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Abstract—This paper analyzes the impact of different de-
trending approaches on the performance of a variety of
computational intelligence (CI) models. Three approaches are
compared: Linear, nonlinear detrending (based on empirical
mode decomposition) and first-differencing. Five representative
CI methods are evaluated: Dynamic evolving neural-fuzzy
inference system (DENFIS), Gaussian process (GP), multilayer
perceptron (MLP), optimally-pruned extreme learning machine
(OP-ELM) and Support Vector Machines (SVM). Four major
conclusions are drawn from experiments performed on six time
series benchmarks: 1) qualitatively, the effect of detrending
is remarkably uniform for all the CI methods considered, 2)
extraction of the overall trend does not improve performance in
general 3) the EMD-based method provides better performance
than linear detrending (while the difference is negligible in most
cases, it is noticeable in some cases), and 4) first-differencing,
while effective in some cases, can be counterproductive for series
showing common patterns.

I. INTRODUCTION

Traditional statistical methods [1], [2] common in time

series applications assume stationarity of the dataset to be

modeled. This is likewise the case of conventional regres-

sion methods based on neural networks and computational

intelligence, which are commonly used to address time series

modeling and prediction problems.

However, the phenomena underlying time series often ex-

hibit complex nonlinear behavior. Many classes of dynamical

behavior have been described, including regular predictable

and unpredictable behavior, transient and intermittent chaos,

narrow-band and broad-band chaos, pseudo-randomness and

superposition of several basic patterns [3]. In real world ap-

plications, most time series exhibit nonstationarity, whether

dynamical of statistical. As a consequence, it is generally

accepted that removing trends (detrending) and seasonal

components (deseasonalizing) can help improve the perfor-

mance of (stationarity assuming) modeling methods.

Indeed, finding and modeling trends is one of the major

tasks in the analysis and prediction of time series. Trends

also play a central role in time series data mining. Thus,

there has been a great deal of work on trend identification

and detrending in a variety of disciplines from diverse areas
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of science and engineering. Hence, finding trends can be

motivated by at least two main reasons: turn a nonstationary

time series into stationary, and characterzing its behavior by

separating components such as trend, cycles, fluctuations and

noise.

However, there is no general consensus on how trends

should be modeled [4]. Furthermore, the concept of trend,

despite the widespread use of the term, lacks concrete and

formal definitions [5]. It has not been until recently that a

first definition of overall trend that can account for nonlinear,

nonstationary data has been formally established [5].

The problem of trend extraction from time series still

poses many fundamental questions. It is generally accepted

that methods for analysis and prediction of time series can

be affected by preprocessing steps that operate on trends.

However there is also a lack of consensus on how these

steps should be applied.

In this context, an analysis of the influence of detrending

techniques on computational intelligence (CI) models would

shed some light on the design of sound CI-based method-

ologies for time series.

Despite the importance detrending can have, there is little

experimental or sufficiently general theoretical results in the

literature. There are some results in the literature concerning

prediction with neural networks for series with trend [4].

However, these are generally application specific and/or

based on limited data or restricted to a particular detrending

approach. Results available are disperse, usually showing

ad-hoc analyses, often contradictory, and are at best based

on synthetic data for simple dynamics or limited real-world

data [4].

In this paper we analyze the impact of different detrending

approaches on the performance of a variety of CI models.

The paper is organized as follows. In section II detrending

is put in the general context of preprocessing steps for time

series. Section III provides a precise definition of trend and

the methods for trend extraction used here. Sections IV and V

present and further discuss experimental results. Finally,

conclusions are summarized.

II. PREPROCESSING AND DETRENDING

In the most simple approach, the trend of a time series is

identified by fitting a deterministic component, usually linear.

The trend is then subtracted in order to guarantee stationarity

of the resulting time series. More generally, detrending is

the process by which a trend is removed from a time series.

The residue after this operation can be called variability or

fluctuation. One common constraint on this process is that
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the detrended series must be a zero-mean process for the

time span considered in the detrending.

During the last few decades, stochastic approaches have

become popular specially in econometrics. Also different

approaches to detrending have become popular in diverse

fields, such as model-based approaches, nonparametric filter-

ing (such as linear filtering and singular spectrum analysis),

and wavelets [6]. Different approaches have been proposed

for so-called trend-stationary series and difference-stationary

series [4].

In general, detrending can be considered one of the pos-

sibly many preprocessing steps that are performed on a time

series before building a CI model. These steps can include,

among others, imputation of missing values, treatment of

outliers and uncertain values, denoising, filtering, nonlinear

transformations for improving smoothness, variable selec-

tion, and computation of dynamical and statistical charac-

teristics, such as residual variance and time lags. However,

the separation of preprocessing stages is not clear in many

cases. For instance it is possible to perform tasks related to

both model selection and outliers jointly [7].

Also, the difference between filtering, denoising and de-

trending may not be obvious in some cases. Furthermore, one

same method can be used to perform several of these tasks.

