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Abstract - This paper presents a new methodology for missing value imputation in a
database. The methodology combines the outputs of several Self-Organizing Maps in order
to obtain an accurate filling for the missing values. The maps are combined using MultiRe-
sponse Sparse Regression and the Hannan-Quinn Information Criterion. The new combina-
tion methodology removes the need for any lengthy cross-validation procedure, thus speeding
up the computation significantly. Furthermore, the accuracy of the filling is improved, as
demonstrated in the experiments.
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1 Introduction

The presence of missing values in the underlying time series is a recurrent problem when
dealing with databases [SLCD09]. Number of methods have been developed to solve the
problem and fill the missing values.

Self-Organizing Maps [Koh95] (SOM) aim to ideally group homogeneous individuals, high-
lighting a neighborhood structure between classes in a chosen lattice. The SOM algorithm
is based on unsupervised learning principle where the training is entirely stochastic, data-
driven. No information about the input data is required. Recent approaches propose to
take advantage of the homogeneity of the underlying classes for data completion purposes
[Wan03]. Furthermore, the SOM algorithm allows projection of high-dimensional data to
a low-dimensional grid. Through this projection and focusing on its property of topology
preservation, SOM allows nonlinear interpolation for missing values.

This paper describes a new method, which combines several SOMs in order to enhance the
accuracy of the nonlinear interpolation. The combination is achieved with a simple linear
regression performed on an extracted sample from the data. The maps to be combined
are selected first using a ranking of the maps by Multiresponse Sparse Regression (MRSR)
and then choosing the best SOMs using the Hannan-Quinn Information Criterion. The
combination improves the accuracy of the imputation as well as speeds up the process by



MASHS 2009, Toulouse

removing the cross-validation scheme [SLLO7].
The global methodology is presented in the next section, including all the methods combined
in the global methodology. The Section 3 demonstrates the accuracy of the methodology.

2 Global Methodology

The global methodology is summarized in Figure 1.

Training SOMs Ranking of Selection of Linear combination Filled
Data using different  |—f> the SOMs —D the best SOMs ——>| ofthebest L
number of nodes using MRSR by HQ SOMs Data

Figure 1: Global methodology summarized.

The core of the methodology is the Self-Organizing Map (SOM). Several SOMs are trained
using different number of nodes and the imputation results of the best SOMs are linearly
combined.

In order to create the linear system, we have to remove a calibration set from the data before
any processing. Then, the SOM estimations of the removed calibration data are used as the
variables of the linear equations and the removed data itself as the outputs of the equations.
The linear system is summarized in the following formula:
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where s; denotes the ith removed calibration sample, 3; ; denotes the ith calibration data
sample estimated by jth SOM, L denotes the number of calibration data points, () the number
of the best SOMs used and, finally, the vector & denotes the linear system parameters. The
number of SOMs (@ is determined by the MultiResponse Sparse Regression and the Hannan-
Quinn Information Criterion.

When the « is solved, it can be used to estimate the originally missing values of the dataset
from the best SOM estimations selected.

In the following subsections, each of the methods is explained more deeply.

2.1 Imputation using SOM

The SOM algorithm is based on an unsupervised learning principle, where training is entirely
data-driven and no information about the input data is required [Koh95]. Here we use a
2-dimensional network, composed of ¢ units (or code vectors) shaped as a square lattice.
Each unit of a network has as many weights as the length T of the learning data samples,
Xp, n = 1,2,..., N. All units of a network can be collected to a weight matrix m (t) =
[my (t),ms (¢),...,m. (t)] where m,; (¢) is the T-dimensional weight vector of the unit i at
time ¢ and t represents the steps of the learning process. Each unit is connected to its
neighboring units through a neighborhood function A(m;, m;, t), which defines the shape and
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the size of the neighborhood at time ¢. The neighborhood can be constant through the entire
learning process or it can change in the course of learning.

