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This work is motivated by the requirement of misconfiguration detection in the
energy management system. A configuration (instance) specifies the contract infor-
mation between sellers, the energy companies providing electricity, gas and district
heating, and buyers, the consumers purchasing the energy service. The correctness of
an instance is critical because a misconfiguration (anomalous instance, or anomaly)
may cause a dramatic loss for an energy company. Finding anomalies inside all
instances is the focus of this work.

In order to report anomalies, data analysts normally have to face two constraints.
First of all, there are no labels available showing whether an instance is anomalous
or not. In addition, there is no domain knowledge of the relationships among the
attributes of an instance. This work, under the two constraints, performs anomaly
detection and location with the assumption that anomalies appear with low frequencies
in the data set. Based on this assumption, the method reports for each instance
its anomalous attributes which potentially cause the instance to be an anomaly. In
order to locate the anomalous attributes, the method relies on the factorization of
the joint probability of an instance. The method learns a Bayesian network from the
categorical data set and factorizes the joint probability into a group of factors defined
by conditional probabilities among attributes. Then checking each attribute based on
the frequency-based assumption reveals whether it is normal or anomalous.

This work extends anomaly detection discussed in the current literature into
anomaly location in which “masks” indicate the root of an anomaly. Furthermore,
given little domain knowledge, the method statistically extends one’s knowledge by
constructing a Bayesian network that models the data set and indicates important
business rules of the application domain.
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Monte Carlo, categorical data
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Chapter 1

Introduction

1.1 Motivation and objectives

In the energy industry, the term “configuration” is conventionally adopted to de-
scribe a contract between a specific seller, the company selling energy, and a specific
buyer, the consumer of the energy. Every contract is recorded in the energy manage-
ment system which is used to configure the related hardware to serve the business.
From the perspective of sellers, they would like to produce and deliver energy to buy-
ers with purchased energy type and geographical location specified in the contract.
Most importantly, sellers would like to correctly measure the energy consumption
of their buyers in order to have a reference to charge them. Both the delivery and
measurement are deployed and collected according to a configuration. The correct-
ness of a configuration is critical since an error may cause a dramatic loss for the
energy company.

Given a collection of configurations, one of the primary tasks for the data analyst
is to detect those that are correct and those that are not. The task can be referred
to as “misconfiguration detection” or, in a more general sense, “anomaly detection”.
Another task is to diagnose a misconfiguration by indicating the position from which
the anomaly is potentially generated. The task can be denoted as “misconfiguration
location” or “anomaly location”. Often, little or no knowledge on the application
domain is available, meaning that the analyst does not necessarily have information
about the correctness of a configuration and the relationships existing between its
attributes.

Motivated by a practical application to energy management systems, in this thesis
we investigate an approach to address the anomaly detection and location problem.
Concretely, we introduce a procedure for detecting anomalies in multivariate cate-
gorical data sets. In addition, the procedure suggests the location of the anomaly
within a configuration, thus providing a useful tool for inspecting and correcting it.
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CHAPTER 1. INTRODUCTION 2

1.2 Overview and organization of the thesis

In a categorical data set, each row corresponds to an instance (or configuration)
and each column corresponds to an attribute (variable) of the instance; each in-
stance takes a categorical value in each of its attributes. Anomalous instances can
be considered as uncommon events, anomaly detection reports whether an instance
is anomalous or not. For an anomalous instance, anomaly location reports which
of its attributes can be considered as uncommon events. This suggests that normal
instances are more frequent than anomalies and normal attributes are more frequent
than anomalous ones. An intuitive approach for anomaly detection and location can,
thus, be based on frequency analysis. For example, we can examine the number of
appearances of an instance and compute its joint probability; if the instance has a
low joint probability (not frequent), it is very likely to be an anomaly. However,
detection is not able to indicate, inside an instance, which attributes are likely to be
anomalous; this is because detection alone does not exploit the relationships among
attributes. On the other hand, anomaly location explicitly exploits these relation-
ships using conditional probabilities; an attribute with a low conditional probability
is likely to be anomalous. Therefore, anomaly location is more general than anomaly
detection because, after locating the anomalous attributes, one can draw the conclu-
sion that an instance with any anomalous attribute is anomalous while an instance
without any anomalous attribute is normal. For such reasons, this thesis focuses on
anomaly location and discusses a novel probabilistic procedure to approach the task.

Clearly, locating anomalous attributes inside an instance requires information on
conditional dependencies. This information is usually not accessible for analysis
because an exhaustive list of all the “rules” existing between the attributes is not
available. In this thesis, we assume that this information can be extracted by factor-
izing the joint probability of an instance in a number of factors equal to the number
of attributes. Each factor is the conditional probability of that attribute given some
other attributes. Such a factorization offers a possibility to examine the factors
instead of considering the joint probability as a whole. For the task, it is critical
to obtain a factorization that best describes the conditional dependencies among
attributes; that is, a factor should explain how the attribute it corresponds to is
dependent on the other attributes. Such a factorization can be realized from data
by learning a Bayesian network where the conditional dependencies/independencies
among attributes are represented as a directed acyclic graph. Given the factor-
ization, locating an anomaly corresponds to assigning to each instance a “mask”
indicating whether its attributes are anomalous or not. Masks are assigned by com-
paring instances with a number of prototypical configurations also defined from data.

The thesis consists of two parts: the first part overviews the problem of anomaly
detection and introduces a procedure for anomaly location, the second part supports
the presentation with an application on a real-world problem of analyzing config-
urations in an energy management system. In Part I (Theory), Chapter 2 briefly
reviews the techniques and applications of anomaly detection, Chapter 3 discusses
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in detail the generation of a “mask” from a factorization and Chapter 4 focuses on
obtaining the factorization by constructing a Bayesian network using the Markov
chain Monte Carlo (MCMC) structural learning technique. Toy examples are pro-
vided throughout Chapter 3 and 4 to demonstrate the ideas and principles. In Part
II (Application), Chapter 5 introduces a data set from the energy industry and in
Chapter 6 the procedure is applied to the data set followed by the analysis of the
results.





Part I

Theory
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Chapter 2

Review of Anomaly Detection

Anomaly detection is an important topic that has been studied in various research
and application domains. This chapter gives a cursory review of this developing field
and establishes a big picture of approaching a typical anomaly detection problem.

2.1 Different aspects of an anomaly detection problem

As discussed in [73], when dealing with an anomaly detection problem, data ana-
lysts need to take into account several aspects that determine the applicability of
any technique. First issue to consider is the nature of the data set. Conventionally, a
data set is a collection of instances (or observations, cases, entities) each of which is
described by a set of attributes (or variables, features, dimensions). The attributes
may be of different data types including binary, categorical or continuous. Each
instance may have more than one variables. In the latter multivariate case, there
can be a mixture of categorical and continuous attributes. Sometimes an instance
may include one or more missing values. The tools available rely on the nature of
the data. For instance, it is dubious to compute the Euclidian distance on binary
attributes since binary attributes are not traditionally considered to be distributed
in the real-valued and continuous Euclidian space. Thus tools available to contin-
uous attributes need to be refined for categorical data sets. Furthermore, from the
perspective of the relationships between instances, two neighboring instances may
be correlated, which means the order of those instances contains important infor-
mation of the underlying process generating the data. On the contrary, instances
may be independently and identically distributed (i.i.d.). In all, different nature
of a data set may lead to substantially different approaches to solve the anomaly
detection problem.

Secondly, considering the type of anomalies, there are two categories:

• Contextual anomalies (or conditional anomalies as in [68]): An observation can
be either normal or anomalous depending on the context or its neighborhood.
A striking example is an observation from a time-series of stock price. This

7
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observation is highly correlated with its neighbors and is meaningful only
within its neighboring time period. It is the context that makes it normal
or anomalous. This type of anomalies are most common in time-series data
discuss in [64] and [77].

• Point anomalies: This is the most common case in which anomalies are rec-
ognized with respect to the rest of the data. Unlike the contextual anomalies,
there is no situation in which an anomalous instance becomes normal in dif-
ferent contexts.

Thirdly, the availability of a label that indicates whether an instance is normal
or anomalous has a major impact on the methods used to detect anomalies. Super-
vised methods make use of the labels to train a predictive model that covers normal
instances as well as anomalous ones. An unseen instance is then compared against
the trained model and it is associated with either label, thus being classified into
either normal or anomalous cases. There exist several major issues in supervised
approaches. One of them is the imbalanced availability of labels between normal and
anomalous cases since anomalous cases, in most of the real world applications, are
and should be, by definition of anomaly, rather rare. This problem has widely been
investigated in [17] and [61]. In [71], the authors discussed another issue of obtaining
the accurate and representative labels and propose to inject artificial anomalies into
a normal data set to obtain a labeled training data set. However, if training data
has only the normal cases labeled but not the anomalous ones, the semisupervised
methods, dicussed in [22], train a predictive model only for normal data and try to
differentiate anomalous instances by using the trained normal model. Besides super-
vised and semisupervised approaches, unsupervised techniques do not require any
label and are widely applicable. Unsupervised methods are based on the assumption
that normal instances are far more frequent than the anomalies in the data set. It
suffers from high false alarm rates when this basic assumption does not hold. It
should be noted that obtaining labels for a standard training set is always expensive
and needs substantial effort. Moreover, the behavior of anomalies is dynamic and
it becomes infeasible to label them whenever new types of anomalies appear.

Finally, after an anomaly is detected, it is important to decide how to report it.
In some situations, it suffices to assign a label coded either normal or anomalous to
a tested instance. However, in other situations, each instance gets a score assessing,
for example, how much it behaves like a normal case. A threshold is needed to
establish a boundary in the ranked scores, which inevitably includes a degree of
arbitrariness and demands a certain amount of domain knowledge.

2.2 Techniques

Detecting anomalies in a data set has been studied in the statistics community since
the 19th century starting from [26] and has been the topic of a number of surveys
and review articles as well as books. In [41], the authors provide an extensive sur-
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vey of anomaly detection techniques developed in machine learning and statistical
domains. A broad review of anomaly detection techniques for numeric as well as
symbolic data is presented in [4]. Anomaly detection has become a multi-dicipline
subject involving such research as machine learning, data mining, statistics, informa-
tion theory motivated by application in several domains including Cyber-Intrusion
detection, fraud detection, medical anomaly detection, industrial damage detection,
image processing, textual anomaly detection and sensor networks. We illustrate
some of the most important anomaly detection techniques in this section.

2.2.1 Classification

Classification is one of the most well researched field in machine learning and data
mining, being the main topic of several classic books such as [6] and [11]. It learns
a model from a set of labeled training data and then assigns labels to the unlabeled
part of the data set. In anomaly detection, it is either possible to build models
for both normal and anomalous instances or we model the boundary between those
two. Whichever case it is, the universal assumption in building a classification based
method is that there exist models that separate normal from anomalous instances.
.

• Neural network. Neural network, comprehensively discussed in [37], has been
adapted to fit into the task of anomaly detection by following two steps.
Firstly, a multilayer feedforward neural network is trained on normal instances
with labels. During the training, the weights are adapted to minimize the clas-
sification error. Secondly, unlabeled instances are input into the network and
then classified into two classes (normal and abnormal) according to its output
from the network. There are several variants of multilayer feedforward neural
network being used in anomaly detection such as Replicator Neural networks
in [36] and Oscillatory Networks in [40].