For instance, single spectrum analysis can be used to perform

denoising, extraction of trends and periodic components,

prediction and change-point detection [6].

In this paper certain detrending approaches are applied as

the only preprocessing step (besides normalization of values).

In this approach, assuming a simple additive superposition

of trend and variability, a time series can be decomposed as:

y(t) = T (t) + r(t),

where r(t) is a residual, variability or fluctuation around

the trend, T (t). The fluctuation component can have both

stochastic and deterministic components.

If only detrending is done, a model ŷ(t) for y(t) becomes

ŷ(t) = T (t) + mCI(t), where the first component is the

overall trend and the second component is the model of the

fluctuations around the overall trend.

We note though that it is very common in some fields

to split a time series into at least three components: trend,

seasonal component and irregular component. For simplicity,

here we restrict our analysis to the approach above. The

analysis of the effect of deseasonalization methods is left

for future work.

III. TREND EXTRACTION: METHODS

Detecting, identifying trends and removing them from time

series, i.e., detrending, is key for data analysis in virtually all

fields. It is also a necessary preprocessing step for statistical

techniques such as computing correlations, as well as spectral

analysis techniques.

Time series are addressed from different viewpoints in

fields such as statistics [2], [1], and nonlinear dynamics [3].

Some comparative studies have been performed for neural

networks models [8], international time series prediction

competitions [9], [10], [11], [10] have been organized, and

global methodologies have been proposed [12]. However,

there is no general consensus on how trends should be mod-

eled [4] or if trends should be modeled separatedly in general.

Furthermore, the concept of trend, despite the widespread

use of the term, lacks concrete and formal definitions [5].

As a consequence, there is a large variety of approaches

and concrete methods for trend extraction. In this context,

it is highly difficult to make a decision on which method

is best. As Wu et al. point out, in the econometrics field,

what is called trend by some economists is called cycle by

others [13].

For instance, according to Alexandrov et al. [6], it can

be considered “a smooth additive component that contains

information about global change.” Several key aspects are

included in this definition: smoothness, additivity, and overall

information.

In many applications, besides the overall trend, other cycli-

cal behaviors can be separated from residual fluctuations, i.e.,

so-called multidecadal trends in geophysics and environmen-

tal sciences, or seasonal components in econometrics.

From the time-frequency viewpoint the trend is often

defined as the residue after higher frequency components

above a certain threshold have been removed. This is for

instance the case of methods based on wavelets, curvelets

or singular spectrum analysis (SSA) [6], and nonparametric

filtering methods, such as the well-known Hodrick-Prescott

filter or more recent filters for extracting piecewise linear

trends based on l1 minimization [14].

On the other hand, regression model based approaches,

using for instance ARIMA models, assume an a priori model

structure for the data, failing thus to be truly adaptive.

Similarly, moving mean approaches are based on an a priori

given time scale to compute the averages.

Thus, in general the definition of overall trend is not clear

when using these methods, as the process depends on the

selection of parameters and a priori structures. For instance, if

using wavelet analysis, the choice of the type of wavelet can

have a determining impact on the outcome of the detrending

process. In this paper, we concentrate on paremeter-free,

automatic methods of general applicability that identify a

clearly defined overall trend.

A. Linear detrending

The most common trend identification approach consists

in fitting a straight line to the time series. Then, the corre-

sponding detrending process by which the straight line trend,

T (t) = a0 + b0t, is subtracted from the time series yields a

zero mean residue.

This linear detrending approach is a particular case of

polynomial detrending: Polynomial detrending of order 1.

The implementation used in the next sections of this paper

is based on on a least squares fitting performed by a QR

decomposition of the time domain. In order to improve the

numerical performance of the fitting, it is applied on the
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following transformation of the time domain:

t̂ =
t− µ1

µ2
,

where µ1 and µ2 are the average and standard deviation

of t, respectively. Detrending with higher order polynomials

usually suffers from overfitting issues. Moreover, it is not

difficult to show that detrending by polynomial fitting can

have negative effects on spectral analysis techniques [15].

B. EMD-based detrending

The aforementioned methods are based on a time-

independent regression formula applied on the dataset. Ex-

cept for physical process with well-known dynamics this

implies fitting an a priori model to data that in most cases

is nonstationary.

This limitation can be overcome by using the empiri-

cal mode decomposition (EMD), introduced by Huang et

al. [16], [13] Wu, Huang et al. define the trend as an

intrinsically determined monotonic function or a function,

within a certain temporal span, where there can be at most

one extremum [5]. The method to extract the trend must be

thus adaptive, and the EMD is proposed in order to fully

account for the nonlinearities and nonstationarities of the

data. In this proposal the overall trend is computed as the

residual of the EMD decomposition process.

EMD is performed through an iterative process known as

sifting. What follows is an algorithm that performs sifting:

1) Identify all the local extrema of y(t).
2) Build an upper and a lower envelope, yup(t) and

ylow(t), respectively, by connecting all the local ex-

trema (maxima and minima, respectively) using a cubic

spline.