The learning starts by initializing the network node weights randomly. Then, for a randomly
selected sample x;41, we calculate the Best Matching Unit (BMU), which is the neuron whose
weights are closest to the sample. The BMU calculation is defined as

MBMU(x41) = A8 H;%Iell{‘|xt+1 —m; (¢)]}, (2)
where I = [1,2,...,¢] is the set of network node indices, the BMU denotes the index of the
best matching node and ||.|| is a standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be solved outright.
Instead, an adapted SOM algorithm, proposed by Cottrell and Letrémy [CLO05], is used.
The randomly drawn sample x;;1 having missing value(s) is split into two subsets X;ﬂ_l =
NDMy,,, U My, ,, where NM,, . is the subset where the values of x;y; are not missing and

My, , is the subset, where the values of x;11 are missing. We define a norm on the subset
NMy,, , as
2
e =i Ollar,,, = D (e —min(t)”, (3)
kENMx, , |
where x;11 for k = [1,...,T] denotes the k' value of the chosen vector and m; k(t) for

k=[1,..,T] and for i = [1,..., ] is the k™ value of the i code vector.
Then the BMU is calculated with

a0 ) = 1 i { [ —mi () g, | - (4)

When the BMU is found the network weights corresponding to the non-missing values of x441
are updated as

m; (t -+ 1) =m; (t) — €(t)7\ (mBMU(Xt+1), mi,t) [IIIZ (t) — Xt+1] ,V’L S I, (5)

where €(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing gradually with
time. The number of neurons taken into account during the weight update depends on the
neighborhood function A(m;, m;,t). The number of neurons, which need the weight update,
usually decreases with time.

After the weight update the next sample is randomly drawn from the data matrix and the
procedure is started again by finding the BMU of the sample. The learning procedure is
stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing our data. Cottrell
and Letrémy proposed to fill the missing values of the dataset by the coordinates of the code
vectors of each BMU as natural first candidates for the missing value completion:

T(My) (X) = T(ary) (mBMU(x)) ) (6)

where 7z, (.) replaces the missing values My of sample x with the corresponding values of
the BMU of the sample. The replacement is done for every data sample and then the SOM
has finished filling the missing values in the data.
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The procedure is summarized in Table 1. There is a toolbox available for performing the
SOM algorithm in [urla].

Table 1: Summary of the SOM algorithm for finding the missing values.

1. SOM node weights are initialized randomly

2. SOM learning process begins

(a) Input x is drawn from the learning data
set X

i. If x does not contain missing val-
ues, BMU is found according to
Equation 2

ii. If x contains missing values, BMU
is found according to Equation 4

(b) Neuron weights are updated according
to Equation 6

3. Once the learning process is done, for each
observation containing missing values, the
weights of the BMU of the observation are
substituted for the missing values

2.2 MultiResponse Sparse Regression

Multiresponse Sparse Regression, proposed by Timo Simild and Jarkko Tikka in [STO05] is
a variable ranking technique and an extension of the Least Angle Regression (LARS) algo-
rithm [EHJTO04].

The main idea of the algorithm is the following: Denote by X = [x;i...X,,] the n x m
regressor matrix. MRSR adds each column of the regressor matrix one by one to the model
Y+ = XWF, where Y* = [yh .. .ng] is the target approximation of the model. The W¥
weight matrix has k& nonzero rows at kth step of the MRSR. With each new step a new
nonzero row, and a new column of the regressor matrix is added to the model.

More specific details of the MRSR algorithm can be found from the original paper [STO05].
An important detail shared by the MRSR and the LARS is that the ranking obtained is
exact, if the problem is linear. Here, in this paper, we linearly combine the SOM estimations
of the missing values and, therefore, we have an exact ranking of the estimations.

2.3 Hannan-Quinn Information Criterion

Because the MRSR only ranks the SOM estimations, we need a method to actually select the
optimal number of input variables. This kind of selection can be considered as a complexity
selection or input variable selection.
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There are many possible criteria for complexity selection used in machine learning. Typical
examples are Akaike’s information criterion (AIC) [Aka74] or the Bayesian Information Cri-
terion (BIC) [Sch78]. Their expression is usually based on the residual sum of squares (Res)
of the considered model (first term of the criterion) plus a penalty term (second term of the
criterion). Differences between criteria mostly occur on the penalty term. The AIC penalizes
only according to the number of parameters p of the model, shown in Equation 7, whereas the
BIC takes into account also the number of samples N used for the model training, Equation
8.