• Support Vector Machine (SVM). Introduced in [76], SVMs have been applied
to anomaly detection in the one-class setting in [63]. Kernels, such as radial
basis function (RBF) kernel, can be used to learn much more complex regions
than a plane (hyperplane if the dimensionality of the plane is more than two)
to separate normal instances from anomalous ones. Robust Support Vector
Machine (RSVM), which uses the distance between each data points and the
center of a class to calculate the adaptive margin, introduced in [67], has been
applied to the anomaly detection in computer security.

• Association rule. This set of techniques are of special interest when a data set
is made of only categorical values. It tries to learn the rules that capture the
normal behavior of a system. Given a set of learned rules, an instance that
violates rules is considered as an anomaly. Association rule mining techniques,
introduced by [3], have been used for one-class anomaly detection by generat-
ing rules from the data in an unsupervised fashion. Every discovered rule is
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associated with a frequency indicating whether it is a strong rule or a weak
rule. However, the set of rules generated by those algorithms are usually of
large size and it is usually difficult to determine the threshold to differentiate
strong rules from weak rules, as discussed in [73]. Most of the applications
make use of the discovered rules and their frequencies in various fashion.

All classification-based methods, including the rule-based association rule mining,
rely on the availability of the training labels and need specific domain knowledge
to label the training data or set the threshold, which limits the application of this
category.

2.2.2 Nearest neighbor

As a class of unsupervised techniques, the nearest neighbor-based methods differ
themselves from others based on the assumption that normal data instances occur
in dense neighborhoods while anomalies occur far from their closest neighbors. As
one may expect, it is critical to define a metric to measure the distance between in-
stances. For continuous attributes, Euclidean distance is a popular choice. However,
as demonstrated in [73], other types of metric are also available if defined properly.
For categorical attributes, a simple Hamming distance that measures between two
instances the number of positions having different values in the same attributes is
useful. However, even more complex distance metrics may be used depending on
the specific data mining task, as discussed in [14].

In this set of methods, the anomaly score of a data instance is defined as the
average distance to its ϕ nearest neighbors in a given data set. This basic technique
has been applied to anomaly detection in satellite images in [16] with its variants
focusing on improving the computational efficiency of the basic techniques by using
a nested loop algorithm leading to a near linear time efficiency after some pruning,
as discussed in [10]. Density-based anomaly detection estimates the density of the
neighborhood of each data instance. An instance that lies in the neighborhood with
low density is declared to be anomalous and otherwise normal. Since the average
distance to the ϕ nearest neighbors for a given data instance can be viewed as an
estimate of the inverse of the density of the instance in the data set, the nearest
neighbor techniques can be considered as density-based methods. As an improve-
ment to the density methods, the authors of [15] assign an anomaly score to a given
instance, known as Local Outlier Factor (LOF). For any given data instance, the
LOF score is equal to the ratio of the average local density of its ϕ nearest neighbors
and the local density of data instance itself.

Even though improved under some circumstances, it remains a drawback that the
nearest neighbor based techniques has the complexity of O(N2) (N is the number
of instances) since these techniques normally involve finding nearest neighbors for
each instance. Another disadvantage is that if data has normal instances that do
not have enough close neighbors, or if the data has anomalies that have enough close
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neighbors, the techniques might fail to label them correctly.

2.2.3 Clustering

Cluster analysis or clustering is the assignment of a set of observations into subsets
(clusters) so that observations in the same cluster are similar and observations from
different clusters are different. Clustering techniques, extensively discussed in lit-
erature such as [11] and [6] on statistics and machine learning require a similarity
metric between instances. Even though some semisupervised clustering techniques
can be found in [9], clustering mainly focuses on an unsupervised fashion in which
instances fall into different groups. Clusters are formed by using the similarity met-
ric and the selection of the metric follows the same discussion as nearest neighbor
techniques. The main difference between these two types of methods, however, is
that clustering evaluates each instance with respect to the cluster it belongs to while
nearest neighbor methods analyze each instance with respect to its local neighbor-
hood. Based on different assumptions, clustering-based anomaly detection can be
divided into 2 categories.

• Assumption 1: Normal data instances belong to a cluster, while anomalies do
not belong to any cluster. Several clustering algorithms do not force every
data instance into a cluster such as DBSCAN in [28], and ROCK in [35].
The disadvantage of such techniques is that they are not optimized to find
anomalies, since the main aim of the underlying clustering algorithm is to find
clusters.

• Assumption 2: Normal data instances lie close to their closest centroid, forming
dense clusters, while anomalies are far away from their closest cluster centroid,
forming sparse clusters. It follows two steps. Firstly, the data is clustered us-
ing a clustering algorithm. Secondly, for each data instance, its distance to
its closest cluster centroid is considered as its anomaly score. Following the
two steps, the authors in [66] study thoroughly Self-Organizing Maps (SOM),
K-means Clustering, and Expectation Maximization (EM) to cluster the in-
stances and then use the clustering memberships to label them. In particular,
SOM has been widely used to detect anomalies in intrusion detection in [66]
and [8].

The merit of clustering-based techniques is that they operate in an unsupervised
mode. After establishing the clusters, the labeling part of the algorithm is fast since
each given instance needs only to be checked against each of the clustering centroids.
Since there are 2 different assumptions guiding the methods used to detect anoma-
lies, it is usually not quite clear which one holds in the given data set. Another
major disadvantage is its computational complexity when data set is large. Most of
the clustering algorithms have O(N2K) where N is the number of instances and K
is the dimensionality.
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2.2.4 Other techniques

There exist several other anomaly detection techniques that do not belong to any
of the three categories discussed above. They are based on different assumptions
as well. If the assumption holds that data is generated from a particular distri-
bution, statistical techniques provide a statistically justifiable solution for anomaly
detection. While building the underlying distribution generating the data set, para-
metric techniques estimate the distribution from the given data as in [27]. If such
an assumption does not hold and there is no a priori knowledge of any underlying
distribution, non-parametric techniques such as histogram assuming no distribution
can be used as shown in [23]. If the assumption holds that anomalies in the data
set induce irregularities inside the information content of the data set, in [7] the
authors apply information theory to implement an optimization that minimizes the
irregularities in the anomaly-contaminated data set. If it holds that data can be em-
bedded into a lower dimensional subspace in which normal instances and anomalies
appear significantly different, projection-based anomaly detection techniques can be
used such as Principle Component Analysis (PCA) in [44] and Linear Discriminant
Analysis (LDA) in [56].

2.3 Applications

Anomaly detection, due to the fact that anomalies lead to significant information,
has been used in many real world applications. For instance, an anomaly in network
traffic may suggest a malicious intrusion by computer hackers who provoke potential
threats to the security of a network. In medical diagnosis, an anomaly may reveal
a critical part of a human body having cancer. In finance, credit card transaction
frauds apart from normal usage may indicate a theft or other criminal behaviors.

2.3.1 Intrusion detection

Intrusion detection, as introduced in [60], refers to detection of malicious activities
(break-ins, penetrations) in a computer system. The main challenges in this field
is the huge amount of data. So most intrusion detection techniques need to be
computationally efficient in order to handle the online streaming of the network
data. The existing techniques for intrusion detection include statistical profiling
using histograms in [55] and [22], statistical modeling in [27] and [74], artificial
neural networks in [33], SVM in [43] and rule-based system in [48].

2.3.2 Fraud detection

Fraud detection refers to detection of criminal activities occurring in commercial
organizations such as banks, credit card companies, insurance agencies, cell phone
companies, stock market. The anomaly is defined as the malicious and unauthorized
behavior. This field covers extensively large real world domains under the term of
activity monitoring introduced by the authors of [29]. The most prominent work has



CHAPTER 2. REVIEW OF ANOMALY DETECTION 13

been done in credit card fraud detection, mobile phone fraud detection, insurance
claim fraud detection and insider trading detection. Recent contribution includes
[13] focusing on clustering in credit fraud detection, [1] on parametric statistical
modeling on mobile phone fraud detection, and [24] using statistical profiling on
insider trading detection.

2.3.3 Medical and public health anomaly detection

Anomaly detection in medical and public health domains typically works with pa-
tient records. The anomalies can be abnormal patient condition, instrumentation
errors, or even recording errors. The main challenge is that medical anomaly detec-
tion is a very critical domain requiring high degree of accuracy and data is typically
consisted of a mixture of data types including age, blood type, weight and even
temporal such as Electrocardiograms(ECG) and Electroencephalograms(EEG). The
most recent efforts devoting on this specific field can be seen in [49] using nearest
neighbor based techniques and [78] using Bayesian networks.

2.3.4 Industrial damage detection

Industrial units suffer damage due to continuous usage and normal wear and tear
and such damage needs to be detected early to prevent further losses. Data mostly
comes from sensors and this field can be further divided into 2 categories: Fault
Detection in Mechanical Units that deals with defects in mechanical components
such as motors, engines and so on and Structural Defect Detection that deals with
defects in physical structures. For the first category, the authors of [30] and [45] use
spectral-based methods and parametric statistical modeling. For the latter category,
the authors of [42] focus on the mixture of statistical models.

2.3.5 Image processing

Anomaly detection techniques dealing with images are either interested in any
changes in an image over time or in regions that appear abnormal on the static
image. This domain includes satellite imagery in [75], digit recognition in [21] and
video surveillance in [62]. The remaining challenge is the large throughout of videos
that requires intensive computation.

2.3.6 Textual anomaly detection

The techniques used in textual anomaly detection mainly detect novel topics or
events stories in a collection of documents or news articles. The anomalies are
corresponding to new interesting events or an unusual topic. Data in this task is
typically sparse and high dimensional and sometimes contains temporal information
of the collecting time. This topic is closely related to text mining discussed in [54],
[69] and [70].
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2.3.7 Other domains

Anomaly detection, with its mainstream applications in the domains discussed
above, also finds its way in many other domains and they are briefly summarized in
Table 2.1.

Table 2.1: Anomaly detection in other domains
speech recognition [5]
robot behavior control [20]
traffic monitoring [65]
detecting faults in Web application [72]
detecting anomalies in biological data [52]
detecting associations among criminal activities [50]
detecting anomalies in Customer Relationships [38]
detecting anomalies in astronomical data [25]
detecting ecosystem disturbances [47]
detecting anomalies in census data [51]



Chapter 3

From Anomaly Detection to
Anomaly Location

After a brief review of the available methods in research and applications of anomaly
detection, in this chapter we introduce our method of anomaly detection and location
to handle a type of data set having the following characteristics:

• All the attributes of an instance are categorical.

• No training labels are available.

• The relationships among attributes are unknown.

In order to facilitate the discussion in this work, we define here the following
mathematical notations.

In the categorical space, denote X as a categorical data set withN rows (instances)
and K columns (attributes, variables). Denote Xk(k = 1, . . . ,K) as k-th variable
representing the k-th column in X. Denote xn = {xn1, . . . , xnK}(n = 1, . . . , N) as
the n-th observation in X. Given xn, we denote the joint probability of the instance
xn as P (xn) = P (xn1, xn2, . . . , xnK).

