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Abstract

We analyze the use of clustering methods for the automatic identification of fuzzy inference

models for autoregressive prediction of time series. A methodology that combines fuzzy

methods and residual variance estimation techniques is followed. A nonparametric resid-

ual variance estimator is used for a priori input and model selection. A simple scheme

for initializing the widths of the input membership functions of fuzzy inference systems is

proposed for the Improved Clustering for Function Approximation algorithm (ICFA), pre-

viously introduced for initializing RBF networks. This extension to the ICFA algorithm is

shown to provide the most accurate predictions among a wide set of clustering algorithms.

The method is applied to a diverse set of time series benchmarks. Its advantages in terms

of accuracy and computational requirements are shown as compared to least-squares sup-

port vector machines (LS-SVM), the multilayer perceptron (MLP) and two variants of the

extreme learning machine (ELM).
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1. Introduction

Time series prediction and analysis techniques find applications in virtually all areas of

natural and social sciences as well as in engineering. In the time series prediction field,

obtaining accurate predictions is not the only major goal. Understanding the behavior of

time series and gaining insight into their underlying dynamics is a highly desired capability

of time series prediction methods [50].

In the past, conventional statistical techniques such as AR and ARMA models have been

extensively used for forecasting [6]. However, these techniques have limited capabilities for

modeling time series data. More advanced nonlinear methods including artificial neural

networks and other computational intelligence based techniques have been frequently applied

with success [8].

Fuzzy logic based modeling techniques are appealing because of their interpretability and

potential to address a broad spectrum of problems. In particular, fuzzy inference systems

exhibit a combined description and prediction capability as a consequence of their rule-based

structure [27, 49].

In practice, one finds two problems when building a fuzzy model for a time series: choos-

ing variables or inputs to the inference system, and identifying the structure of the system

(linguistic labels and rule base). Once these steps have been accomplished, the fuzzy model

can be tuned through supervised learning techniques.

The first problem can be addressed by means of a priori feature selection techniques

based on nonparametric residual variance estimation [19]. These techniques also provide
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an estimate of the error of the most accurate nonlinear model that can be built without

overfitting.

The second problem can be addressed by data-driven techniques for identification of

fuzzy systems from numerical examples. Two approaches are often distinguished in the

literature: structure-oriented and clustering-based. It has been shown that certain types

of fuzzy inference models identified using clustering methods rank among the best models

in international times series competitions [31, 21], while yielding compact, interpretable

models. In this paper we analyze the use of clustering-based identification methods for fuzzy

inference systems in the context of time series prediction applications. Different clustering

methods are used to perform the identification stage of an automatic methodology framework

previously proposed for the design of fuzzy inference systems as autoregressors for time series

prediction [33, 31, 32]. This methodology uses fuzzy clustering techniques and nonparametric

residual variance estimation techniques in an intertwined manner. This way, the number

of clusters that minimizes the generalization error is derived automatically from an a priori

nonparametric residual variance estimate.

With these premises we propose a methodology for building compact, interpretable yet

highly accurate fuzzy inference models. The proposed method, implemented in the Xfuzzy

environment for the design of fuzzy inference systems [51, 34, 35], is applied to five datasets

coming from diverse real-world time series applications. The results will be compared against

least-squares support vector machines (LS-SVM) [45], a well established method in the field

of time series prediction, that has been shown to be highly accurate. For further comparison,

we will also show the results obtained using optimally-pruned extreme learning machine

(OP-ELM) [44] and standard Extreme Learning Machine (ELM) models [17].

This article is organized as follows. The next section outlines a nonparametric residual

variance estimation method that will be used for both variable and proper model complexity

selection. In section 3 we define fuzzy inference autoregressors and describe how these

are identified using clustering methods. Section 4 presents the stages of the methodology

used to build fuzzy inference models. In section 5 we briefly illustrate the methodology

through examples and analyze experimental results. Finally, section 5.8 further discusses
3



experimental results.

2. Nonparametric Residual Variance Estimation: Delta Test

Nonparametric residual variance estimation (NRVE or nonparametric noise estimation,

NNE) is a well-known technique in statistics and machine learning, finding many applications

in nonlinear modeling [19]. NRVE methods can be applied to recurrent problems such as

variable and model structure selection. These methods are not however in widespread use

in the machine learning community as most work has been done to date within the statistics

community.

Delta Test (DT), introduced for time series in 1994 [38], is a NRVE method, i.e., it

estimates the lowest mean square error (MSE) that can be achieved by a model without

overfitting the training set [19]. Given N multiple input-single output pairs, (x̄i, yi) ∈

R
M × R, the theory behind the DT method considers that the mapping between x̄i and yi

is given by the following expression:

yi = f(x̄i) + ri,

where f is an unknown perfect fitting model and ri is the noise. DT is based on hypothesis

coming from the continuity of the regression function. When two inputs x and x′ are close,

the continuity of the regression function implies that the corresponding outputs, f(x) and

f(x′) will be close enough. When this implication does not hold, it is due to the influence

of the noise.

Let us denote the first nearest neighbor of the point x̄i in the set {x̄1, . . . , x̄N} by x̄NN(i).

Then the DT, δ, is defined as follows:

δ =
1

2N

N
∑

i=1

∣

∣yNN(i) − yi
∣

∣

2
,

where yNN(i) is the output corresponding to x̄NN(i). For a proof of convergence, refer

to [24, 23]. DT is an unbiased and asymptotically perfect estimator with a relatively fast

convergence [23] and is useful for evaluating nonlinear correlations between two random
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variables, namely, input-output pairs. DT can be seen as part of a more general NRVE

framework known as the Gamma Test [19]. Despite the simplicity of DT, it has been shown

to be a robust method in real world applications [24]. This method will be used in the next

sections for a priori input selection, an application initially proposed formally in [11].