3) Compute an envelope mean m(t) point by point.

4) Extract the details signal, d(t) = y(t)−m(t).
5) Check the properties of the details signal.

6) Repeat steps 1-5 until the residual satisfies a certain

stopping condition.

At the end of the sifting process, the original time series y(t)
is decomposed as follows:

y(t) =
p∑

j=1

cj(t) + rp(t),

where rp(t) is the final residue, i.e., the overall trend of y(t),
cj(t) are the intrinsic mode functions (IMFs) identified and

p is the total number of IMFs.

The frequency bands contained in each IMF are different

and change over time as the time series y(t) changes. The

basis of expansion of the EMD method is therefore adaptive

and locally determined. Thus, it offers a more physically

meaningful representation as compared to methods based on

a priori bases.

Then, by applying the Hilbert transform on each IMF, y(t)
can be expressed in the time-frequency domains as follows:

Y (t, ω) = RP

 n∑
j=1

aj(t)ei
∫ t
0 ωj(τ)dτ

 ,

where RP denotes the real part of the transforms, aj(t) is

an expansion coefficient that depends on time, as opposed

to the coefficients of the Fourier transform, and ωj(τ) is the

instantaneous frequency at time τ . Thus, both the frequency

and amplitude of each compoent are functions of time. This

contrasts with the Fourier representation, which would have

the following form:

Y (t) = RP

∞∑
j=1

aje
iwjt,

where both wj and aj are constants. In this sense, the

IMFs can be seen as generalized Fourier expansions with

two advantages: more concise expansion and the capability

to accommodate nonlinear, nonstationary behavior directly

from the dataset. This distribution in the time-frequency

domains, Y (t, ω) is known as the Hilbert spectrum.

EMD has a strong parallelism to a mathematical technique

widely used in the field of fluid dynamics: The Reynolds de-

composition. Stated loosely, EMD performs a decomposition

that separates the average and fluctuating components of a

signal (or the steady components and perturbations, where

the time average of the perturbations is zero).

In practice, some problems such as mixing of different

mode into a same IMF and wrong separation of modes

into two or more IMFs can arise. Several approaches have

been proposed to overcome these limitations. Indeed, several

aspects can be fine-tuned in the EMD process in order to

obtain better results under certain conditions. However, no

theoretical conditions have been established and in practice

it is difficult to define a variant of the EMD that can avoid

every limitation in a sufficiently general manner. Wu et al.

have recently proposed ensemble EMD (EEMD) [13] as a

noise-assisted method with improved robustness against the

aforementioned problems. In order to further enhance the

robustness and accuracy of the EMD decomposition and

final trend, in this paper we apply the EEMD with extended

postprocessing recently proposed in [13].

IV. EXPERIMENTS

In the experiments that follow, the focus is on automatic

modeling (both for detrending and then modeling of fluctu-

ations), that can capture the underlying behavior in a robust

manner with as few assumptions as possible, thus taking full

advantage of CI methods. We pursue to find out whether

certain detrending approaches can be beneficial in general or

under particular conditions. It is shown that clear patterns can

be found by carefully analyzing a number of benchmarks.

Three approaches to detrending are evaluated: lin-

ear, EEMD-based detrending and first-differencing. First-

differencing has been extensively used in the econometrics

field, where difference-stationarity has been found to play a

key role in macroeconomic aggregates [4]. Thus it is often
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compared against detrending approaches. We note however

that while we include the first-differencing approach in our

analysis, it is not a method for extracting the overall trend. In

fact, after the first differences of a time series are computed,

cycles or seasonal components are removed as well as the

overall trend.

A. CI Methods

The following CI methods have been used for offline

modeling of time series: DENFIS, GP, MLP, OP-ELM and

SVM. For DENFIS the offline training mode of the DENFIS

toolbox [17] was used. The GP models are build using the

default settings of the GPML toolbox [18]. In particular, a

covariance function as the sum of a squared exponential (SE)

contribution and an independent noise contribution is used.

OP-ELM models are build using the OP-ELM toolbox [19],

[20]. Default settings are selected, in particular all possible

kernels, linear, sigmoid, and Gaussian are used for a maxi-

mum number of 100 hidden nodes.

A ten-fold crossvalidation strategy was used for model

selection in the case of the MLP and SVM models. For

SVM models, a grid-search strategy is applied to explore

the three parameters in a logarithmic scale for values in the

range [−2, 10]. The ε−Support Vector Regression scheme

was used with radial basis function kernels. The libSVM

version 2.9 [21] library was used to implement this method.

The MLP method is implemented using the standard neu-

ral network toolbox included in the Matlab environment.

The networks are optimized using the Levenberg-Marquardt

method. In order to mitigate the effect of local minima, ten

repetitions are done for each fold and each particular size of

the network (between 1 and 20 hidden nodes), and the model

yielding the lowest validation error is selected.