We denote factorization of P (xn) as an operation F(P (xn)) =
∏K
k=1 fk(xnk). The

factorization consists of the multiplication of K factors fk(xnk) each of which de-
notes one factor as a function of xnk.

In the continuous space, denote rn = {rn1, . . . , rnK}(n = 1, . . . , N) as an ob-
servation mapped from categorical xn. After the mapping, X becomes R and Xk

becomes Rk(k = 1, . . . ,K).

The nature of the data set discussed above plays a strong constraint on the
anomaly detection task. The lack of understanding of the application domain makes
it difficult to conceptually define normal and anomalous instances. Classification-
based methods are not applicable since the data set contains no labels for training.

15
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Nearest neighbor and clustering-based methods rely strongly on the selection of the
distance metric. For categorical data, there are two types of operations that may lead
to defining a metric. One is to check whether two values are the same or not, which
is used in computing Hamming distance. The other is to count the appearances of
a certain value, namely, frequency-based counting. The latter operation opens the
door to the real value space in which the Euclidean distance and many techniques
are steadily available. Thus, one intuitive step is to rewrite each categorical instance
by replacing the original categorical value with its frequency, which turns xn into rn.

Our solution follows the idea of replacing categorical data with real values. Then,
the nearest neighbor approach discussed in Chapter 2 is applied to the transformed
data with the Euclidean distance as the distance metric. In order to decide which
frequency to use to replace the categorical attribute, our solution in this chapter
contains 2 directions each of which manages to perform F(P (xn)) =

∏K
i=1 fi(xni)

based on dependent and independent assumptions between attributes. Furthermore,
given an anomaly detection problem with a data set discussed above, our solution
is able to locate the most likely anomalous attributes inside each given instance.

In order to clarify the theoretical discussion of this chapter, our theory will be
applied to a toy example with N = 8 instances shown in Table 3.1 where xn =
(xn,1, xn,2, xn,3) representing n-th instance with 3 attributes X1 = xn,1, X2 = xn,2
and X3 = xn,3.

Table 3.1: The first toy example.
configuration X1 X2 X3 P (xn)

x1 1 2 2 0.125
x2 1 1 2 0.125
x3 1 2 3 0.125
x4 1 1 3 0.125
x5 2 2 3 0.125
x6 2 3 3 0.125
x7 3 2 2 0.125
x8 4 3 1 0.125

3.1 Anomaly detection with joint and marginal and con-
ditional probability

In this section, we perform anomaly detection by focusing on individual instances
as a whole and discuss the method to decide an anomalous score to be assigned to
the examined instance. We also demonstrate the limitation of this method.
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3.1.1 A fundamental assumption

According to Chapter 2, there is one critical assumption that should be considered
when dealing with anomaly detection in categorical data – normal instances take
the attributes that dominate the data set and anomalous instances take uncommon
attributes with low frequencies of appearances. This assumption is fundamental to
an unsupervised method and it is the backbone of all discussions of this work. If this
assumption does not hold, the definition of an anomaly is violated and an anomaly
detection algorithm will produce the unreliable result.

3.1.2 Conditional and marginal and joint probability estimation

Anomaly detection relies on the frequency of an instance. Considering an instance
as a whole, given X, we would like to evaluate the joint probability P (xn) for each
instance. Thus, each instance will get a score based on their joint probabilities by
which the instances are ranked. A low joint probability suggests an anomalous in-
stance while a high joint probability suggests a normal instance. Then the problem
boils down to determine a threshold T in order to label all the instances larger than
T as normal and the ones smaller than T as anomalous.

However, thresholding the ranking of joint probabilities is not always reliable.
This measurement is only applicable when two types of instances have clear dif-
ference between their joint probabilities P (xn). It is likely that they take very
similar joint probabilities, which makes the decision of the threshold a nontrivial
task. Because P (xn) only considers an instance as a whole, it ignores the relation-
ships between attributes.

The limitation of using only joint probability as a standard for anomaly detection
can be easily demonstrated by using the toy example in Table 3.1. If we compute
the joint probability of all 8 instances from x1 to x8 by counting how many times
combination of the attributes {xn1, xn2, xn3} appears, we have their joint probabil-
ities:

P (x1) = P (x2) = P (x3) = · · · = P (x8) =
1
8

They share the same joint probability that gives no information about whether an
instance is anomaly or not. However, after a quick observation of the example, it
can be easily seen that x8,1 = 4 and x8,3 = 1 is most likely to be the signs of x8

being an anomalous instance, which can be discovered by considering the marginal
probability of P (x8,1 = 4) = Pmin(xn1) = 1

8 and P (x8,3 = 1) = Pmin(xn3) = 1
8 .

Given an instance, if the joint probability P (xn) can not be used to differentiate
normal instances from anomalous ones, we then focus on a small subset of vari-
ables. For example, two instances having the same P (xn) may have very different
P (xni|xnj) where i, j ∈ 1, . . . ,K and i 6= j. Finding conditional probabilities is easy
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given joint and marginal probabilities. Suppose we have joint probabilities P (x1, x2),
marginal probabilities of P (xn1) and P (xn2), finding the conditional probabilities of
P (xn1|xn2) and P (xn2|xn1) is straightforward by using Bayes’ theorem:

P (xn1|xn2) =
P (xn1, xn2)
P (xn2)

and P (xn2|xn1) =
P (xn1, xn2)
P (xn1)

(3.1)

Essentially, estimation of conditional and joint probability leads to the rule-based
anomaly detection techniques discussed in Chapter 2. A strong rule is a joint or con-
ditional probability having a large value, in the language of rules, a strong support
with high frequency while a weak rule is a joint or conditional probability having a
small value. However, rule-based anomaly detection suffers from the problem that
there exist huge amount of rules in a given data set and some domain knowledge
is needed to filter out the most important rules and then to set up a threshold on
frequency to differentiate normal and anomalous instances, which limits its use.

In order to overcome the limitation, we propose our method. Firstly, we manage
to use only the joint probability P (xn) as a score on xn indicating the likelihood of
a given instance being anomalous. This step is not always reliable for the reasons
discussed before in this section. Secondly, we ignore the score and for each xn is
used to locate the anomalous attributes Xk(k = 1, . . . ,K). This is achieved by the
factorizing its joint probability as F(P (xn)) =

∏K
k=1 fk(xnk). The factorization gen-

erates exactly the same number of factors as the number of attributes. The closer
the factorization to the joint probability, the better quality it is and the more accu-
rately the anomalous attributes can be located. Those joint probabilities from step
one are used in step two to measure the quality of a given factorization F(P (xn))
and also to compute any conditional probabilities by (3.1) when necessary. We will
explain how the factors in F(P (xn)) =

∏K
k=1 fk(xnk) can be replaced by conditional

and marginal probabilities to locate the exact positions of anomalous attributes.

One thing worth mentioning is the computation of joint and marginal probabili-
ties. Association rules mining with an efficient algorithm “Apriori” proposed in [2]
represents a research field that has been widely studied to discover patterns inside
categorical data. The association rule mining has a history of finding product com-
binations bought by customers in supermarket data. In [12], the author proposes
one of the most efficient implementation by using a specialized data structure called
“Trie” to speed up the computation. This algorithm is used in this work to compute
the complete set of joint and marginal probabilities given a categorical data of an
overwhelming size.

3.2 Anomaly location with factorizations and masks

The last section explains the use of conditional, marginal and joint probabilities
found by Apriori algorithm and Bayes’ Theorem to perform anomaly detection.
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This section moves from anomaly detection to anomaly location by using those
probabilities to derive an approach focusing on finding the location of anomalous
attributes in a given instance. First of all, we examine two types of factoriza-
tion based on assumptions regarding the independencies among variables. This is
followed by introducing the concept of masks for each factorization to locate the
anomalous attributes.

3.2.1 Independent factorization

The factorization can be achieved by using the assumption that Xk(k = 1, . . . ,K)
are statistically independent of each other. So the joint probability P (xn) can be
factorized as (3.2).

F(P (xn)) =
K∏
k=1

fk(xnk) =
K∏
k=1

P (xnk) (3.2)

Given factorization (3.2) with the same number of factors as the number of attributes
for an instance xn, we not only obtain another way to compute the joint probability
P (xn) by using only K marginals P (xnk), but also transform the instance from the
original categorical space to the continuous space by replacing its xnk by rnk with
rnk = p(xnk) followed by the computations of marginals p(xnk) and recomputation
of joint probability P (xn) =

∏K
k=1 P (xnk).

For the toy example, the marginal probabilities can be computed out very easily
as:

• P (X1 = 1) = 0.5, P (X1 = 2) = 0.25, P (X1 = 3) = 0.125, P (X1 = 4) = 0.125

• P (X2 = 1) = 0.25, P (X2 = 2) = 0.5, P (X2 = 3) = 0.25

• P (X3 = 1) = 0.125, P (X3 = 2) = 0.375, P (X3 = 3) = 0.5

Following the assumption of independence between Xk, the joint probability of
each instance can be factorized as:

P (x1) = P (x1,1 = 1, x1,2 = 2, x1,3 = 2) = P (x1,1 = 1)P (x1,2 = 2)P (x1,3 = 2)
= 0.5× 0.5× 0.375 = 0.094

P (x2) = P (x2,1 = 1, x2,2 = 1, x2,3 = 2) = P (x2,1 = 1)P (x2,2 = 1)P (x2,3 = 2)
= 0.5× 0.25× 0.375 = 0.047

P (x3) = P (x3,1 = 1, x3,2 = 2, x3,3 = 3) = P (x3,1 = 1)P (x3,2 = 2)P (x3,3 = 3)
= 0.5× 0.5× 0.5 = 0.125
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Table 3.2: Independent factorization

configuration R1 R2 R3 P (xn) =
∏K
k=1 P (xnk) =

∏K
k=1 rnk ranking

r1 0.5 0.5 0.375 0.094 6
r2 0.5 0.25 0.375 0.047 4
r3 0.5 0.5 0.5 0.125 7
r4 0.5 0.25 0.5 0.0625 5
r5 0.25 0.5 0.5 0.0625 5
r6 0.25 0.25 0.5 0.031 3
r7 0.125 0.5 0.375 0.023 2
r8 0.125 0.25 0.125 0.004 1

P (x4) = P (x4,1 = 1, x4,2 = 1, x4,3 = 3) = P (x4,1 = 1)P (x4,2 = 1)P (x4,3 = 3)
= 0.5× 0.25× 0.5 = 0.0625

P (x5) = P (x5,1 = 2, x5,2 = 2, x5,3 = 3) = P (x5,1 = 2)P (x5,2 = 2)P (x5,3 = 3)
= 0.25× 0.5× 0.5 = 0.0625

P (x6) = P (x6,1 = 2, x6,2 = 3, x6,3 = 3) = P (x6,1 = 2)P (x6,2 = 3)P (x6,3 = 3)
= 0.25× 0.25× 0.5 = 0.031

P (x7) = P (x7,1 = 3, x7,2 = 2, x7,3 = 2) = P (x7,1 = 3)P (x7,2 = 2)P (x7,3 = 2)
= 0.125× 0.5× 0.375 = 0.023

P (x8) = P (x8,1 = 4, x8,2 = 3, x8,3 = 1) = P (x8,1 = 4)P (x8,2 = 3)P (x8,3 = 1)
= 0.125× 0.25× 0.125 = 0.004

By the mapping from categorical values into real values, the toy example in Table
3.1 is transformed into the one in Table 3.2 in which column 6 shows the minimum-
to-maximum ranking based on the joint probabilities in column 5 in which r8 repre-
senting originally x8 is most likely to be an anomaly while r3 representing x3 is most
likely to be a normal instance. By the discussion of anomaly detection in Section
3.1, the higher the ranking, the more likely the associated instance to be an anomaly.