3. Fuzzy Inference Systems as Autoregressors

The methodology proposed in this paper is intended to apply to crisp time series, i.e.

those time series consisting of crisp values, as opposed to other kinds of values, such as

interval and fuzzy values. That is, we propose here an automatic methodology to perform

autoregressive prediction of crisp time series by means of fuzzy inference systems using

nonparametric residual variance estimation [33]. We will call fuzzy autoregressors those

autoregressors implemented as fuzzy inference systems. This is not to be confused with

what is usually called fuzzy regression in the literature [7].

Consider a discrete time series as a vector, ȳ = y1, y2, . . . , yt−1, yt, that represents an

ordered set of values, where t is the number of values in the series. The problem of predicting

one future value, yt+1, using an autoregressive model (autoregressor) with no exogenous

inputs can be stated as follows:

ŷt+1 = fr(yt, yt−1, . . . , yt−M+1),

where ŷt+1 is the prediction of model fr and M is the number of inputs to the regressor, i.e.,

the regressor size.

Predicting the first unknown value requires building a model, fr, that maps regressor

inputs (known values) into regressor outputs (predictions). When a prediction horizon higher

than 1 is considered, the unknown values can be predicted following two main strategies:

recursive and direct prediction.

The recursive strategy applies the same model recursively, using predictions as known

data to predict the next unknown values. For instance, the third unknown value is predicted

as follows:

ŷt+3 = fr(ŷt+2, ŷt+1, yt, yt−1, . . . , yt−M+3).
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Recursive prediction is the most simple and intuitive strategy and does not require any

additional modeling after an autoregressor for 1 step ahead prediction is built. However,

recursive prediction suffers from accumulation of errors. The longer the prediction term is,

the more predictions are used as inputs. In particular, for prediction horizons greater than

the regressor size, all inputs to the model are predictions.

Direct prediction requires that the process of building an autoregressor be applied for

each unknown future value. Thus, for a maximum prediction horizon H, H direct models

are built, one for each prediction horizon h:

ŷt+h = fh(yt, yt−1, . . . , yt−M+1), with 1 ≤ h ≤ H.

While building a prediction system through direct prediction is more computationally

intensive (as many times as values are to be predicted) it is also straightforward to parallelize.

As opposed to recursive prediction, direct prediction does not suffer from accumulation of

prediction errors.

In this paper, we follow the direct prediction strategy. In order to build each autoregres-

sor, a fuzzy inference system is defined as a mapping between a vector of crisp inputs and a

crisp output. Let us rename the inputs yt, yt−1, . . . , yt−M+1 as y1, . . . , yM for simplicity. This

way, assuming all (M) inputs are used, the fuzzy autoregressor for prediction horizon h can

be expressed as a set of Nh fuzzy rules of the following form:

Rh
i : IF y1 isL

i,h
1 AND y2 isL

i,h
2 AND . . . AND yM isLi,h

M THEN ŷt+h ← µRh
i
,

where i = 1, . . . , Nh, and the fuzzy sets Li,h
j ∈ {L

h
j,k}, k = 1 . . . , nh

j , j = 1, . . . ,M, with nh
j

being the number of linguistic labels defined for the jth input variable. Li,h
j are the fuzzy

sets representing the linguistic terms used for the jth input in the ith rule of the fuzzy model

for prediction horizon h. µRh
i
are the consequents of the rules and can take different forms.

For example, in a system with two inputs, if Li,h
1 is renamed LOW1 and Li,h

2 is renamed

HIGH2, the ith rule for horizon 1, R1
i , would have the following form:

IF yt wasLOW1 AND yt−1wasHIGH2 THEN ŷt+h ← µRh
i
.
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Depending on the fuzzy operators, inference model and type of membership functions (MFs)

employed, the mapping between inputs and outputs can have different formulations. In

principle, the methodology proposed in this paper can be applied for any combination of

types of MFs, operators and inference model, but the selection can have a significant impact

on practical results.

As a concrete implementation for this paper, we use the minimum as T-norm for conjunc-

tion operations, Gaussian MFs for inputs, singleton outputs, and product inference of rules.

Defuzzification is performed using the fuzzy mean method, i.e., zero-order Takagi-Sugeno

systems [46, 37, 27] are defined. Thus, the result of the inference process is a weighted

average of the singleton consequents. This inference scheme was chosen in order to keep

systems as simple and interpretable as possible. In particular, the use of singleton outputs

simplifies both the interpretation of rules and its local optimization.

Therefore, in this particular case a fuzzy autoregressor for prediction horizon h can be

formulated as follows:

Fh(ȳ) =

Nh
∑

i=1

(

µRh
i
· min
1≤j≤M

µLi,h
j
(yj)

)

Nh
∑

i=1

min
1≤j≤M

µLi,h
j
(yj)

,

where Nh is the number of rules in the rule base for horizon h, µRh
i
are singleton output

values, and µLi,h
j

are Gaussian MFs for the inputs. Thus, each fuzzy set defined for the input

linguistic terms, Lh
j,k (for horizon h, and the kth linguistic term defined for the jth input),

is characterized by an MF having the following form:

µLh
j,k

= exp
[

−(yj − ck,j,h)
2/2σ2

k,j,h

]

, k = 1 . . . , nh
j , j = 1, . . . ,M, h = 1, . . . , H, (1)

where ck,j,h and σk,j,h are scalar values and represent the centers and widths of the inputs

MFs, respectively.

Fuzzy inference systems of the class being designed here are universal approximators [52,

18]. Thus, for a sufficiently large number of rules and MFs, any input-output mapping

should be approximated with arbitrary accuracy.
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3.1. Clustering-Based Identification of Fuzzy Inference Systems

Different approaches to the identification of fuzzy inference systems from numeric data

have been proposed in the literature [29, 40, 2, 20, 41]. Roughly, two classes of methods can

be distinguished: structure-oriented and clustering-based.