B. Datasets

For the sake of simplicity we restrict this study to

univariate time series. The datasets were chosen with the

following considerations in mind: a) there should be at least

a few hunderd test values so that test errors are statistically

significant, and b) datasets should be representative of real

world applications, where the underlying dynamics is often

unknown and modeling errors are usually higher than for

most synthetic series employed in the literature [4].

The main characteristics of the datasets used are shown in

table I. These particular datasets were selected in order to find

a compromise between the following objectives: a) easing

comparison with the related literature, b) selecting datsets for

a broad range of characteristics (variables, size, dynamical

behavior, etc.). In particular, some datasets represent clearly

nonstationary processes.

The datasets can be obtained from either the Time Series

Data Library [22] or the datasets repository of the Time

Series Prediction and Chemoinformatics Group [23]. As an

example, figure 1 shows the tree rings time series.

The series of tree rings contains yearly measures of tree

rings widths in dimensionless units. This series was measured

in Argentina for the 441–1974 period and corresponds to the

TABLE I

DATASETS: NUMBER OF INPUTS, TRAINING OBSERVATIONS AND TEST

OBSERVATIONS

Dataset # Inputs Training length Test length

ENSO 3 465 400

Darwin SLP 5 904 467

Internet2 4 708 730

Sunspots 7 2085 1000

Santa Fe Laser 3 988 9093

Tree Rings 8 1013 511
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TREE RING TIME SERIES.

arge030 dataset of the Time Series Data Library [22]. In this

case, y(t + 1) (width for the next year) has to be predicted

using the 10 previous values y(t−9), . . . , y(t), except y(t−4)
and y(t− 6). Refer to [24], [25] for further descriptions and

all the necessary details to reproduce results.

The Santa Fe Laser dataset of the Santa Fe time series

competition [26], [11]. represents the intensity of a far-

infrared-laser in a chaotic state, measured in a physics

laboratory experiment. The series is a cross-cut through

periodic to chaotic pulsations of the laser, and can be

closely modeled analytically [11]. This series is a remarkable

example of noise-free complicated behavior in a clean,

stationary, low-dimensional physical system for which the

underlying dynamics is well understood. In this case, the

next value, x(t + 1)) has to be modeled based on 3 inputs:

x(t), x(t− 1), x(t− 2) and x(t− 12). This subset of inputs

has been previously identified as optimal for a maximum

regressor size of 12 [24].

We also analyzed the series of monthly averaged Sunspot

numbers covering from January 1749 through December

2007, as provided by the National Geographical Data Center

from the US National Oceanic and Atmospheric Administra-

tion1. Given the yearly periodicity of the series, a maximum

regressor size of 12 was defined. y(t+1) (next month value)

has to be predicted using y(t), y(t−1), y(t−2), y(t−3), y(t−
4), y(t− 8) and y(t− 10).

1The series is available online from http://www.ngdc.noaa.gov/stp/SOLAR/.
The International Sunspot Number is produced by the Solar Influence Data
Analysis Center (SIDC) at the Royal Observatory of Belgium [27].
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The Internet2 time series represents the total amount of

aggregated incoming traffic in the routers of the Abilene

network, the Internet2 backbone, during several years. The

series consists of 1458 daily averages from the 4th of January

of 2003 through the 31st of December of 2006. The data

are available from the Abilene Observatory [28]. The traffic

load for the next day (y(t + 1)) has to be predicted using

y(t), y(t−3), y(t−6), y(t−7), y(t−9), y(t−11), y(t−12)
and y(t− 13).

y(t + 7) (next week) has to be predicted using y(t), y(t−
2), y(t− 4), and y(t− 11).

The Darwin SLP time series consists of monthly values of

the Darwin Sea sea level Pressure for the years 1882–1998.

The SLP for the next month, y(t + 1) has to be predicted

using five known values from the past, y(t− 11), y(t− 6),
y(t− 3), y(t− 2), and y(t− 1).

Finally, the ENSO series is the data set from the ESTSP

2007 time series prediction competition [10]. This data set

consists of 875 samples of weekly sea surface temperatures

associated to the El Niño-Southern Oscillation phenomenon.

y(t+1) has to be predicted using y(t), y(t−2), and y(t−7)
as inputs.

First, detrending is performed using the techniques dis-

cussed in previous sections. Table II reports the percentage

of energy of the original signal extracted as trend.

TABLE II

DETRENDING RESULTS IN TERMS OF ENERGY.

Dataset Method % of energy in trend

ENSO

Linear 98.89

EEMD 99.10

1st diff. 99.90

Darwin SLP

Linear 93.51

EEMD 91.39

1st diff. 99.89

Internet2

Linear 93.18

EEMD 93.78

1st diff. 99.93

Santa Fe Laser

Linear 61.79

EEMD 79.94

1st diff. 99.98

Sunspots

Linear 59.49

EEMD 66.59

1st diff. 99.99

Tree rings

Linear 94.80

EEMD 93.93

1st diff. 99.95

Figure 2 shows the ENSO series together with its linear

and EMD-based trends. The first difference of the ENSO

series is shown in figure 3. It is clear that the yearly

seasonality is removed.