3.2.2 Fully dependent factorization

Even though the independent assumption introduces a coarse approximation of the
joint probability, it still is useful in some cases in which factors representing at-
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tributes with lower frequencies need to be taken into account. Next, we place an
even stronger 2-part assumption not only on the relationships between attributes
but also on the unnatural way of factorizing the joint probability:

1. complete dependence between attributes of xn.

2. the joint probability P (xn) can be factorized by conditional probability of each
attribute given all the other attributes as (3.3).

F(P (xn)) =
K∏
k=1

fk(xnk) =
K∏
k=1

P (xnk|xn1, xn2, . . . , xn[k−1], xn[k+1], . . . , xnK)

(3.3)

Consider the toy example again, the joint probability becomes
P (xn1, xn2, xn3) = P (xn1|xn2, xn3)P (xn2|xn1, xn3)P (xn3|xn1, xn2).

P (x1) = P (x1,1 = 1, x1,2 = 2, x1,3 = 2)
= P (x1,1 = 1|x1,2 = 2, x1,3 = 2)
× P (x1,2 = 2|x1,1 = 1, x1,3 = 2)
× P (x1,3 = 2|x1,1 = 1, x1,2 = 2)
= 1× 0.5× 0.5 = 0.25

Similarly,

P (x2) = 1× 0.5× 0.5 = 0.25 P (x3) = 0.5× 0.5× 0.5 = 0.25

P (x4) = 1× 0.5× 0.5 = 0.25 P (x5) = 0.5× 0.5× 1 = 0.25

P (x6) = 1× 0.5× 1 = 0.5 P (x7) = 0.5× 1× 1 = 0.5

P (x8) = 1× 1× 1 = 1

By the replacement, the toy example in Table 3.1 is transformed into the continuous-
valued data set in Table 3.3. The column 6 shows the minimum-to-maximum ranking
based on the joint probabilities in column 5. In this case, r3 is most likely to be
an anomalous instance while r8 becomes perfectly normal. So far, one can see that
different assumptions dramatically influence the result of anomaly detection.

3.2.3 Locating anomalous attributes by masks

We define a mask for an instance xn as a binary vector mn = {mn,1, . . . ,mn,K} hav-
ing the same dimension K as an instance xn. Among xn, each individual attributes
xn,k receives a mask mn,k such that xn,k is covered by mn,k. As a binary vector,
mn,k may recieve either 0 or 1. mn,k = 0 means the according attribute xn,k it covers
in the instance is anomalous. When mn,k = 1, xn,k is normal. It is likely that a
given instance is associated with a mask with mn,k = 1 for all k = {1, . . . ,K}, which
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Table 3.3: Fully dependent factorization
configuration R1 R2 R3 P (xn) ranking

r1 1 0.5 0.5 0.25 2
r2 1 0.5 0.5 0.25 2
r3 0.5 0.5 0.5 0.125 1
r4 1 0.5 0.5 0.25 2
r5 0.5 0.5 1 0.25 2
r6 1 0.5 1 0.5 3
r7 0.5 1 1 0.5 3
r8 1 1 1 1 4

means the instance is perfectly normal. Otherwise, all the positions in the instance
taking the mask 0 indicate the potentially anomalous attributes. The generation of
a mask follows three steps.

Step 1: constructing a hypercube in the continuous Euclidean space

The process is summarized by xn → rn → pn. Given xn, it is mapped into rn by
using two types of factorizations each of which is based on one assumption discussed
before. So for each rn, P (rn) =

∏K
k=1 fk(xn,k) =

∏K
k=1(rn,k). In order to construct

a Euclidean space containing all instances, we use (3.4) to transform the product
into summation so that rn is mapped into a point pn in the log-likelihood space of
xn. pn has the coordinates of {loge(rn,1), . . . , loge(rn,K)}.

loge[P (xn)] = loge[
K∏
k=1

fk(xn,k)] =
K∑
k=1

loge[fk(xn,k)] =
K∑
k=1

loge(rn,k) (3.4)

After the coordinates of point pn are decided, we construct a hypercube in K dimen-
sional Euclidean space so that there are no points falling outside the hypercube. To
fully specify the hypercube, one needs only two such points that point pmax having
the maximal loge(rn,k) across all n in each direction k and pmin having the minimal
loge(rn,k) across all n in each direction k. Given pmax and pmin, the coordinates
of all 2K vertexes of the hypercube can be derived from those two points and the
boundary hypercube can be fully constructed. Note that we use a relatively loose
definition of “hypercube” since its edges in our case are not necessarily equal.

Step 2: assign masks to vertexes of the hypercube

After the hypercube is fully constructed, we assign a unique mask for each of the
vertexes of the hypercube. The point pmax, the vertex closest to the origin in
the space, is assigned a perfect mask mn = {mn,1 = 1, . . . ,mn,K = 1}. On the
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contrary, the point pmin, the farthest to the origin, is assigned the worst mask
mn = {mn,1 = 0, . . . ,mn,K = 0}. Following the same pattern of generating the
coordinates of the vertexes, each of the other vertexes receives a unique mask.

Step 3: assign masks to instances

Given a point pn representing an instance xn, pn finds its nearest vertex by compar-
ing the distances between each of the vertexes of the hypercube and itself. Finally,
the point gets the mask exactly the same as its nearest vertex. There are situations
in which a point gets more than one nearest neighbors among vertexes, thus leading
to multiple masks for one instance. Intuitively, this method can be considered as
a clustering technique in Chapter 2 using Euclidean distance as the metric. The
speciality is that the clustering centroids are the vertexes of the hypercube.

3.2.4 Masks for independent factorization

Table 3.4: Masks of vertexes for both independent and fully dependent assumptions
vertex mask mn,1 mn,2 mn,3

v1 m1 0 0 0
v2 m2 0 0 1
v3 m3 0 1 0
v4 m4 0 1 1
v5 m5 1 0 0
v6 m6 1 0 1
v7 m7 1 1 0
v8 m8 1 1 1

Table 3.5: 3-D cube under the assumption of independence
row loge(R1) loge(R2) loge(R3) vertex vn,1 vn,2 vn,3

p1 -0.6931 -0.6931 -0.9808 v1 -2.0794 -1.3862 -2.0794
p2 -0.6931 -1.3863 -0.9808 v2 -2.0794 -1.3863 -0.6931
p3 -0.6931 -0.6931 -0.6931 v3 -2.0794 -0.6931 -2.0794
p4 -0.6931 -1.3863 -0.6931 v4 -2.0794 -0.6931 -0.6931
p5 -1.3863 -0.6931 -0.6931 v5 -0.6931 -1.3863 -2.0794
p6 -1.3863 -1.3863 -0.6931 v6 -0.6931 -1.3863 -0.6931
p7 -2.0794 -0.6931 -0.9808 v7 -0.6931 -0.6931 -2.0794
p8 -2.0794 -1.3863 -2.0794 v8 -0.6931 -0.6931 -0.6931
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Figure 3.1: Masks for independent case. Black lines show the distances between p5

and all vertexes of the cube. Red line shows the shortest distance among them.

Table 3.6: Masks of instances in the independent case.

instance mask instance mask
x1 → r1 → p1 m8 x5 → r5 → p5 m4,m8

x2 → r2 → p2 m6 x6 → r6 → p6 m2,m6

x3 → r3 → p3 m8 x7 → r7 → p7 m4

x4 → r4 → p4 m6 x8 → r8 → p8 m1

Following the discussion of the last section, we extend (3.4) to (3.5) by using the
assumption of independence between attributes of xn discussed in Section 3.2.1.

loge[P (xn)] = loge[
K∏
k=1

fk(xn,k)] =
K∑
k=1

loge[fk(xn,k)] =
K∑
k=1

loge(rn,k) =
K∑
k=1

loge(P (xn,k))

(3.5)
Take the toy example again. By using the results in Table 3.2 and instructions of
building the hypercube in Section 3.2.3, we have Table 3.5 showing the coordinates
of all 8 vertexes of the 3-D cube and their masks in Table 3.4. The 3-D cube is shown
in Figure 3.1 indicating the process of associating each pn to its nearest vertexes.

To find the positions of the actual attributes that may cause the anomaly, we
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use the mask of the nearest vertexes of pn as the mask of rn and thus xn in which
0 shows the possible position that contains relatively low conditional or marginal
probability and thus an anomalous location. The mask for all pn is shown in Table
3.6.

3.2.5 Masks for fully dependent factorization

We extend (3.4) to (3.6) by using the assumption made in Section 3.2.2.

loge[P (xn)] = loge[
K∏
k=1

fk(xn,k)] =
K∑
k=1

loge[fk(xn,k)] =
K∑
k=1

loge(rn,k) =
K∑
k=1

loge(P (xn,k))

=
K∑
k=1

loge[P (xnk|xn1, xn2, . . . , xn[k−1], xn[k+1], . . . , xnK)] (3.6)

For the toy example, by using the results in Table 3.3 and instructions of building
the hypercube in Section 3.2.3, we have Table 3.7 showing the coordinates of all 8
vertexes of the 3-D cube. The 3-D cube is shown in Figure 3.2.

Table 3.7: 3-D cube under the assumption of full dependence
row loge(R1) loge(R2) loge(R3) vertex vn,1 vn,2 vn,3

p1 0 -0.6931 -0.6931 v1 -0.6931 -0.6931 -0.6931
p2 0 -0.6931 -0.6931 v2 -0.6931 -0.6931 0
p3 -0.6931 -0.6931 -0.6931 v3 -0.6931 0 -0.6931
p4 0 -0.6931 -0.6931 v4 -0.6931 0 0
p5 -0.6931 -0.6931 0 v5 0 -0.6931 -0.6931
p6 0 -0.6931 0 v6 0 -0.6931 0
p7 -0.6931 0 0 v7 0 0 -0.6931
p8 0 0 0 v8 0 0 0

Table 3.8: Masks of instances in the fully dependent case.

instance mask instance mask
x1 → r1 → p1 m5 x5 → r5 → p5 m2

x2 → r2 → p2 m5 x6 → r6 → p6 m6

x3 → r3 → p3 m1 x7 → r7 → p7 m4

x4 → r4 → p4 m5 x8 → r8 → p8 m8

As the independent case, we map the mask of the nearest vertex of pn as its
navigation code in which 0 shows the possible position that contains relatively low
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Figure 3.2: All instances are distributed on the vertexes of the cube in fully depen-
dent case.

conditional probability and thus suspicious anomalous location. According to Fig-
ure 3.2, all instances overlap with one of the vertexes. The navigation code for all
pn is shown in Table 3.8.