In this paper we focus on the clustering-based class of methods and specially on those

methods that follow an offline approach, as opposed to evolving methods such as DEN-

FIS [20] or eTS [2], which are more suitable for adaptive, online learning. The following

clustering algorithms are compared in this paper for the purposes of identifying fuzzy in-

ference systems: the method based on subtractive clustering (SC) proposed by Chiu [9],

the Gath-Geva (GG) [1, 13], Gustafson-Kessel (GK) [16], Hard and Fuzzy C-means (HCM

and FCM, respectively) [10] clustering algorithms, and the Improved Clustering for Func-

tion Approximation (ICFA) algorithm [15], originally proposed for initializing radial basis

function neural networks (RBFNNs) for regression problems. We will pay special attention

to the use of the ICFA algorithm for the identification of fuzzy inference systems since it is

tailored for modeling input-output patterns as opposed to traditional clustering algorithms.

The first step for clustering-based identification of fuzzy inference systems within the

methodology proposed is to apply a clustering algorithm on the input patterns for each

prediction horizon h. Once this process finishes, Qh, h = 1, . . . , H, clusters have been iden-

tified. Then, the structure of the corresponding fuzzy inference systems has to be defined.

In general, fuzzy rules can be interpreted as joint constraints [42] rather than implication

rules. Thus, it is sensible to define a fuzzy rule from each cluster identified. This is the most

frequent approach in the literature. This way, the clusters and their corresponding rules are

considered as prototypes or models of the whole input pattern sequence.

Let us consider as above a multiple scalar input, single scalar output case where the

input patterns to the clustering algorithm consist of M inputs and one output. For every

prediction horizon h, let us denote the clusters identified by c̄hk , i = 1, . . . , Qh. Let every

cluster have the following general form:

c̄hk : (chk,1, . . . , c
h
k,M+1), with k = 1, . . . , Qh,
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where the chk,M+1 correspond to the outputs (yt+h) of fuzzy inference models whereas the

chk,1, . . . , c
h
k,M correspond to the inputs (y1, . . . , yM) to the fuzzy model. For each cluster, a

matching rule is generated with the following form:

Rh
k : IF y1 isL

h
1,k AND y2 isL

h
2,k AND . . . AND yM isLh

M,k THEN ŷt+h ← ck,M+1,

k = 1, . . . , Qh, Qh = Nh = nh
j ,

where a set of input linguistic terms is created {Lh
j,k}, k = 1 . . . , nh

j , j = 1, . . . ,M,. These

linguistic terms are defined by Gaussian MFs, µLh
j,k
, as in equation 1. The output member-

ship functions are defined as singleton functions centered at the corresponding element of

the cluster centers, chk,M+1. The centers of the input Gaussian MFs for the jth input and

kth rule (ck,j,h in equation 1) are set to the jth elements of the corresponding clusters c̄hk.

When inference systems are identified with clustering methods following this approach,

the number of linguistic terms defined for every input variable, nh
j , j = 1, . . . ,M , is equal

to the number of clusters identified, Qh, which in turn is equal to the number of rules

identified, Nh. Hence, Qh different membership functions are generated for each input and

output variable, and Qh rules are generated for horizon h.

The way the widths of the input Gaussian MFs (σk,j,h in equation 1) are set depends on

the clustering algorithm used. In the case of the subtractive clustering algorithm, the width

are set as a constant value proportional to the range of the input and a neighborhood radius

parameter commonly set to 0.1. For the Hard C-means, Fuzzy C-means, Gath-Geva and

Gustafson-Kessel algorithms the widths are set as a function of the membership degrees of

the input patterns to the clusters.

3.2. ICFA-based Identification

The ICFA clustering algorithm was originally proposed as an improvement to the CFA

algorithm [14], for initializing RBF networks, using the k-nearest neighbors algorithm with

k = 1 for setting the radii. In this paper we will analyze two variants of the ICFA algorithm

extended for the initialization of fuzzy inference systems.

The first variant, that we will call ICFA, sets the widths of the input MFs using the

k-nearest neighbors algorithm with k = 1 as well. However, distances are computed on a
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per-input basis and thus the widths for a certain rule derived from a certain cluster can

potentially be set from different neighbors.

The second variant of ICFA, ICFAf , is a simple generalization of the original ICFA

proposal where all the widths for a certain rule are set to a value inversely proportional to

the average weighting parameter w. In the ICFA algorithm, the parameter w measures the

difference between the estimated output of a center and the output value corresponding to

an input vector. The parameter is used to weight the distances between input patterns and

cluster centers. It is defined for every input pattern and cluster as follows:

wik = |F (ȳi)− ok|, i = 1, . . . , N, (2)

where N is the number of input patterns, F (ȳi) are the outputs corresponding to the ith

input pattern, and ok are the estimated outputs for the clusters c̄k. For better readability,

the details of the ICFA algorithm are omitted here, refer to appendix A and [15] for a

complete definition of how the ok are computed and a proof of convergence.

Thus, in the ICFAf variant, the widths are set as follows:

wk =
1

N

i=N
∑

i=1

wik

σk,j =
1

wk

, j = 1, . . . , M

The rationale behind this second extended version of ICFA for fuzzy inference systems

can be explained as follows. The w parameter is defined as a measure of the dispersion

of the actual output values with respect to the output values of clusters. The higher the

average w, the more distant output values are on average to the cluster. Thus, clusters

with a higher average w should be considered as more local prototypes, i.e., the widths of

the MFs should be reduced. In the experimental section it will be shown that this variant

improves the accuracy of fuzzy inference systems as compared to the first ICFA extension.