C. Modeling and prediction results

Predictive models for detrended time series are generated

here following a conventional offline modeling approach.
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FIRST DIFFERENCE OF THE ENSO TIME SERIES.

First, a training and a test set are defined. Then, the model is

built for the training set and evaluated on the test set. This is

so as apposed to online approaches [17] where the problem

of trend computation raises additional issues.

We concentrate on methods for removing the overall trend

for two reasons: a) it is a first step that we consider should be

analyzed separately, b) extrapolation for long-term prediction

seems more feasible. In order to compare with previous

results [4], the first-differencing method is also considered.

Obviously, the first difference method raises issues when the

objective is long-term prediction of sequences of values.

Training and test errors as well as training time are

reported in tables III through VIII. The average and standard

deviation of the training and test errors are shown normalized

against the standard deviation of the respective time series.

The time column in these tables shows the processor time

consumed for the learning process on the same environment2.

In order to compare the performance of different detrend-

ing approaches, the errors are measured on the final output of

the global model, i.e., on the extracted trend plus fluctuations

modeled with CI methods. In what follows, linear denotes

2A multiprocessor system running Matlab Version 7.9.0.529 (R2009b) 64-
bit (GNU/Linux operating system, glnxa64 architecture), where each process
was allocated a core of a Quad-Core AMD Opteron(tm) Processor 8360 SE.
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the linear detrending method, EEMD-based denotes the

nonlinear, nonstationary detrending method based on EEMD

described in the previous section, and first-difference denotes

the first-difference filtering method. We focus on test errors.

TABLE III

RESULTS FOR ENSO USING DIFFERENT DETRENDING APPROACHES AND

CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 1.41e-1±8.91e-2 1.80e-1±1.13e-1 1.07

Linear 1.42e-1±8.70e-2 1.77e-1±1.09e-1 8.90e-1

EEMD 1.42e-1±8.75e-2 1.78e-1±1.10e-1 7.00e-1

1st diff. 1.55e-1±9.52e-2 1.95e-1±1.20e-1 1.19

GP

- 1.41e-1±8.80e-2 1.74e-1±1.09e-1 3.28e+1

Linear 1.42e-1±8.79e-2 1.73e-1±1.07e-1 2.75e+1

EEMD 1.43e-1±8.84e-2 1.72e-1±1.08e-1 4.04e+1

1st diff. 1.59e-1±9.70e-2 1.90e-1±1.18e-1 3.54e+1

MLP

- 1.41e-1±8.90e-2 1.89e-1±1.17e-1 7.38e+2

Linear 1.41e-1±8.61e-2 2.12e-1±1.31e-1 7.01e+2

EEMD 1.66e-1±1.04e-1 1.96e-1±1.22e-1 9.70e+2

1st diff. 1.63e-1±9.96e-2 1.97e-1±1.22e-1 6.68e+2

OP-
ELM

- 1.39e-1±8.70e-2 1.73e-1±1.09e-1 6.80e-1

Linear 1.42e-1±8.83e-2 1.83e-1±1.15e-1 6.00e-1

EEMD 1.34e-1±8.25e-2 1.86e-1±1.13e-1 9.80e-1

1st diff. 1.58e-1±9.73e-2 1.94e-1±1.22e-1 7.00e-1

SVM

- 1.53e-1±8.74e-2 1.98e-1±1.29e-1 3.83e+1

Linear 1.54e-1±8.76e-2 1.96e-1±1.28e-1 3.98e+1

EEMD 1.54e-1±8.70e-2 1.95e-1±1.28e-1 3.89e+1

1st diff. 1.58e-1±9.76e-2 1.90e-1±1.18e-1 2.39e+2

Table III reports results for the ENSO time series. linear

provides a slight improvement for DENFIS, GP and SVM.

However, results are noticeably worse (errors 5-10% higher)

for MLP and OP-ELM. The advantages of EEMD-based

are consistent but negligible. First-difference leads to worse

results with a slight exception for SVM.

Results for the Darwin SLP time series are shown in

table IV. Results for linear are slightly worse for all the

methods. EEMD-based provides better results than linear

(except for OP-ELM), but still provides very slightly im-

provements or worse results than the case without detrending.

However, First-difference achieves test errors at least 25%

lower for all the methods.

In the case of the Internet2 time series (results shown in

table V), linear improves noticeably the test error for all

methods except OP-ELM. EEMD-based yields again similar

or better results than linear, although GP is an exception.

First-difference provides the worst results in general, with

an exception for SVM models.

Table VI reports results for the Santa Fe laser time series.

Test errors are in general higher for linear detrending than

no detrending, with an exception for MLP. EEMD-based

provides in general significantly better results than linear

but still worse test errors than no detrending. Test errors for

First-difference are clearly worse with no exceptions.