A simple investigation of the masks generated by both dependent and indepen-
dent cases shows the advantages and disadvantages of using masks to locate the
anomalous attributes. Based on the independent assumption, only x5 and x6 indi-
vidually get two masks while others get only one mask. In the fully dependent case,
everyone gets one mask. The multiple-mask phenomenon results from the small
size of the toy example. In practice, the more instances and categorical values of
variables we have in the data set, the more diversities of frequencies we will get
for different factors, the less likely an instance falls exactly in the middle along one
direction in the hypercube, thus more and more instances recieve only one mask.
Another observation of both results is that most of the points lie on the boundary
of the cube, especially in the second case in which all points fall on the vertexes.
This is not always the case since for most of the real world problems, there are
more variations – attributes getting hundreds or even thousands categorical values
with different frequencies, which will most likely bring most the points inside the
hypercube.

We also suggest that even though both assumptions are statistically ambiguous
and arbitrary in the way that the joint probability computed by the factorization is
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far away from real, they both turn out to be useful. By taking a look at instance
x8 = {x8,1 = 4, x8,2 = 3, x8,3 = 1} in both cases. It respectively gets the worst
mask m1 and perfect mask m8 in two cases. In fact, considering all 8 instances,
xn,1 = 4 and xn,3 = 1 only appears in x8. It is fair to say that x8 is extremely
anomalous since both x8,1 and x8,3 take the lowest frequencies, which supports the
independent assumption. On the other hand, it is fair to trust the second case to say
x8 is perfect normal since two variables getting lowest frequency may suggest a new
instance following new rules between those two variables that has never appeared
before. In conclusion, those two assumptions pay attention to different aspects of
the given instances. The most common way to utilize the result is to test them with
domain knowledge.





Chapter 4

Factorization by Bayesian
Network

The assumptions of independence and complete dependence used in the last chap-
ter suggest ways to factorize the joint probability. Both assumptions, however, give
poor approximations of the joint probability even though they may be useful to
locate the anomalous attributes. This chapter focuses on a factorization without
any assumption of independence that directly leads to a much more accurate ap-
proximation to the joint probability.

In order to accurately factorize the joint probability P (xn) = P (xn1, xn2, . . . , xnK),
given no knowledge of dependencies and independencies between variables of Xk(k =
1, . . . ,K), the only way to achieve this is to use the chain rule of probability, for
example:

P (xn1, . . . , xnK) = P (xn1)P (xn2|xn1)P (xn3|xn1, xn2) . . . P (xnK |xn1, . . . , xK−1)

The merit, compared with the independent and fully dependent assumptions made
before, is that it is an exact factorization having exactly the same joint probability
as the real one by counting. The problem is that one may end up with huge amount
of different factorizations by using the chain rule. For example, another factorization
changing the first two factors can be:

P (xn1, . . . , xnK) = P (xn2)P (xn1|xn2)P (xn3|xn1, xn2) . . . P (xnK |xn1, . . . , xK−1)
(4.1)

One may notice that the number of different factorizations by the chain rule de-
pends on the arrangement of variables, meaning that for each permutation of the
variable set {X1, . . . , XK}, there is a unique factorization of the joint, which gives
K! factorizations in total. Even though these are exact factorizations, the enor-
mous number of factors poses another serious question: Which factorization should
be used to generate the mask, as we did in Chapter 3, to locate the anomalous po-
sitions inside each given instance when no a priori knowledge is in practice available?

29
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The answer becomes slightly simpler if the true dependencies and independen-
cies between groups of {xn1, . . . , xnK} are taken into consideration. For example,
if xn3 is only dependent on xn1, in (4.1) the factor P (x3|x1, x2) can be simplified
into P (x3|x1). Out of those factorizations, we are looking for the factorization that
fully specifies the conditional independencies between variables. This target can
be achieved by several approaches. The most intuitive way is to check each of the
factors and try to simplify them by eliminating variables while keeping the condi-
tional probability unchanged, as is shown by the previous example. However, this
approach suffers from the factorial number of different factorizations and is unable
to differentiate the factorizations since all of them, whether simplified or not, are
exact factorization of the joint probability. In order to overcome this limitation, the
better approach is to construct a Bayesian network that best expresses the condi-
tional independencies in the given data set. In particular, this chapter focuses on
the problem of structural learning of a Bayesian network given a categorical data set.

4.1 Bayesian network in general

Bayesian networks exploit the conditional independence within a joint distribution
and the use of directed acyclic graph (DAG) allows a compact and natural repre-
sentation of those independencies. Given a data set X with N rows and K columns,
a Bayesian network B for a set of variables Xk(k = 1, . . . ,K) consists of a network
structure g that encodes a set of conditional independence assertions about vari-
ables Xk and a set of local probability distributions θg associated with each variable.

Xk denotes both the variable and its corresponding node in DAG. The network
structure g is a DAG in which each node Xk corresponds to one and only one variable
Xk in X and Pak denotes the parents of node Xk in g. θg is a set of conditional
probability table (e.g. Multinomial) for discrete variables, or continuous probability
distributions (e.g. Multivariate Gaussian) for continuous variables, or sometimes
even a mixture of both. The Bayesian network can be interpreted in two ways:

• B can be semantically translated into a set of local independencies such that
each node Xk is conditionally independent of its nondescendants, given its
parents.

• B indicates a factorization of joint probability as:

P (x1, . . . , xk) =
K∏
k=1

P (xk|Pak)

Normally, given a Bayesian network defining a structure g and local probability
distributions θg on g and a probability distribution D, the connection between these
two different concepts replies on the semantics of the Bayesian network. It is the
conditional independencies between variables that connects a Bayesian network and
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a probability distribution together. The two interpretations of B are insured by the
following two theorems in [46]:

• Let B be a Bayesian network over a set of random variables Xk and D be a
joint distribution over the same space. If all the conditional independencies
specified in B hold in D, then D factorizes according to B.

• Let B be a Bayesian network over a set of random variables Xk and D be a
joint distribution over the same space. If D factorizes according to B, then all
the conditional independencies specified in B hold in D.

These two complementing theorems shows the fundamental connection between con-
ditional independencies encoded by Bayesian network and the factorization of a
probability distribution into local probability models: Conditional independencies
imply factorization and factorization implies conditional independencies.

There are three important things one may notice from the two theorems above.
Firstly, a Bayesian network shows nothing but conditional independencies in a given
distribution. The factorization is nothing but a compressed representation of the
given distribution based on the Bayesian network. Secondly, the factors only indi-
cate the local dependencies in the graph. For example, if there exists a factor such
as P (xk|Pak), it does not mean xk is only dependent on its parents among all the
variables. Thirdly, it is necessary that B does not mislead us regarding indepen-
dencies in D: any independence that B asserts must also hold in D. Conversely, D
may have additional independencies that are not reflected in B.

Finally, one has to notice that structurally different Bayesian networks may be
equivalent in the way they specify the same set of conditional independencies. It is
therefore natural to believe those equivalent networks can all be used to factorize a
distribution. There is no intrinsic property of D that would allow us to associate
it with one graph rather than another equivalent one. This phenomenon appears
in structural learning of a Bayesian network in which there are multiple optimal
graphs associated with the given data set.

4.2 Structural learning in general

Learning a Bayesian network generally consists of two different parts. One part is
to learn the parameters θg of the local probabilities given the structure of a network
and a data set. Another is to learn the structure g of the network given only a data
set. This section gives an introduction to the structural learning.
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4.2.1 Constraint-based structural learning

The earliest approach of constraint-based structural learning can be found in [59]
followed by [57] and [18]. This type of approach considers a Bayesian network as
a representation of independencies and tests for conditional dependence and inde-
pendence from data and find a Bayesian network to explain those relationships.
Constraint-based methods are intuitive: They decouple the problem of finding the
structure from the notion of independency search and follow closely the definition
of Bayesian network. Unfortunately, according to [46], this type of approach can be
sensitive to failures in individual independence tests and proved not applicable in
most of the situations.

4.2.2 Score-based structural learning

The second and most popular approach is score-based structure learning. This
type of approach views a Bayesian network as a statistical model and addresses the
discovery of a Bayesian network as a model selection process. The approach follows
three steps:

• Defining a hypothesis space of potential models which are all the possible
network structures to be considered.

• Defining a score function which measures how well a certain network structure
fits the data.

• Searching through the whole model space to find the network structure with
the highest score.

It is straightforward to define a hypothesis space of potential models. Usually, the
dimensionality K of {X1, X2, . . . , XK} decides the number of nodes in the potential
networks. The appearance of an edge and its direction between two nodes defines
the variations in the model space. The number of different models grows superex-
ponentially with the number of nodes — 2O(K2). Therefore, the exhaustive search
is only feasible when K ≤ 5 due to the computational workload. Some searching
heuristics are needed to guide the search to explore the whole model space and find
the global optimal graph in a reasonable time.

The remaining concern of score-based structure learning is the selection of the
score function. Intuitively, there are two options. One natural choice is the likelihood
function that measures the probability of the data given a model. Assume we want
to maximize the likelihood of the model. We denote a model B as a pair [g, θg].
The task is to find both a graph g and parameters θg that maximize the likelihood
function L:

maxg,θgL([g, θg] : X) = maxg[maxθgL([g, θg] : X)]
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When searching through the graph space, given any encountered graph g, we use
the give data set to estimate its parameter θ̂g. Then the score function becomes:

scoreL(g : X) = log[L([g, θ̂g] : X)]

Another option of the score function is the Bayesian score. Since we have uncer-
tainty on the network structure and its parameters, we define a structure prior P (g)
as a prior probability on different graph structures and a parameter prior P (θg|g)
as the prior of different choice of parameters for a given graph structure. By Bayes’
rule, we have:

P (g|X) =
P (X|g)P (g)

P (X)
(4.2)

Ignoring the normalizing denominator, we have the Bayesian score as:

scoreB(g : X) = log[P (X|g)] + log[P (g)] (4.3)

The first term on the right of (4.3) takes into consideration the uncertainty of all
possible parameters given a graph g and can be marginalized over all possible θg as:

L(g : X) = P (X|g) =
∫
θg

P (X|θg, g)P (θg|g)dθg (4.4)

where P (X|θg, g) is the likelihood of the data given the network and P (X|g) is
called the marginal likelihood of data given structure. Note that we use L(g : X) in
Bayesian approach as the marginal likelihood function compared with L([g, θg] : X)
in maximum likelihood estimation as the likelihood function.

The main reason of choosing Bayesian score over the likelihood score is to avoid
overfitting. Maximum likelihood is overly “optimistic” in its estimation of the score:
As a point estimation, the parameter estimated from the training set may not al-
ways provide the best fit of the unseen data. On the contrary, Bayesian approach
integrates the likelihood P (X|θg, g) over different choices of parameters θg, thus, the
expected likelihood is measured, which is more conservative in the estimation of the
“goodness” of the model.