4. Methodology for Time Series Prediction with Fuzzy Inference Systems

The problem of building a regressor can be precisely stated as that of defining a proper

number and configuration of MFs and building a fuzzy rule base from a data set comprising
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t samples from a time series such that the fuzzy systems Fh(ȳ) closely predict the hth next

values of the time series. The error metric to be minimized is the mean squared error (MSE).

In this paper, we follow a methodology in which a fuzzy inference system is defined for

each prediction horizon throughout the stages shown in figure 1. These stages and how they

are specifically implemented in this paper are detailed in the following subsections.

4.1. Variable Selection

In the time series prediction field, the application of variable selection methods has been

shown to provide several advantages, such as reducing the model complexity and increasing

the accuracy of predictions [43]. A proper choice of input variables can alleviate the curse

of dimensionality problem while all the relevant data are still available for building a model.

As first step in the methodology, DT estimates are employed so as to perform an a priori

selection of the optimal subset of inputs from the initial set of M inputs, given a maximum

regressor size M .

Variable selection requires a selection criterion. We use the result of the DT applied to

a particular variable selection as as a measure of the goodness of the selection. The input

selection that minimizes the DT estimate, and thus the achievable MSE, is chosen for the

next stages. This way, the set of selected variables is the one that represents the mapping

between inputs and outputs in the most deterministic manner.

NRVE based selection can be classified into the set of model independent methods for

input selection. These methods select inputs a priori, i.e., the selection stage is based only

on the dataset and does not require to build models. Thus, the computational cost of DT

based selection is lower than that of the model dependent cases, in which input selection

is addressed as a generalization error minimization problem, using leave-one-out, bootstrap

or other resampling techniques [24]. Note that an exhaustive evaluation of the DT for

all the possible input selections can become unaffordable for high dimensional problems.

This problem is outside the scope of this paper. In these cases, other, more sophisticated,

approximate search algorithms can be employed.
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4.2. System Identification and Optimization

Usually, defining a fuzzy inference model from data requires two steps: the identification

of the structure and the optimization of parameters [18, 40]. The identification and tuning

stage of our methodology comprises three substages, see figure 1, that are performed itera-

tively and in a coordinated manner. The whole process is driven by the third (complexity

selection) substage, until a system that satisfies a training error condition derived from the

DT estimate is constructed.

4.2.1. Substage 2.1: System identification

In this substage, the structure of the inference system (linguistic labels and rule base) is

defined by means of an automatic fuzzy systems identification algorithm for fuzzy inference

systems. When clustering algorithms are employed for identification, the process is as de-

scribed in section 3.1. The set of inputs is fixed after the previous (variable selection) stage.

The proper number of clusters is found as follows.

The identification substage, as well as the next (tuning) substage are iteratively per-

formed for increasing numbers of clusters (or increasing model complexity). As described

in section 3.1, clustering algorithms usually need the number of clusters to be identified as

an a priori parameter. The performance the clustering algorithms in practical forecasting

applications is hence highly sensitive to this parameter. Here we overcome this limitation

by using the DT estimates as an estimation of the optimal training error of the system.

Since the training error is non-monotonic with the number of clusters, an exploration has

to be performed. Systems are explored in an increasing order of complexity, from the lowest

possible number of clusters up to a maximum specified as complexity boundary.

This iterative identification process for increasing number of clusters stops when a system

is built such that the training error is lower than the DT estimate. The selection is made in

the third stage by comparing the error after the next (optimization) stage.

4.2.2. Substage 2.2: System Tuning

We consider an additional step for local optimization in the methodology as a substage

separated from the identification substage.
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A number of supervised learning and optimization methods have been compared for

this study, including gradient descent, probabilistic, second order, and conjugate gradient

methods. The Resilient Propagation (Rprop) [39, 26] gradient descent method was selected

as the most accurate alternative. The tuning process is driven by the normalized MSE.

All the parameters of the membership functions of every input and output are adjusted

using the algorithm implementation in the Xfuzzy development environment [35], i.e., self-

tuning inference systems are defined.

4.2.3. Substage 2.3: Complexity Selection

The last step in the process of identifying and tuning fuzzy autoregressors consists in

selecting the proper complexity of the (estimated) best autoregressor. The iterative identi-

fication and tuning stage stops when a system is built such that its training error is equal to

or lower than the DT estimate or a threshold based on the DT estimate. Since identification

and tuning iterations are performed for an increasing number of clusters, the system with

the lowest number of clusters that satisfies the DT based error condition is selected.

It should be noted that the methodology described does not require a validation stage

and thus the whole available data set can be used as training data.

5. Experimental Results

In this section, the results obtained for 5 diverse datasets are analyzed. In general,

no pre-processing steps are taken and thus the methodology described above is directly

applied to the datasets. This way we analyze the capabilities of the methods considered

in this paper to directly model real-world data without any expert intervention or use of

pre-processing techniques. In order to study the performance of both short- and long-term

models, prediction horizons ranging from 1 through 50 are considered, i.e., 50 models are

built for every time series. First, we describe the datasets. Then we analyze the accuracy of

different modeling alternatives. Finally, we analyze computational requirements and further

discuss the results obtained.
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5.1. ESTSP 2007 Competition Dataset

We first consider the data set from the competition of the first European Symposium

on Time Series Prediction (ESTSP 2007) [12]. This data set, see figure 2, consists of 875

samples of weekly temperatures of the El Niño-Southern Oscillation phenomenon. In this

section we analyze the original ESTSP 2007 series split into two subsets: a training set (first

475 samples) and a second set (last 400 samples) that will be used for test. We will call this

series ESTSP07. A maximum regressor size M = 10 was chosen for this series.