Let us now consider the results for the Sunspots time

series, shown in table VII. Test errors are in general slightly

worse for linear detrending than no detrending, being clearly

worse for MLP and OP-ELM. EEMD-based is again equiva-

lent to or better than linear but still worse than no detrending

TABLE IV

RESULTS FOR DARWIN SLP USING DIFFERENT DETRENDING

APPROACHES AND CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 3.88e-1±2.34e-1 4.37e-1±2.69e-1 2.11

Linear 3.85e-1±2.34e-1 4.40e-1±2.71e-1 2.17

EEMD 3.88e-1±2.36e-1 4.34e-1±2.68e-1 2.42

1st diff. 3.02e-1±1.94e-1 3.16e-1±2.00e-1 3.05

GP

- 3.82e-1±2.34e-1 4.31e-1±2.66e-1 1.61e+2

Linear 3.82e-1±2.34e-1 4.32e-1±2.66e-1 1.71e+2

EEMD 3.84e-1±2.35e-1 4.29e-1±2.66e-1 2.75e+2

1st diff. 3.00e-1±1.93e-1 3.07e-1±1.99e-1 2.05e+2

MLP

- 3.87e-1±2.37e-1 4.41e-1±2.77e-1 8.66e+2

Linear 3.92e-1±2.37e-1 4.47e-1±2.75e-1 8.78e+2

EEMD 3.94e-1±2.41e-1 4.45e-1±2.74e-1 1.32e+3

1st diff. 3.14e-1±2.05e-1 3.18e-1±2.07e-1 1.02e+3

OP-
ELM

- 3.87e-1±2.39e-1 4.42e-1±2.73e-1 1.55

Linear 3.95e-1±2.46e-1 4.47e-1±2.79e-1 1.41

EEMD 3.76e-1±2.31e-1 4.55e-1±2.90e-1 2.79

1st diff. 3.04e-1±1.94e-1 3.15e-1±2.02e-1 2.27

SVM

- 3.84e-1±2.31e-1 4.31e-1±2.65e-1 4.47e+2

Linear 3.84e-1±2.30e-1 4.32e-1±2.65e-1 4.49e+2

EEMD 3.86e-1±2.32e-1 4.30e-1±2.65e-1 4.66e+2

1st diff. 2.95e-1±1.89e-1 3.09e-1±2.01e-1 5.92e+2

TABLE V

RESULTS FOR INTERNET2 USING DIFFERENT DETRENDING APPROACHES

AND CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 3.60e-1±2.85e-1 5.47e-1±4.22e-1 1.84

Linear 3.50e-1±2.74e-1 5.22e-1±4.01e-1 2.27

EEMD 3.51e-1±2.73e-1 5.11e-1±3.89e-1 2.26

1st diff. 4.30e-1±3.53e-1 5.55e-1±4.32e-1 1.92

GP

- 1.47e-1±1.12e-1 6.19e-1±4.57e-1 2.04e+2

Linear 1.67e-1±1.24e-1 5.33e-1±3.86e-1 3.63e+2

EEMD 1.57e-1±1.16e-1 5.41e-1±3.85e-1 2.84e+2

1st diff. 7.93e-2±5.81e-2 6.24e-1±4.76e-1 2.23e+2

MLP

- 4.79e-1±3.84e-1 5.75e-1±4.29e-1 4.21e+2

Linear 4.74e-1±3.80e-1 5.50e-1±3.97e-1 6.40e+2

EEMD 4.88e-1±3.80e-1 5.54e-1±3.92e-1 5.41e+2

1st diff. 5.16e-1±4.18e-1 6.32e-1±4.71e-1 4.55e+2

OP-ELM

- 4.62e-1±3.75e-1 5.51e-1±4.01e-1 1.74

Linear 4.35e-1±3.40e-1 5.72e-1±4.00e-1 4.94

EEMD 4.53e-1±3.59e-1 5.42e-1±3.92e-1 3.17

1st diff. 4.39e-1±3.49e-1 5.94e-1±4.59e-1 1.56

SVM

- 3.10e-1±2.42e-1 6.10e-1±4.41e-1 1.11e+2

Linear 3.01e-1±2.37e-1 5.11e-1±3.88e-1 1.28e+2

EEMD 2.99e-1±2.35e-1 5.11e-1±3.89e-1 1.26e+2

1st diff. 4.31e-1±3.73e-1 5.54e-1±4.58e-1 9.44e+1

(with a slight exception for OP-ELM). First-difference yields

clearly better results in all cases.

Finally, table VIII shows the results obtained for the tree

rings series. In this case linear detrending improves the

results slightly for all the methods except DENFIS. EEMD-

based also provides equivalent or better results than linear

and no detrending (with an exception for SVM). First-

difference provides clearly worse results, except for SVM.