4.2.3 Understanding score functions

Essentially, using score functions to perform the model selection converts the Bayesian
network structural learning to an optimization problem in which we search in the
entire model space to select the model with the maximal score. The result may
seem unrelated to the Bayesian network defined on the conditional dependencies
since there is no guarantee that the optimal network achieved by maximizing the
score is exactly the optimal DAG covering all the conditional dependencies satis-
fied by the actual probability distribution D. We explain the connection in this part.

According to [46], the likelihood score in the structural learning can be decom-
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posed as follows:

scoreL(g : X) = N

K∑
k=1

ID̂(Xk;Pa
g
k)−N

K∑
k=1

HD̂(Xk) (4.5)

where N is still the number of instances and D̂ is the empirical distribution observed
in the data set X and I(Xk;Pa

g
k) is the mutual information measuring the amount

of shared knowledge between Xk and its parents in graph g and H(Xi) is the entropy
measuring the uncertainty of Xk.

Note that the second term on the right-hand side of (4.5) does not depend on the
network structure and thus can be ignored when we compare two structures with
the same data set. The first term I can be considered as the degree of dependence
between a variable and its parents. Thus, the likelihood score measures the strength
of the dependencies between variables and their parents. The likelihood score prefers
a network where the parents of each variable are most informative on their children

To consider the likelihood score from another angle, we have from [46] the following
corollary:

1
N
scoreL(g : X) = HD̂(X1, . . . , XK)−

K∑
k=1

ID̂(Xk; {X1, . . . , Xk−1}−Pak|Pak) (4.6)

Similarly, the first term on the right-hand side of (4.6) does not depend on the
graph. The second term defines the conditional mutual information of Xi and its
preceding variables given its parents. Maximizing the likelihood score is equivalent
to minimizing the second term such that the shared information between Xi and
its precedents given its parents is as small as possible.This second term receives the
minimal value of zero when the conditional independence holds in the given data set.

By using (4.5) and (4.6), we understand that the likelihood score-based optimiza-
tion is intrinsically connected with the process of looking for an optimal DAG. Now
consider the term of marginal likelihood in the Bayesian score and we have the
following conclusion from [46]:

logP (X|g) = log(L([g, θ̂g]))−
logN

2
Dim[g] +O(1) (4.7)

where the first term is scoreL(g : X) — the likelihood score, and Dim[g] is the num-
ber of independent parameters in g, or model dimensionality. If we omit the third
term on the right-hand side of (4.7), we have the Bayesian Information Criterion
(BIC) score . Substituting (4.5) into (4.7), we have the following BIC score which
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is an approximation of scoreB.

scoreBIC(g : X) = N

K∑
k=1

ID̂(Xk;Pak)−N
K∑
k=1

HD̂(Xk)−
logN

2
Dim[g] (4.8)

As an approximated version of the Bayesian score, the BIC score shown in (4.8)
indicates the behavior of the structural learning with scoreB. First of all, on the
right-hand side of (4.8), with fixed N , the second term is the same for all g. The
third term penalizes the likelihood score by considering the model complexity and
number of instances. That is, the stronger the dependence of Xk and Pak, the
higher the BIC score and Bayesian score; the more complex the network, the lower
the BIC score and Bayesian score. Another important thing to be noticed is that as
the number of instances N increases, the first two terms increase by N and the third
term increases by logN , thus, according to [46], the larger N is, the more emphasis
will be given to the fit to data and the more the score exhibits the preference of
more complex structures. However, for a small data set, the penalty term outweighs
the likelihood term.

4.3 Markov chain Monte Carlo in general

Markov chain Monte Carlo (MCMC) is a widely used sampling method to approxi-
mate the posterior probability distribution of P (g|X) and the complex integration
of marginal likelihood P (X|g) in the score-based structural learning of Bayesian
networks. This section reviews the basic ideas of MCMC. More detailed discussion
can be found in [31].

4.3.1 Markov chain

Considering one dimensional random variable z, and zt denotes the value of the
random variable at time t. The random variable follows a Markov process if the
transition probabilities between different values in the state space depend only on
the random variable’s current state, that is:

P (zt+1|zt, zt−1, . . . , z1) = P (zt+1|zt)

Thus, to predict the value of the random variable, the only information needed is
the transition probability P (zt+1|zt) denoted by T(i, j) = P (zt+1 = j|zt = i).

Let πj(t) = P (zt = j) denote the chain in state j at time t and let π(t) denote
the row vector of the state space probability at step t and π(0) denote a starting
vector corresponding to the probability of the chain starting at all possible states.
The starting probability π(0) and the transition matrix T fully specify a Markov
chain. According to Chapman-Kolomogrov equation, the Markov process can be
described as:

π(t+ 1) = π(t)T
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The most interesting feature of a Markov chain is its stationary distribution denoted
by π∗, where the vector of probabilities of being in any particular given state is
independent of the initial condition. Thus, the stationary distribution satisfies

π∗ = π∗T

In order to make sure the Markov chain converges to a stationary distribution, two
conditions must be satisfied.

1. The chain is irreducibile: one can always go from any state to any other state
(it may take several steps).

2. The chain is aperiodic: the chain is not forced into some cycle of fixed length
between certain states.

4.3.2 Monte Carlo

The original Monte Carlo approach was a method developed by physicists to use
random number generation to compute integrals. Suppose we would like to compute
a complex integral ∫ b

a
h(z)dz

If h(z) can be decomposed into the production of a function f(z) and a probability
density function P (z) defined over the interval (a, b), then note that∫ b

a
h(z)dz =

∫ b

a
f(z)P (z)dz = EP (z)[f(z)]

so that the integral can be expressed as an expectation of f(z) over the density
function P (z). Thus, if we draw a large number of z1, z2, . . . , zQ of z with the
probability function P (z), then, we can use the average of f(z1), f(z2), . . . , f(zQ) to
approximate the integration as∫ b

a
h(z)dz = EP (z)[f(z)] ≈ 1

Q

Q∑
q=1

f(zq)

where P (z) is designed to be a stationary distribution of a Markov chain.

4.4 Bayesian structural learning using MCMC

According to [19], learning a Bayesian network from a given data set is NP-hard.
The main reason is due to the extremely large size of the candidate graph space.
The number of DAGs as a function of the number of nodes K, is super-exponential



CHAPTER 4. FACTORIZATION BY BAYESIAN NETWORK 37

Table 4.1: The number of DAGs given the number of nodes K

K f(K)
1 1
2 3
3 25
4 543
5 29281
6 3,781,503
7 1.1× 109

8 7.8× 1011

9 1.2× 1015

10 4.2× 1018

in K, following the recurrence

f(K) =
K∑
k=1

(−1)k+1

(
K

k

)
2k(K−k)f(K−k)

and examples are given in Table 4.1. Since the number of DAGs is super-exponential
in the number of nodes, we cannot exhaustively search the graph space. So we ei-
ther use a deterministic search algorithm (e.g. greedy search, hill climbing) or a
stochastic search algorithm (e.g. simulated annealing, tabu search). Among the
family of stochastic search algorithms, MCMC is in practice the most widely used
one in structure learning.

Based on the general discussion of MCMC and Bayesian network structural lean-
ing, we discuss in the next section the design and implementation of structural
learning algorithm using MCMC following the icebreaking work by [53] which forms
the foundation of most state-of-art algorithms today. One of the most recent devel-
opment can be found in [34].

4.4.1 MCMC structural learning algorithm

The MCMC structural learning algorithm uses MCMC to search the whole graph
space with the stationary distribution of the Markov chain converging to the poste-
rior distribution of the graph space given the data set, denoted by P (g|X). This is
a stepwise algorithm and in each step l, a graph Samples[l] is drawn from the graph
space. The jumping between steps is guided by the ratio R measuring the goodness
of a jump. The whole algorithm is stochastic in the way that if a jumping is good,
we accept the new graph, if not, we accept it with the probability R. We run the
algorithm for sufficiently long so that the Markov chain converges to P (g|X). On
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the other hand, MCMC can be considered as an optimization method in which the
sampled graphs will ultimately cover the distribution of graph space including the
global optimum having the largest P (g|X) – the highest model score.

The overall stages of the algorithm are summarized as following:

• Initialize a graph gold

• l = 1 to L until the Markov chain converges to P (g|X)

1. Find all neighbors nbgs(gold) of gold.

2. Pick randomly a graph gnew from nbgs(gold).

3. Compute acceptant ratio R = score(gnew)
score(gold) .

4. Move from graph to graph:

– If R ≥ 1,
(a) gold = gnew.
(b) Samples[l] = gold

– Else,
(a) gold = gnew with probability R
(b) Samples[i] = gold

4.4.2 Construction of Markov chain in search space

Due to the intractable size of the graph space, the authors in [34] construct a Markov
chain by specifying certain rules of how to move from one graph to another step
by step, namely, how to construct the transition matrix T of a chain in that space
to make sure the stationary distribution P (g|X) is achieved given sufficient runs of
the iteration of the algorithm described in Section 4.4.1. We summarize this in brief.

Consider a graph gold and how to generate gnew. Define nbgs(gold) as the one-step
neighbors of gold including gold itself. All the neighbors of gold are generated by
adding or deleting only one edge from gold. The cell Told,new in transition matrix is
one if gnew ∈ nbgs(gold) and if gnew is also a legal DAG which satisfies the condition
that there is no cycles inside gnew. As argued by [53], by using this rule to generate
the gnew and thus the transition matrix T during each iteration, the Markov chain
satisfies the irreducibility, meaning that there is a positive probability of going from
one point (graph) of the search space to another and aperiodicity, meaning that
returning to any gold takes not fixed but random steps. By the convergence theo-
rem introduced in Section 4.3.1, the chain is assured to converge to its stationary
distribution.

Even though the constructed Markov chain is assured to converge to its stationary
distribution π∗, there is so far no guarantee that the stationary distribution is
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exactly the posterior distribution p(g|X). In order to achieve this, they define the
acceptant ratio R as:

R =
#(nbgs(gnew))P (gnew|X)
#(nbgs(gold))P (gold|X)

where #nbgs(gnew) and #nbgs(gold) represent the number of graphs in nbgs(gold)
and nbgs(gnew), P (gnew|X) and P (gold|X) denote the posterior of the model given
data set as defined in (4.2). Since gnew and gold differ each other only by one edge,
the ratio of #nbgs(gnew)

#nbgs(gold) approximates one.

In order to compute R in each step of MCMC, we observe that P (gnew|X) and
P (gold|X) can both be factorized using Bayesian rule following (4.2) and the denom-
inators P (X), known as normalization constant, cancel out each other in R and the
priors P (gnew) and P (gold) cancel each other as well assuming gnew and gold share
the same prior distribution. After transformation and simplification, R becomes

R =
P (X|gnew)
P (X|gold)

which is also called Bayes Factor. According to [39], the marginal likelihood which
is the integration over the parameter θg shown in (4.4) in Bayes factor, can be ana-
lytically computed by (4.9) assuming the Dirichlet distribution for each cell in the
conditional probability table of each discrete node in g.

