.26 27.8 4.97 6.81 22.7

SFL (16) 4.77 5.88 26.1 5.36 5.31 26.4 4.71 6.57 22.4

MG (9) 3.72 12.1 17.7 4.34 7.40 16.0 4.06 10.8 16.0

Average 3.732 8.52 16.3 4.832 5.53 14.89 3.784 7.95 14.42
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Fig. 1. Methodology Framework for Time Series Prediction.
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Fig. 5. ENSO: Errors for horizon 1, exhaustive DT based selection of inputs. Continuous line:

training error. Dashed line: validation error.
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Fig. 6. ENSO: NDT estimates (∗), training (+) and validation (×) errors of fuzzy autoregressors.

Maximum regressor size 10. DT based selection of inputs.
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Fig. 7. ENSO: NDT estimates (∗), test errors for the selected fuzzy autoregressors (+), validation

errors for the optimal complexity selections (x). Maximum regressor size 10. DT based selection

of inputs.
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Fig. 8. ENSO: Prediction of 50 values after the training set. Continuous line (+): actual time series.

Dashed line (×): predictions.
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Fig. 9. ENSO: comparison of the proposed methodology against LS-SVM. Generalization errors of

LS-SVM models (+). Generalization errors of fuzzy models (�). Training errors of fuzzy models

(∗). Training errors of LS-SVM models (×).
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(a) Training series (1400 samples)
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(b) test series (201 samples).

Fig. 10. PolElec: training and test series.
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Fig. 11. PolElec: number of selected variables (exhaustive DT based selection). Continuous line:

regressor size 7. Dashed line: regressor size 14.
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(a) Horizon 1
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(b) Horizon 7

Fig. 12. PolElec: training (continuous line) and test (dashed line) errors against linguistic labels

per input. Exhaustive DT based selection of variables with maximum regressor size 7.
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(a) Maximum regressor size 7
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(b) Maximum regressor size 14

Fig. 13. PolElec: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors. Ex-

haustive DT based selection of inputs.
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Fig. 14. Sunspots: training (first 1000 samples) and test (last 2098 samples) series.
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Fig. 15. Sunspots: number of selected variables (exhaustive DT based selection). Continuous line:

regressor size 9. Dashed line: regressor size 12.
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(a) Maximum regressor size 9
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(b) Maximum regressor size 12

Fig. 16. Sunspots: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.

Exhaustive DT based selection of inputs.
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Fig. 17. Internet2: daily averaged aggregated incoming traffic in the Abilene backbone for 1458

days. Training series (first 728 values) and test series (last 730 values).
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Fig. 18. Internet2: number of selected variables (exhaustive DT based selection). Continuous line:

regressor size 7. Dashed line: regressor size 12.
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Fig. 19. Internet2: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors.

Exhaustive DT based selection of inputs.
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(a) Training series (1000 samples)
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(b) Test series (9093 samples)

Fig. 20. SFL: training and test series.
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Fig. 21. SFL: Number of selected variables. Continuous line: exhaustive DT search with maximum

regressor size 10. Dashed line: forward-backward DT search with maximum regressor size 16.
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(b) Maximum regressor size 16

Fig. 22. SFL: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors. Exhaus-

tive DT based selection of inputs for a maximum regressor size of 10. For regressor size 16, the

exhaustive search for size 10 is extended using a forward-backward DT based search.
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Fig. 23. MG: fragment of the Mackey-Glass series (1500 samples). The first 500 samples are

selected as training set. The remaining 1000 samples are selected as test set.
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Fig. 24. MG: Number of selected variables for horizons up to 50. Exhaustive DT based selection

of inputs. Maximum regressor size 9.
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Fig. 25. MG: NDT estimates (∗), training (+) and test (×) errors of fuzzy autoregressors. Exhaustive

DT based selection of inputs. Maximum regressor size 9.
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