V. DISCUSSION

Broadly, it can be concluded that detrending does not gen-

erally improve the performance of the CI methods studied,
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TABLE VI

RESULTS FOR SANTA FE LASER USING DIFFERENT DETRENDING

APPROACHES AND CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 2.34e-1±1.91e-1 2.35e-1±1.93e-1 1.84

Linear 2.33e-1±1.90e-1 2.44e-1±1.94e-1 2.11

EEMD 2.34e-1±1.91e-1 2.37e-1±1.92e-1 1.99

1st diff. 3.82e-1±3.18e-1 4.02e-1±3.34e-1 1.73

GP

- 5.02e-2±4.14e-2 1.17e-1±1.08e-1 1.64e+2

Linear 5.29e-2±4.35e-2 1.39e-1±1.21e-1 1.69e+2

EEMD 5.03e-2±4.15e-2 1.26e-1±1.13e-1 1.88e+2

1st diff. 1.41e-1±1.20e-1 1.92e-1±1.66e-1 2.75e+2

MLP

- 2.56e-1±2.49e-1 2.30e-1±2.21e-1 2.01e+3

Linear 8.40e-2±6.87e-2 1.83e-1±1.45e-1 2.14e+3

EEMD 1.28e-1±1.17e-1 1.42e-1±1.23e-1 2.38e+3

1st diff. 2.23e-1±1.88e-1 2.56e-1±2.15e-1 1.96e+3

OP-
ELM

- 1.09e-1±9.08e-2 1.31e-1±1.11e-1 1.92

Linear 1.12e-1±9.03e-2 2.17e-1±1.64e-1 1.55

EEMD 1.29e-1±1.06e-1 1.67e-1±1.38e-1 2.35

1st diff. 2.05e-1±1.49e-1 2.40e-1±1.83e-1 1.60

SVM

- 1.59e-1±1.06e-1 1.65e-1±1.14e-1 1.66e+2

Linear 1.59e-1±1.07e-1 1.79e-1±1.21e-1 1.61e+2

EEMD 1.59e-1±1.06e-1 1.70e-1±1.16e-1 1.66e+2

1st diff. 1.92e-1±1.24e-1 2.31e-1±1.70e-1 1.84e+2

TABLE VII

RESULTS FOR SUNSPOTS USING DIFFERENT DETRENDING APPROACHES

AND CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 3.82e-1±2.69e-1 3.40e-1±2.28e-1 6.69

Linear 3.82e-1±2.70e-1 3.47e-1±2.37e-1 6.82

EEMD 3.82e-1±2.69e-1 3.41e-1±2.29e-1 6.47

1st diff. 3.78e-1±2.68e-1 3.55e-1±2.41e-1 1.80e+1

GP

- 3.81e-1±2.67e-1 3.36e-1±2.27e-1 2.43e+3

Linear 3.80e-1±2.66e-1 3.36e-1±2.27e-1 3.45e+3

EEMD 3.78e-1±2.65e-1 3.37e-1±2.27e-1 2.64e+3

1st diff. 2.04e-1±1.37e-1 3.71e-1±2.51e-1 2.12e+3

MLP

- 3.93e-1±2.75e-1 3.53e-1±2.41e-1 2.72e+3

Linear 3.91e-1±2.77e-1 3.77e-1±2.64e-1 3.01e+3

EEMD 3.90e-1±2.78e-1 3.83e-1±2.70e-1 2.89e+3

1st diff. 3.91e-1±2.76e-1 3.53e-1±2.38e-1 2.16e+3

OP-ELM

- 3.90e-1±2.76e-1 3.40e-1±2.33e-1 1.21e+1

Linear 3.85e-1±2.72e-1 3.66e-1±2.52e-1 1.29e+1

EEMD 3.89e-1±2.75e-1 3.36e-1±2.26e-1 1.14e+1

1st diff. 3.90e-1±2.76e-1 3.43e-1±2.32e-1 1.15e+1

SVM

- 3.60e-1±2.46e-1 3.55e-1±2.33e-1 2.69e+3

Linear 3.57e-1±2.47e-1 3.49e-1±2.33e-1 2.61e+3

EEMD 3.59e-1±2.46e-1 3.56e-1±2.34e-1 2.31e+3

1st diff. 3.82e-1±2.73e-1 3.52e-1±2.40e-1 2.74e+3

neither in accuracy nor computational cost. It should also be

noted that the effect of detrending methods is not necessarily

of the same sign for training and test errors. Thus, it is

difficult to estimate a priori whether detrending is desirable

for a particular application case. This is arguably a reason to

use detrending methods with care.

Regarding the linear and EEMD-based methods for ex-

tracting the overall trend, it can be concluded that:

• Extraction of the overall trend does not improve perfor-

mance in general. In 4 out of the 6 benchmarks, it is

just slightly advantageous for some models, ineffective

TABLE VIII

RESULTS FOR TREE RINGS USING DIFFERENT DETRENDING

APPROACHES AND CI MODELS.