L(g) =
K∏
k=1

qk∏
i=1

Γ(M
′
ki)

Γ(Mki +M
′
ki)

wk∏
j=1

Γ(Mkij +M
′
kij)

Γ(M ′
kij)

(4.9)

When there are K nodes in g, each node k has qk configurations of its parents and
gets wk discrete values itself. Mkij and M

′
kij count the number of appearances for

node k getting value j = wk with its parents configured as i = qk in the data set
and in the prior respectively. Mki and M

′
ki count the number of appearances for

node k having the configuration of its parents i = qk in the data set and in the prior
respectively. Γ() is the gamma function used in Dirichlet distribution.

Further simplification of R is possible from [39] that Bayes factor can be computed
using local computations. Specifically,

R =
L(gnew, k)
L(gold, k)

where k refers to the random variable whose parents are different in gnew and gold
and L(g, k) denoted by

L(g, k) =
qk∏
i=1

Γ(M
′
ki)

Γ(Mki +M
′
ki)

wk∏
j=1

Γ(Mkij +M
′
kij)

Γ(M ′
kij)
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4.4.3 Convergence of MCMC

As an iterative simulation, MCMC needs to be run long enough so that the posterior
probability distribution can be resembled by the stationary distribution of the de-
signed Markov chain. The major concern of using MCMC is to decide appropriately
the number of iterations, which is, on the other hand, to develop measurement to
monitor the convergence to the Markov chain. If MCMC is stopped too early to
achieve the convergence, the simulated posterior distribution may still be far away
from real. Otherwise, if MCMC is not stopped when it converges, it would be a
waste of computational power. Furthermore, one can not be easily sure if MCMC
converges even though it has already be run for a long time.

There are several techniques to measure the convergence of MCMC. The first one
is to discard samples from the beginning part of the whole iteration, which is tra-
ditionally referred to as the removal of burn-ins because the convergence should be
independent of the starting point of the iteration and the effect of different starting
point should be diminished as much as possible. The general practice usually disre-
gards the first half of the whole iteration and this proportion is flexible depending
on the different tasks.

Another practical technique is to measure the convergence of MCMC by using
multiple chains, in particular by simulating multiple sequences with starting points
dispersed throughout the parameter space. The quantities of interest such as the
mean and the variance are then examined both within and between multiple chains.
Besides, only when the distribution of each simulated chain is close to the dis-
tribution of all the chains mixed together can they approximate the same target
distribution – the posterior probability.

The authors in [32] introduces the concept of potential scale reduction factor
(PSRF) to monitor the convergence via multiple chains. Suppose we have sim-
ulated m sequences each of which has the length n after removing the burn-in
samples. Then for the quantity of interest ψ, the simulated draws are denoted as
ψi,j(i = 1, . . . , n; j = 1, . . . ,m). The authors suggest to compute B – the between-
sequence variance and W – the within-sequence variance as:

B =
n

m− 1

m∑
j=1

(ψ̄·,j − ψ̄·,·)2, W =
1
m

m∑
j=1

s2j

where

ψ̄·,j =
1
n

n∑
i=1

ψi,j ψ̄·,· =
1
m

m∑
j=1

ψ̄·,j s2j =
1

n− 1

n∑
i=1

(ψi,j − ψ̄·,j)2

The marginal posterior variance of the quantity given by var(ψ) can be estimated
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as a weighted average of W and B as:

v̂ar(ψ) =
n− 1
n
W +

1
n
B

Remember that the scale of a probability distribution measures its statistical dis-
persion of the distribution. We monitor the convergence of the iterative simulation
by estimating the factor by which the scale of the current distribution for ψ might
be reduced if the simulations were continued. The PSRF is estimated by

R̂ =

√
v̂ar(ψ)
W

which declines to one as n → ∞. According to [32], if the PSRF is high, then we
have reason to believe that proceeding for more simulations may improve the infer-
ence about the target distribution, thus the stationary distribution of MCMC and
the quantity of interest ψ. The authors also recommend that normally R̂ under 1.1
indicates the relatively good convergence of MCMC.

In the structure learning of a Bayesian network, the convergence of MCMC can
be monitored by any quantity of interest. In this work, we select the quantity of
interest as the appearance of the directed edge between two nodes Xi and Xj . If
there is a directed edge from Xi to Xj , ψij = 1 and zero otherwise. If there is
a directed edge from Xj to Xi, ψji = 1 and zero otherwise. Since the Bayesian
network is an directed graph, we need K2 quantities to fully cover all the situations.
The quantities also includes the edge connecting the node to itself when i = j.
Obviously, this edge does not exist in any candidate graph, the quantities regarding
this type of edge is always zeros, leading to W = 0 and therefore infinite R̂ denoted
by “−”. When i 6= j, ψij follows the computation of B and W and thus having its
own R̂ indicating the goodness of the convergence. However, it is also likely that
W = 0 when i 6= j when ψij receives only one value throughout all iterations.

4.4.4 Toy example one

To demonstrate the power of structural learning of a Bayesian network using MCMC,
we introduce an example firstly proposed in [58] – “Burglary or Earthquake”. Mr.
Holmes is working in his office when he receives a phone call from his neighbor Dr.
Watson, who tells Mr. Holmes that his alarm has gone off. Convinced that a burglar
has broken into his house, Holmes rushes to his car and heads for home. On his way
home, he listens to the radio, and in the news it is reported that there has been a
small earthquake in the area. Knowing that earthquakes have a tendency to make
burglar alarms go off, he returns to his work. The Bayesian graph regarding to this
example is shown in Figure 4.1. The parameters (local marginal and conditional
probabilities) of the bayesian network are as following:

• P (E) : P (E = 0) = 0.9, P (E = 1) = 0.1
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Earthquake Burglary

RadioNews Alarm

WatsonCall

Figure 4.1: Bayesian network for the Burglary or Earthquake example.

• P (B) : P (B = 0) = 0.01, P (B = 1) = 0.99

• P (A|E,B) : P (A = 0|E = 0, B = 0) = 0.95, P (A = 0|E = 1, B = 0) =
0.8, P (A = 0|E = 0, B = 1) = 0.3, P (A = 0|E = 1, B = 1) = 0.01, P (A =
1|E = 0, B = 0) = 0.05, P (A = 1|E = 1, B = 0) = 0.2, P (A = 1|E = 0, B =
1) = 0.7, P (A = 1|E = 1, B = 1) = 0.999

• P (W |A) : P (W = 0|A = 0) = 0.7, P (W = 0|A = 1) = 0.05, P (W = 1|A =
0) = 0.3, P (W = 1|A = 1) = 0.95

• P (R|E) : P (R = 0|E = 0) = 0.65, P (R = 0|E = 0) = 0.01, P (R = 0|E = 0) =
0.35, P (R = 0|E = 0) = 0.99

By using the graph structure and the local probabilities, we are able to generate
samples sequentially from parents to children in Figure 4.1 by following the sequence
P (E), P (B), P (R|E), P (A|E,B) and P (W |A). We would like to use those samples
to relearn the Bayesian network by MCMC. The number of samples should be large
enough to cover as many the possible configurations of those 5 nodes as possible.
The more samples we have, the better the coverage of all the possible combinations
of the nodes, the higher quality the structure of a Bayesian network that can be
learned from the samples.

100 burn-ins and 400 iterations are used for each of the chain. We use the adja-
cency matrix to represent the DAG in which element in row i and column j gets
one if there is a directed edge from node Xi to node Xj and gets zero if there is no
edge between node Xi to node Xj . We use PSRF as the monitor of the convergence
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of 5 chains of MCMC starting from the following 5 DAGs.
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0




0 0 1 1 1
0 0 0 1 0
0 1 0 0 0
0 0 0 0 0
0 1 0 1 0




0 1 1 1 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
1 0 0 1 0


and 

0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0




0 1 0 1 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 0


The chains converge fairly well with

PSRF =


− 1.14 1.06 1.04 1.06

1.07 − − 1.18 1.03
1.06 1.01 − − −
1.16 1.18 1.00 − 1.06
1.04 1.15 − 1.06 −


in which all elements marked by “−” have variance zero and all the other elements

take value around 1.10 that indicates the good convergence. After the convergence,
by combining 400 iterations for each of the 5 chains, we have a chain of length
2,000 from which the DAG with highest score are extracted. All the Bayesian scores
associated with iterations are shown in Figure 4.2. Clearly from Figure 4.2, there
are a large amount of DAGs taking the highest score. After the examination of
those DAGs, they all correspond to the same DAG:

0 0 1 1 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


which is exactly the optimal DAG corresponding to the original Bayesian network
described in Figure 4.1. Therefore, by ensuring the convergence of MCMC, we
successfully find the optimal DAG.

4.4.5 Toy example two

Now we move back to the first toy example introduced in Chapter 3 shown in Table
3.1 and apply the MCMC structural learning discussed in this chapter to locate
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anomalies in that toy example. All 8 instances are used in MCMC scoring process
to get the optimal graph g∗.

Before applying the optimization, one may notice that the exhaustive search in
the whole DAG space is feasible in this toy example since the dimension of the
data set is only K = 3. By checking Table 4.1 that shows the number of DAGs as
a function of K, only 25 DAGs need to be considered. Thus, as a comparison to
the guided search by MCMC, we firstly perform the exhaustive search among all
25 DAGs and get scoreB for each of them. The resulting DAGs are shown in the
5 by 5 graph matrix in Figure 4.3(a) with each cell corresponding to a candidate
DAG having its scoreB denoted by the gray scale in Figure 4.3(b) at the same index
position.

From Figure 4.3(b), we can easily find two graphs both of which have maximal
scoreB = −33.7751:

scoreB(g∗1,X) = scoreB(

0 0 0
0 0 0
1 0 0

 ,X) = scoreB(g∗2,X) = scoreB(

0 0 1
0 0 0
0 0 0

)

On the other hand, it is possible to achieve the g∗1 and g∗2 by MCMC. By using
5 parallel chains with different starting points and 200 iterations of which 100 are
removed as burn-ins, the PSRF monitoring the convergence of the edge for each pair
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Figure 4.2: The scoreB of all 2,000 DAGs generated by 5 chains after MCMC
converges.
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(a) All DAGs for the toy examples. (b) Bayesian score for all DAGs for the toy ex-
amples.

Figure 4.3: All DAGs and their scores.

of nodes is:

PSRF =

 − 1.023 1.008
1.045 − 1.032
1.006 1.023 −


that justifies the convergence of MCMC.

By combining all 5 chains together, a chain of length 500 contains the two global
optimums g∗1 and g∗2 with exactly the same scoreB as those discovered in the ex-
haustive search.

Figure 4.5(a) and Figure 4.5(b) are equivalently optimal with the same scoreB.
There is no more information in the data set that can differentiate between them.
However, they provide two different factorizations of the joint probability P (xn).