5.2. Sunspot Numbers

The series of sunspot numbers (Sunspots henceforth) is a periodic measurement of the

sunspot activity as a function of the number of spots visible on the face of the Sun and

the number of groups into which they cluster. We analyzed the series of monthly averaged

sunspot numbers covering from January 1749 through December 2007, as provided by the

National Geographical Data Center from the US National Oceanic and Atmospheric Admin-

istration3. The series was split into a set of 2108 values for training and a set of 1000 values

for testing, as shown in figure 3. Given the yearly periodicity of the series, a maximum

regressor size of 12 was defined.

5.3. Poland Electricity Benchmark

This time series (PolElec henceforward) represents the normalized average daily elec-

tricity demand in Poland in the 1990´s. The benchmark consists of a training set of 1400

samples, shown in figure 4(a), and a test set of 201 samples, shown in figure 4(b), available

from [47]. It has been shown that the essential dynamics of this time series is nearly lin-

ear [22]. Besides the yearly periodicity, a clear weekly periodicity can be seen on smaller

time scales (see figure 4(b)). In this case, a maximum regressor size of 14 was chosen to

better capture the weekly periodicity [22].

3The series used here can be obtained from http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html.

The International Sunspot Number is produced by the Solar Influence Data Analysis Center (SIDC) at the

Royal Observatory of Belgium [48].
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5.4. Dataset 1 of the ESTSP 2008 Competition

Here we consider the first dataset from the ESTSP 2008 competition (ESTSP08-1) [12,

21]. This series is part of a multidimensional time series of monthly averages of different

chemical descriptors of a certain area of the Baltic Sea. The series is made of 354 samples

and spans for 29 years and a half. In this case, the first two thirds of the series were selected

as training set while the final third was selected as test set, as shown in figure 5. Thus, only

236 samples are available for training. In addition, a clear increasing trend in the training

set and change in dynamics can be observed. This fact limits to a great extent the number

of training samples useful for predicting the test set. A maximum regressor size of 12 was

selected in this case.

5.5. Dataset 2 of the ESTSP´08 Competition

The second dataset from the ESTSP 2008 competition (ESTSP08-2) [12, 21] is a univari-

ate time series consisting of 1300 samples that describe the daily average amount of traffic

in a data network, see figure 6. The first two thirds of the series were selected for training

whereas the last third was selected as test set. For this series the maximum regressor size

was fixed to 14.

5.6. Results

Let us illustrate the application of the methodology followed in this paper through a

few examples. In the first stage, given a maximum regressor size, a subset of variables is

selected. Figure 7 shows the total amount of variables selected for two of the series studied.

In every case, the selection stage is performed for each prediction horizon (1 through 50).

It can be seen that the DT based variable selection leads to a significant decrease of the

complexity of the fuzzy inference systems in terms of number of inputs.

As second stage, once input variables have been selected, an iterative identification and

tuning process is carried out in three substages, as shown in figure 1. In the first substage

(identification) a clustering algorithm is applied to the training set in order to identify

inference systems. These systems are then tuned in the second substage through supervised
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learning using the Rprop algorithm. The process is repeated for increasing numbers of

clusters (or fuzzy rules), starting from 1.

Within this iterative process, in the third substage (complexity selection) the DT esti-

mate is used to check whether the best possible approximation has been achieved, i.e., the

right compromise between model complexity and training error has been found. Figure 8

shows the normalized DT (NDT) estimates as well as the training and test errors for two

example series: ESTSP07 and PolElec. Again, horizons 1 through 50 are considered. Note

training and test errors are normalized against the variance of the training and test datasets,

respectively. In figure 9, two examples of the prediction results are shown for the ESTSP07

and ESTSP08-2 series.

A number of supervised learning algorithms were tested for the tuning substage. For

this study, we used the implementations in the Xfuzzy environment [35]. Among them, we

distinguish four classes of methods: gradient descent [26], conjugate gradient, second order

or quasi-Newton [3], and algorithms with no derivatives. All the results given in this section

have been obtained using a method belonging to the conjugate gradient class: Resilient

Propagation (Rprop) [39, 26], which provided the best results on average The following

parameters were employed for the Rprop method: 0.1 as initial update, 1.5 as increase factor,

and 0.5 as decrease factor. It should be noted though that similar results can be achieved

with different alternatives. In particular, the Levenberg-Marquardt (L-M) [3] method yields

errors approximately 1% higher on average, while the Scaled Conjugated Gradient (SCG)

method [30], yields errors approximately 2% higher on average.

In table 1, the accuracy of the different clustering alternatives considered is compared.

The normalized mean squared error (NMSE) is used as error metric. The default parameters

of the implementation in version 3.3 of the Xfuzzy design environment [51, 36] were used.

In particular, the ICFA algorithm was applied with fuzziness index h = 2.0 and 0.01 as

threshold to decide whether the centers have moved significantly. The table lists results

for the two variants of the ICFA algorithm that were described in section 3.1. Table 2

shows the corresponding values of standard deviation of the square errors. In general, lower

average square error values correspond to lower standard deviation values. Comparatively
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the performance of the clustering methods analyzed in terms of standard deviation of the

square error closely resembles the performance in terms of average error

From the table it is clear that the SC method is the least accurate while ICFAf is the

most accurate. For the purposes of comparison with other results in the literature we note

the similarity between the SC method and the subtractive clustering based ANFIS. Note

however that the tuning algorithm used in this paper is Rprop, which in our experience

outperforms the hybridization of gradient descent and least squares optimization proposed

originally in the ANFIS method [18].

The ICFA algorithm is the most accurate by a slight but consistent difference. There

is however one exception. In the case of the ESTSP08-1 dataset the FCM algorithm is the

most accurate, followed by HCM. The ESTSP08-2 series was chosen as a representative case

of series for which only a reduced number of useful training data is available. In these cases,

both the HCM and FCM methods are more robust.