CI
method

Detrending Training RMSE Test RMSE Time (s)

DENFIS

- 7.03e-1±4.35e-1 8.30e-1±5.78e-1 6.20

Linear 6.98e-1±4.30e-1 8.89e-1±6.40e-1 6.85

EEMD 6.97e-1±4.29e-1 8.28e-1±5.74e-1 7.23

1st diff. 7.57e-1±4.67e-1 8.42e-1±5.92e-1 5.56

GP

- 7.67e-1±4.80e-1 7.69e-1±5.38e-1 2.98e+2

Linear 7.66e-1±4.78e-1 7.68e-1±5.38e-1 3.59e+2

EEMD 7.67e-1±4.79e-1 7.69e-1±5.38e-1 4.06e+2

1st diff. 7.84e-1±4.82e-1 8.01e-1±5.58e-1 4.26e+2

MLP

- 7.65e-1±4.75e-1 8.09e-1±5.47e-1 8.37e+2

Linear 7.77e-1±4.89e-1 7.92e-1±5.26e-1 8.61e+2

EEMD 7.77e-1±4.87e-1 7.88e-1±5.45e-1 1.15e+3

1st diff. 7.85e-1±4.81e-1 8.26e-1±5.70e-1 1.32e+3

OP-
ELM

- 7.54e-1±4.65e-1 7.92e-1±5.39e-1 2.05

Linear 7.64e-1±4.75e-1 7.70e-1±5.26e-1 2.09

EEMD 7.75e-1±4.85e-1 7.70e-1±5.34e-1 2.07

1st diff. 7.84e-1±4.84e-1 8.07e-1±5.61e-1 2.07

SVM

- 6.41e-1±3.81e-1 8.31e-1±5.61e-1 2.90e+2

Linear 6.43e-1±3.80e-1 8.25e-1±5.54e-1 2.83e+2

EEMD 6.41e-1±3.80e-1 8.30e-1±5.60e-1 3.02e+2

1st diff. 7.21e-1±4.44e-1 7.92e-1±5.52e-1 2.67e+2

or harmful.

• EEMD based detrending yields better results than linear

detrending. While the difference is negligible in most

cases, it is consistent and noticeable in some cases.

Considering first-differencing, it can be concluded that:

• It can significantly improve the accuracy of models in

some cases. This may be in particular a consequence of

its ability to extract cyclic components.

• It can also yield clearly worse results than those ob-

tained with no detrending or the other two methods.

Regarding computational time, the impact of linear de-

trending, whether positive or negative, depends on the

method and dataset and is not significant. On the other hand,

EEMD-based detrending produces a significant increase of

the training time, which implies that its advantages come at

a certain computational cost. First-differencing does not in

general speed up the learning process. On the contrary, in

many cases it also leads to a significant slow down.

In principle, modeling methods can benefit from effec-

tive detrending methods. A good detrending method should

improve the results of a certain modeling method. In turn,

finding which detrending methods perform better from the

perspective of models built on detrended data can shed some

light on the performance of the detrending process itself.

In other words, the impact on performance of models a

detrending approach has can be seen as a goodness criteria

for the detrending approach itself.

We should mention that the use of the EMD-based de-

trending approach for offline training is conceptually contra-

dictory. Indeed, the advantages of EMD derive from the fact

that the theory behind has no stationarity assumptions. This

implies that using an offline training approach, i.e., assuming

the dataset to be stationary, misses the fundamental aim o of

1735



the EMD. For EMD-based detrending, evolving methods [29]

should be expected to take full advantage of the nonlinear,

nonstationary decomposition performed by EMD.

Finally, the results reported here apply to overall trend

extraction methods used as the only preprocessing step. The

impact of such methods when combined with methods for

implementing other complementary tasks such as deseason-

alization may substantially differ.

VI. CONCLUSIONS

We have presented an experimental analysis of the effect of

different detrending approaches on CI models of time series.

While being far from exhaustive, different modeling methods

coming from diverse areas of CI have been considered. Also,

disparate detrending approaches popular in various fields

were included in this study.

Several detrending approaches have been compared in

terms of the performance of predictive models build on de-

trended datasets. Modeling of detrended series was compared

for three detrending approaches: linear, EEMD-based (or

nonlinear, nonstationary) and first-differencing. The follow-

ing CI methods were compared: DENFIS, GP, MLP, OP-

ELM and SVM.

Although the results presented here provide no general

answer to the many open issues, the following major con-

clusions can be drawn:

• Qualitatively, the effect of detrending is remarkably

uniform for all the CI methods considered.

• Extraction of the overall trend does not improve perfor-

mance in general. In 4 out of the 6 benchmarks, it is

just slightly advantageous, ineffective or harmful.

• A nonlinear, nonstationary detrending method such as

the EEMD-based method used here provides better per-

formance than linear detrending. While the difference is

negligible in most cases, it is noticeable in some cases.

• First-differencing, while clearly effective as detrending

and deseasonalizing method in some cases, can be

counterproductive for times series that show common

patterns.

The bottom line of these results is that detrending should

be used with extreme care. Further work is required in order

to draw more general and quantitative conclusions. It is

also worth to explore the performance of detrending and

deseasonalizing methods when combined.
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