BIC = N x log <%> +pxlogN, (7)

AIC = N x log <%>+2 X p. (8)

The AIC is known to have consistency problems: while minimizing the AIC, it is not guaran-
teed that the complexity selection will converge toward an optima, if the number of samples
goes to infinity [BD77]. The main idea raised by this observation is about trying to balance
the underfitting and the overfitting when using such a criterion. This is achieved through the
penalty term, for example, by having a log N based term in the penalty, which the BIC has.
Unfortunately, in our previous experiments, the BIC criterion failed to give proper results in
terms of complexity.

The Hannan-Quinn Information Criterion (HQ) [HQ79] is very close to the other two criteria.
The HQ is defined as

HQ@ = N x log <%>+2xpxlog(logN). 9)

The idea behind the design of this criterion is to provide a consistent criterion, unlike the
AIC, and in which the penalty term 2 x p x log(log N) grows with a very slow rate regarding
the number of samples.

In this paper, the HQ criterion is used to select an optimal number of already ranked SOM
estimations to be combined. The number of samples corresponds to the number of selected
training points from the training dataset and the number of parameters to the number of
SOM estimations to be combined.

3 Experiments

In the following experiments, we use a financial fund dataset. The dataset is classified and,
therefore, our possibilities to mention any specifics are very limited. The dataset can be
downloaded from [urlb].

The dataset contains 120 time series of funds from a total of 121 months each. The data has
been normalized and rescaled. The series are correlated in time and between series and there
are no missing values originally present in the dataset. Figure 2 shows 15 example series of
the original 120 rescaled fund values.

Before running any experiments, we randomly remove 20 percent of the data as a test set.
The test set contains roughly 2900 values. In our methodology, there is no need for actual
validation set, but in order to calculate the linear model parameters for the SOMs, we have
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Figure 2: Rescaled and normalized fund values of 15 funds present in the database.

to remove a set of data that will be used as output of the linear model. For that purpose, 20
percent of the remaining data are removed, which corresponds to roughly 2300 values, and
the set is called calibration set.

According to the methodology, several SOMs are trained using different amount of nodes.
Figure 3 shows the training evaluation error with respect to the SOM size. In this paper, the
SOM size is actually the length of the dimension of the square lattice. So, for example, size
10 means a square SOM grid of size 10x10, a total of 100 nodes.

-3

x 10

Training Evaluation Error

|
5 10 15 20 25
SOM Size

Figure 3: SOM training evaluation errors with respect to the SOM size.

From Figure 3 we can see that the best SOM size, according to this simple calibration
evaluation, is 6. It means that the som with only 36 nodes is the most optimal to fill in the
missing training evaluation values.

Of course, if we would use a standard SOM for the filling, we should use a lengthy Cross-
Validation scheme to validate the SOM size. But even that lengthy process does not guarantee
that the SOM to be used to fill the test set values is properly validated.
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Figure 4 shows the Hannan-Quinn Information Criterion values with respect to the number
of SOMs in the combination.

| | |
5 10 15 20 25
Number of SOMs in the Combination

Figure 4: Hanna-Quinn Information Criterion values for the selection of SOMs in the combination.

From Figure 4 we can see that the most optimal value is reached with 12 SOMs. The selected
SOM sizes are 7, 9, 12, 16, 18, 20, 21, 22, 23, 24, 25 and 26. Here the maximum SOM grid size
was 26. From the previous list we can clearly see that the small SOM grids are not accurate
enough to be included in the combination, but several larger sizes are. Comparing this to
Figure 4 it is also clear that after the 12 selected SOMs the HQ value starts to increase, which
means that the rest of the SOMs do not improve the results.

After the calibration, the obtained models are used to fill in the test set. In Table 2 the errors
are summarized.

Table 2: Test Errors for the SOM and the Combined SOMs.

1073 ‘ Training Evaluation Error Test Error
SOM 1.8 1.6
Combined SOMs 1.3

From Table 2 we can see that the Combination of the SOMs clearly outperforms the single
SOM decreasing the test error by 18 percent.

4 Conclusions

As the experiments demonstrate, the new methodology combining several Self-Organizing
Maps is at least as accurate in filling of the missing values than single SOM alone. At the
same time, the calculation time is reduced significantly (almost divided by 10), because of
the removal of the cross-validation phase from the SOM.

Further work consists of finding other ways to combine the SOMs and compare the achieved
performance to other popular imputation methods.
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