It can be observed that a proper initialization of the widths of the input membership

functions is a key factor to obtaining a better performance with the ICFA algorithm.

5.7. Comparison with Other Modeling Approaches

Let us now analyze the accuracy of the clustering-based fuzzy models described as com-

pared to alternative modeling approaches. As before, no pre-processing steps are performed.

Table 3 shows the test errors for four modeling techniques: Multilayer perceptron (MLP),

least-squares support vector machines LS-SVM, the extreme learning machine (ELM) and

the optimally-pruned ELM (OP-ELM). These modeling techniques were applied using the

same input selection scheme as before.

The MLP [5] is a well known, widely used modeling method with universal approximation

capability and good generalization potential. LS-SVM [45] is a well established method in

the field of time series prediction, that has been shown to be highly accurate. The extreme

learning machine (ELM) [17] is a simple yet effective learning algorithm for training single-

hidden-layer feed-forward artificial neural networks with random hidden nodes. The optimal-

pruned extreme learning machine (OP-ELM) [44] is a methodology based on the ELM, that
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has been shown to produce models competitive against well-known, accurate techniques,

such as LS-SVM and the MLP, while being significantly faster.

An overall comparison of the results listed in tables 3 and 1 shows that fuzzy models

outperform the three alternative methods. As an exception, in the case of the Sunspots

series fuzzy models are less accurate than the other alternatives analyzed.

For this study, standard two-layer MLP models were built for the same training subset,

following a 10-fold cross-validation strategy in order to perform model selection for a max-

imum of 40 hidden units. The implementation in the standard Neural Networks Matlab

Toolbox was used. As for LS-SVM models, the following options were chosen: Radial Basis

Function (RBF) kernels, grid search as optimization routine and cross-validation as cost

function, see [45] for a detailed specification of these and other options. The optimized C

version of the LS-SVMlab1.5 Matlab/C toolbox [25] was employed. Regarding ELM, the im-

plementation by Zhu and Huang available from http://www3.ntu.edu.sg/home/egbhuang

was used with sigmoid functions and standard options. OP-ELM models were built using

the OP-ELM toolbox [28] with the following configuration options: a combination of linear,

Gaussian and sigmoid kernels, using a maximum of 100 neurons. This way, the results pre-

sented here can be compared with those of other studies that also analyzed MLP, LS-SVM

and OP-ELM models using the same implementations [28]. In all cases, data are normalized

before modeling.

In the ELMbest method shown in the table, ELM models are built for 100 different

numbers of neurons between 1 and 100. The model that yields the lowest test error is

selected. Thus, ELMbest can be regarded as a reference of what could be achieved with

standard ELM models. It should be observed that, in practice, results from ELM models

can be expected to be worse as a consequence of the limitations of the particular model

selection scheme applied.

5.8. Discussion

The methodology applied in this paper leverages on a robust technique for NRVE and

input selection as well as the optimization of models through supervised learning. This
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allows for the identification of compact yet highly accurate inference systems at a reasonable

computational cost.

A tool, xftsp [34], has been developed that implements the methodology proposed in

this paper and provides support for the identification and tuning algorithms included in

the Xfuzzy environment [51]. Xfuzzy is conceived as a development environment for fuzzy

inference systems that covers the whole design process, from initial specification using a high

level language to implementation as software or hardware.

The Xfuzzy environment covers the following stages in the design flow of fuzzy inference

systems: description, tuning, verification and synthesis. A number of standalone tools

implement these stages. The link among all these tools is the use of a common specification

language, XFL3, and a common software component for the definition of fuzzy inference

systems using XFL3.

Within the description stage, Xfuzzy includes graphical tools for defining fuzzy systems

in a visual manner. Tools for simulation, monitoring and graphical representation of the

system behavior are provided for the verification stage. The tuning stage encompasses tools

for identification, supervised learning and simplification tasks. Finally, the synthesis stage

includes tools for generating high-level language descriptions for software and hardware im-

plementations. Software implementations can be automatically generated for languages such

as C and Java, whereas hardware implementations are generated in the form of synthesizable

VHDL descriptions. Each tool can be executed whether as an independent program or as

part of a global environment. Interactive usage is under a graphical user interface that ties

together the whole set of tools.

xftsp can be run whether as a standalone console tool or within the Xfuzzy environment.

The design of the xftsp tool allows for the use of the wide set of tools available in the

Xfuzzy environment for complementary tasks such as visualization, simplification and code

generation. Refer to [34] for further details on the design of xftsp and how it fits in the

overall architecture of Xfuzzy. For a complete description of the Xfuzzy environment refer

to [35, 51, 36].

This Java based implementation of the methodology presented here is consistently be-
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tween 1 and 2 orders of magnitude faster than the optimized implementation of LS-SVM used

for this study. Table 4 shows the time required to build models using the aforementioned

four modeling methods for a subset of the time series considered in this paper. Roughly,

OP-ELM models are faster than fuzzy models by an order of magnitude, while fuzzy models

are faster than MLP models by an order of magnitude, and faster than LS-SVM models by

two orders of magnitude.

In practice systems built using the proposed method have a very low number of rules

while attaining a high accuracy for a number of time series benchmarks [33]. In the case

of clustering-based identification methods analyzed here, the number of clusters required to

model time series rarely exceeds 10. Table 5 shows the average number of clusters identified

for the different clustering algorithms analyzed. Despite the methodology yields highly

accurate models, the compactness of these is remarkable as well.

The proposed method has a fundamental advantage over usual prediction techniques.

Each fuzzy rule can be interpreted as a linguistic map between regions of interest of the

input and output domain. The method yields compact rulebases made of rules of simple

structure. This way, fuzzy inference models can be identified in a fully automatic manner yet

analyzed off-line by experts in order to extract linguistic knowledge. Linguistic interpretation

opens new possibilities such as the use of CAD tools that implement interactive techniques

to ease the visualization and analysis of fuzzy inference systems [4].

Let us consider one particular example for the purposes of illustrating the way the proper

number of clusters is automatically selected and how the membership functions are adjusted.

For the 1 step ahead model of the ESTSP07 series three input variables are selected, yt, yt−2,

and yt−7, in order to model yt+1.

Figure 10 shows the training and test errors for different numbers of clusters. Besides

ICFAf the next three best options, GG, FCM and HCM are considered. It should be noted

that, as can be seen in the example as well as in table 5, in general better accuracy comes

at the cost of higher system complexity in terms of clusters and rules. For ICFAf the model

with 9 clusters is selected. For GG the model automatically selected has 6 clusters. In both

cases the selection is perfect. Both the FCM and HCM models have 5 clusters. In the case
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of the FCM clustering method the model with 5 clusters is selected instead of the model

with 6 clusters, which is the most accurate. In the case of the HCM method, the model

with 7 clusters would have been slightly more accurate than the model selected. Finally,

figure 11 shows as an example the shape of the membership functions for the model built

using the ICFAf clustering algorithm.

6. Conclusion

We have described an automatic method for long-term time series prediction by means

of fuzzy inference systems. Regressive inference systems are identified by clustering methods

using nonparametric residual variance estimates together with a local optimization algorithm

in order to set the proper number of rules and configuration of membership functions. The

following conclusions can be drawn from the experiments performed:

� We have compared the performance of different clustering alternatives for initializing

the centers and widths of the membership functions of fuzzy inference systems for time

series prediction.

� This comparison has been made on a diverse set of time series benchmarks. in the

context of a methodology that improves interpretability and accuracy of models by

performing an initial input selection stage.

– It has been shown that the proper number of clusters can be defined in a robust

manner by using a nonparametric residual variance estimator.

– This leads to the identification of remarkably compact rulebases.

� A simple scheme for initializing the widths of the input membership functions has

been proposed for the ICFA algorithm. This scheme has been shown to yield the

most accurate results among a diverse set of clustering algorithms. In addition, fuzzy

inference systems initialized using this variant of the ICFA algorithm have been shown

to provide overall better results than other modeling techniques such as MLP, LS-SVM

and OP-ELM.
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A. Convergence of the ICFA Algorithm

The ICFA clustering algorithm was originally proposed by Guillén et al. [15] as an im-

provement to the CFA algorithm [14]. This appendix explains how the centers are computed

in the ICFA algorithm and how convergence is guaranteed, reproducing the equations de-

veloped in [15] with slight notational changes.

For the ICFAf variant introduced in this paper, the average weighting parameter is

used, as explained in section 3.2. This parameter is based on the weighting parameter wik

defined in the ICFA algorithm (see equation 2). For this definition, normalized functions are

assumed and the way in which the weighting parameter is used guarantees the convergence

of the algorithm, as explained below.

The ICFA algorithm is targeted at functional approximation problems and pursues the

goal of making the centers closer to the areas of higher variability of the target function. To

this end, the Euclidean distance is adjusted by the weighting parameter as follows:

DkiW = ||yi − ck||w
2
ik.

Let us call N the number of samples or input-output pairs, and Q the number of clusters

identified, denoted as Qh for different prediction horizons h in section 3.1. The distortion

function to be minimized by the algorithm is defined as

Jh(U,C,W ) =
N
∑

i=1

Q
∑

k=1

uh
kiDkiW ,

where h is the fuzziness index (for which, as in this paper, a common value is 2), U is the

matrix of membership values, uki, C is the matrix of cluster centers, c̄k, and W is the matrix

of weighting parameters, wik. The above distortion function is subject to the following

constraints:
Q
∑

k=1

uki = 1, ∀i = 1, . . . , N,

0 <
N
∑

i=1

uki < N, ∀k = 1, . . . , Q.
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In the approach proposed in [15], the distortion function is minimized as in the original

CFA proposal, using the Picard iteration algorithm. On each iteration the three following

parameters are computed in this order: the membership degrees, the positions of the centers

and the expected outputs for the centers. These parameters are computed as follows:

uki =

(

Q
∑

j=1

(

DkiW

DjiW

)1/(h−1)
)−1

,

c̄k =

∑N
i=1 u

h
ki ȳiw

2
ik

∑N
i=1 u

h
kiw

2
ik

,

ōk =

∑N
i=1 u

h
kiF (ȳi)d

2
ik

∑N
i=1 u

h
kiw

2
ik

,

where dki is the Euclidean distance between the input data ȳi and centers c̄k, as defined

above. These equations are derived in [15] by setting the derivative of the distortion function

with respect to the parameters to be optimized, i.e., U , C and O, equal to zero. The

distortion function is extended by Lagrange multipliers to incorporate the two constraints

above. This way, convergence is guaranteed, as opposed to the original CFA algorithm.

Furthermore, ICFA requires only one update step per iteration of the algorithm. In addition,

a migration stage is performed after the centers have been identified, refer to [15] for a

complete description of the ICFA algorithm.
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Table 1: Accuracy comparison of different clustering-based identification algorithms for fuzzy inference
systems. The table shows the average normalized square test errors (NMSE for the test series). Errors are
averaged for prediction horizons 1 through 50. In all cases the Rprop optimization algorithm was used. The
lowest errors are highlighted in bold face for each series.

Series SC HCM FCM GK GG ICFA ICFAf

ESTSP07 0.3243 0.2983 0.2911 0.2974 0.2873 0.2714 0.2639

PolElec 0.2645 0.2428 0.2481 0.2463 0.2550 0.2424 0.2418

Sunspots 1.0541 0.9550 0.9552 0.9486 0.9570 0.9334 0.9214

ESTSP08-1 0.7677 0.5887 0.5567 0.6746 0.6872 0.6607 0.6221
ESTSP08-2 1.0526 0.9125 0.8932 0.9257 0.9197 0.8777 0.8564
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Table 2: Standard deviation of normalized square test errors. Comparison of the variability in the accuracy
of different clustering-based identification algorithms for fuzzy inference systems. Standard deviations are
averaged for prediction horizons 1 through 50. The standard deviation values shown correspond to the
average values shown in table 1. The lowest deviations are highlighted in bold face for each series.

Series SC HCM FCM GK GG ICFA ICFAf

ESTSP07 0.3579 0.3185 0.3236 0.3345 0.3145 0.3065 0.2685

PolElec 0.3997 0.3828 0.3830 0.3802 0.3883 0.3966 0.3764

Sunspots 0.9600 0.8521 0.8496 0.9037 0.8848 0.8392 0.7446

ESTSP08-1 1.3825 1.0531 1.0323 1.0988 1.2238 1.3668 1.1524
ESTSP08-2 1.6312 1.4888 1.4715 1.4724 1.4617 1.5608 1.4388

30



Table 3: Accuracy of alternative modeling techniques. Average test errors for prediction horizons 1 through
50 are shown. The lowest errors for each series are highlighted in bold face.

Series MLP LS-SVM ELMbest OP-ELM
ESTSP07 0.424 0.472 0.478 0.602
PolElec 0.741 0.416 0.429 0.398

Sunspots 0.665 0.898 0.908 0.833
ESTSP08-1 1.379 2.084 1.948 1.131

ESTSP08-2 2.173 0.927 2.315 1.111
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Table 4: Run time (in seconds) required to build models for prediction horizons 1-50. All tests were run
on the same system, with no significant competing load. Processing time was measured using the standard
getrusage UNIX system call, accounting for both user and system space tasks.

Series LS-SVMlab1.5 MLP (NN Toolbox) Xfuzzy 3.3 (ICFAf ) OP-ELM Toolbox
ESTSP07 3.27 · 105 1.20 · 104 7.41 · 102 7.84 · 101

PolElec 8.34 · 105 2.33 · 104 1.50 · 103 2.81 · 102

Sunspots 2.42 · 105 3.34 · 104 1.09 · 103 5.20 · 102

ESTSP08-1 6.34 · 103 9.19 · 103 2.81 · 102 3.14 · 101

ESTSP08-2 2.34 · 105 7.34 · 103 4.00 · 103 1.25 · 102
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Table 5: Average and standard deviation of the number of clusters (rules) identified for models built following
the proposed methodology. The numbers shown are averaged for horizons 1 through 50.

Series SC HCM FCM GK GG ICFA ICFAf

ESTSP07 8.7± 3.5 3.7± 1.0 4.0± 1.0 4.3± 1.5 3.7± 1.0 5.1± 1.4 5.9± 2.4
PolElec 5.3± 4.9 2.4± 1.6 2.3± 1.7 3.4± 5.3 2.6± 1.5 3.7± 2.9 3.0± 4.7
Sunspots 1.5± 0.8 1.4± 0.5 1.4± 0.6 1.8± 3.3 1.4± 0.6 1.9± 1.8 1.8± 1.4
ESTSP08-1 3.2± 1.3 2.1± 0.3 2.0± 0.3 2.2± 0.6 2.1± 0.3 9.8± 6.5 2.2± 0.8
ESTSP08-2 5.2± 3.3 4.6± 2.2 5.0± 1.9 11± 6.0 4.6± 1.4 7.2± 3.2 7.4± 6.1
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Figure 1: Methodology for time series prediction using clustering-based identification methods.
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Figure 2: ESTSP07: Dataset from the ESTSP 2007 competition (875 samples).
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Figure 3: Sunspots: Monthly averages of the Sunspot number series (3198 samples).
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Figure 4: PolElec: 1601 samples of electricity consumption.
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Figure 5: ESTSP08-1: Dataset 1 from the ESTSP 2008 competition (354 samples).
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Figure 6: ESTSP08-2: Dataset 2 from the ESTSP 2008 competition (1300 samples).
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Figure 7: Number of selected variables for horizons 1 through 50 for the ESTSP07 and PolElec datasets.
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Figure 8: NDT estimates (∗), training (+) and test (Ö) errors of fuzzy autoregressors for the ESTSP07
and PolElec time series. DT based selection of inputs, ICFAf -based identification and optimization with
Resilient Propagation.
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Figure 9: Prediction of 50 values after the training set for the ESTSP07 and ESTSP08-2 series. Continuous
line (+): actual time series (last 50 training samples and first 50 test samples). Dashed line (×): predictions.
DT based selection of inputs, ICFAf -based identification and optimization with Resilient Propagation.

43



 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

N
M

S
E

Number of clusters

(a) ICFA (9)

 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 0.0024

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

N
M

S
E

Number of clusters

(b) GG (6)

 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 0.0024

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

N
M

S
E

Number of clusters

(c) FCM (5)

 0.0012

 0.0013

 0.0014

 0.0015

 0.0016

 0.0017

 0.0018

 0.0019

 0.002

 0.0021

 0.0022

 0.0023

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16

N
M

S
E

Number of clusters

(d) HCM (5)

Figure 10: Training and test errors as a function of the number of clusters for the 1 step ahead model of
the ESTSP07 series. The plots show training errors (continuous line) and test errors (dashed line). The
number of clusters selected automatically within the proposed methodology for each clustering method is
specified between parenthesis in the respective subheadings.
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(a) yt−7 (b) yt−2 (c) yt (d) Output

Figure 11: Membership functions of the inputs and output for the 1 step ahead model of the ESTSP07
series. ICFAf clustering.
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