The resulting two oversimplified DAGs may be surprising because clearly there
exists dependencies between X1 and X2 and between X2 and X3 if we estimate the
mutual information between those two pairs by, for example:

I(X1;X2) =
∑

xn1∈X1

∑
xn2∈X2

P (xn1, xn2)log(
P (xn1, xn2)
P (xn1)P (xn2)

)

The mutual information for each pair of variables are I(X1;X2) = 0.75, I(X1;X3) =
0.91 and I(X2;X3) = 0.405. As long as I(Xi;Xj) 6= 0, Xi and Xj are not indepen-
dent. The optimal DAG learned from the data set fails to address the dependencies
between X1 and X2 and between X2 and X3. This is because of the effect of pe-
nalization of scoreB compared with scoreL. In Figure 4.4, we compare three types
of score regarding the 25 candidate DAGs. By using the maximum likelihood (ML)
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Figure 4.4: Three types of score for 25 DAGs in the toy example.
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(b) g∗2

Figure 4.5: Two optimal DAGs learned from MCMC with scoreB

score, the highest score goes to DAGs {g6, g10, g12, g14, g15, g17, g21, g24, g25} that in-
clude all the 3-edge DAGs and three 2-edge DAGs. None of the 1-edge DAGs
is preferred. However, by using Bayesian score, two 1-edge DAGs are preferable.
Remember from (4.7) in Section 4.2.3 that the scoreB can be considered as the
likelihood score penalized by the number of samples and the number of independent
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(free) parameters. The number of free parameters for each of the 25 DAGs is:
7 13 13 31 13
19 11 17 17 35
29 35 13 19 19
17 35 11 17 17
35 17 29 35 35

 (4.10)

The behavior of scoreB is approximated by scoreBIC which is computed out by
penalizing scoreL with the term logN

2 Dim[g] where N = 8 and Dim[g] from (4.10).
As has been discussed before, the asymptotic behavior of scoreB observed from
scoreBIC assures that as N increases, more complicated models will eventually get
higher score. However, when N = 8, the penalizing term outweighs the likelihood
term, resulting the preference of the oversimplified DAGs g∗1 and g∗2.

Factorization one

By following the same computation for the toy example as in Chapter 3 with the
two assumptions, we compute the joint probability of each instance by using the
factorization P (xn) = P (xn1)P (xn2)P (xn3|xn1) from g∗1:

P (x1) = P (x1,1 = 1, x1,2 = 2, x1,3 = 2)
= P (x1,1 = 1)× P (x1,2 = 2)× P (x1,3 = 2|x1,1 = 1)
= 1× 0.375× 0.5 = 0.94

Similarly,

P (x2) = 0.5× 0.25× 0.5 = 0.0625 P (x3) = 0.5× 0.375× 0.5 = 0.094

P (x4) = 0.5× 0.25× 0.5 = 0.0625 P (x5) = 0.25× 0.5× 1 = 0.125

P (x6) = 0.25× 0.25× 1 = 0.0625 P (x7) = 0.125× 0.5× 1 = 0.0625

P (x8) = 0.125× 0.25× 1 = 0.0313

The ranking for all instances is shown in Table 4.2. The distribution of the
instances in the log-likelihood space is shown in Figure 4.6. The masks used to
locate the anomalous positions for each instance are in Table 4.3.
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Table 4.2: Factorization one: P (xn) = P (xn1)P (xn2)P (xn3|xn1)
configuration R1 R2 R3 P (xn) ranking

r1 0.5 0.375 0.5 0.094 4
r2 0.5 0.25 0.5 0.0625 2
r3 0.5 0.375 0.5 0.094 3
r4 0.5 0.25 0.5 0.0625 2
r5 0.25 0.5 1 0.125 5
r6 0.25 0.25 1 0.0625 2
r7 0.125 0.5 1 0.0625 2
r8 0.125 0.25 1 0.0313 1
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Figure 4.6: Instance distribution for factorization generated by the first optimal
Bayesian network g∗1 and P (xn) = P (xn1)P (xn2)P (xn3|xn1).

Factorization two

We compute the joint probability of each instance by using the factorization P (xn) =
P (xn1|xn3)P (xn2)P (xn3) from g∗2:

P (x1) = P (x1,1 = 1, x1,2 = 2, x1,3 = 2)
= P (x1,1 = 1|x1,3 = 2)× P (x1,2 = 2)× P (x1,3 = 2)
= 0.666× 0.5× 0.375 = 0.125
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Table 4.3: Masks of instances by factorization from g∗1.

instance mask instance mask
x1 → r1 → p1 m5 x5 → r5 → p5 m4,m8

x2 → r2 → p2 m5 x6 → r6 → p6 m2,m6

x3 → r3 → p3 m5 x7 → r7 → p7 m4

x4 → r4 → p4 m5 x8 → r8 → p8 m2

Similarly,

P (x2) = 0.666× 0.25× 0.375 = 0.0624 P (x3) = 0.5× 0.5× 0.5 = 0.125

P (x4) = 0.5× 0.25× 0.5 = 0.0625 P (x5) = 0.5× 0.5× 0.5 = 0.125

P (x6) = 0.5× 0.25× 0.5 = 0.0625 P (x7) = 0.333× 0.5× 0.375 = 0.0624

P (x8) = 1× 0.25× 0.125 = 0.03125

The ranking of all the instances is shown in Table 4.4. The distribution of the

Table 4.4: Factorization two: P (xn) = P (xn1|xn3)P (xn2)P (xn3)
configuration R1 R2 R3 P (xn) ranking

r1 0.666 0.5 0.375 0.125 4
r2 0.666 0.25 0.375 0.0624 2
r3 0.5 0.5 0.5 0.125 4
r4 0.5 0.25 0.5 0.0625 3
r5 0.5 0.5 0.5 0.125 4
r6 0.5 0.25 0.5 0.0625 3
r7 0.333 0.5 0.375 0.0624 2
r8 1 0.25 0.125 0.0313 1

Table 4.5: Masks of instances by factorization from g∗2.

instance mask instance mask
x1 → r1 → p1 m8 x5 → r5 → p5 m4

x2 → r2 → p2 m6 x6 → r6 → p6 m2

x3 → r3 → p3 m4 x7 → r7 → p7 m4

x4 → r4 → p4 m2 x8 → r8 → p8 m5

instances in the log-likelihood space is shown in Figure 4.7. The masks used to
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Figure 4.7: Instance distribution for factorization generated by the second optimal
Bayesian network g∗2 and P (xn) = P (xn1|xn3)P (xn2)P (xn3).

locate the anomalous positions for each instance are shown in Table 4.5.

Understanding the factorizations

So far, we have used 2 factorizations from the last chapter and 2 from this chapter
to factorize joint probability given 8 instances and 3 variables:

• Independent factorization:
F1(P (xn)) =

∏3
k=1 fk(xnk) =

∏3
k=1 P (xnk) with the assumption of statistical

independence between variables.

• Fully dependent factorization:
F2(P (xn)) =

∏3
k=1 fk(xnk) =

∏3
k=1 P (xnk|xn1, xn2, . . . , xn[k−1], xn[k+1], . . . , xn3)

with the assumption that all variables are conditional dependent of all the
other variables.

• Bayesian factorization one:
F3(P (xn)) = P (xn1)P (xn2)P (xn3|xn1) with no assumption of dependence be-
tween variables.

• Bayesian factorization two:
F4(P (xn)) = P (xn1|xn3)P (xn2)P (xn3) with no assumption of dependence be-
tween variables.

At the end of the last chapter, we explain how F1(P (xn)) and F2(P (xn)) can be
useful to detect anomalies with different understanding of the given data set. In
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Table 4.6: Compare the joint probability.
Preal(xn) F1(P (xn)) F2(P (xn)) F3(P (xn)) F4(P (xn))

0.1250 0.09400 0.2500 0.09400 0.1250
0.1250 0.04700 0.2500 0.06250 0.06240
0.1250 0.1250 0.1250 0.09400 0.1250
0.1250 0.06250 0.2500 0.06250 0.06250
0.1250 0.06250 0.2500 0.1250 0.1250
0.1250 0.03100 0.500 0.06250 0.06250
0.1250 0.02300 0.500 0.06250 0.06240
0.1250 0.00400 1 0.03130 0.03130

distance 0.2208 1.0533 0.1623 0.1563

this chapter, after another two factorizations, we propose an intuitive standard to
measure how well those 4 factorizations fit the data set.

In Table 4.6, we compare the joint probability Fi(P (xn)) with i = {1, 2, 3, 4}
computed out from those factorization and the real joint probability Preal(xn) from
Table 3.1. Thus the Euclidean distance between Fi(P (xn)) and Preal(xn) is shown
in the last row of Table 4.6 from which we draw the conclusion that with respect to
the approximation to Preal(xn):

• F3(P (xn)) and F4(P (xn)) perform better than F1(P (xn)) and F2(P (xn)).

• F1(P (xn)) is much better than F2(P (xn)) .

• F4(P (xn)) is slightly better than F3(P (xn)).

So the masks generated by F4(P (xn)) is the one we trust most to locate the anoma-
lous positions.
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Chapter 5

A Real World Problem

5.1 Problem description

Energy companies normally sell different types of energy utilities such as electricity,
gas and district heating. They provide their products to a multitude of customers
ranging from families to business, from government to public facilities. Due to the
diversity of their customers, energy companies usually offer a variety of products
to satisfy various requirements of customers. The products they sell may differ in
several ways.

First of all, products are divided into three types of utilities – electricity, gas and
district heating – depending on the actual type and business setting of the given
energy company. Regarding the products they sell under each of the three utilities,
those products additionally differ each other by using different configurations on
their product features such as how to charge the customer buying this product, in
which time period the product is valid and whether or not the customer receives
some discount on the price they pay for the product, all of which are explicitly
specified in the configuration of a product and thus the contract between the buyer
– the customer and the seller – the energy company.

Secondly, besides the configuration of a product, the details of monitoring the
energy flow and consumption are also specified in the contract. For instance, in
order to measure the amount of energy being transferred from a seller to a buyer,
a metering point needs to be properly set that consists of the information of its
geological location, working calendar and the type of energy it measures.

Therefore, a contract between a seller and a buyer normally makes agreement on
those following issues:

• The identification of the buyer and the seller.

• The utility the seller provides.

• The configuration of the product the seller offers for the utility.
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• The configuration of the corresponding metering point located at the buyer
end.

From the perspective of the energy companies, they are facing the contamina-
tions in their contract database because of either hardware malfunction or human
carelessness. Those contaminations, or misconfigurations, need to be detected to
ensure the health of the whole business. As complicated as any real world business,
the data from energy industry is of enormous size and reflects numerous business
rules. It may seem easy to detect the contamination if one could find human ex-
perts who understand all the business rules of the energy industry. However, finding
such a group of experts is impractical and manually checking the contracts stored in
the database entry by entry is infeasible even though such experts exist. Therefore,
anomaly location techniques introduced in Chapter 3 and 4 fit perfectly to this task.
The given data set fits into the characteristics of the special data set introduced at
the beginning of Chapter 3 and the problem can be properly solved by using the
method from Chapter 4. In this chapter, we firstly introduce the data set from a
real world energy company that contains misconfigurations. In the next chapter, we
implement the anomaly location techniques discussed in Chapter 4 on this data set
and analyze the results.

5.2 Data set description

The whole data set is collected as a table consisting of 211,764 rows and 18 columns.
All the table cells are categorical. The columns (attributes) contain all information
of the business process. Their names and description are shown in Table 5.1. The
second column shows the name of the attributes and the third column shows the
unique categorical values the attribute may take and the fourth column shows the
meaning of the attributes in the business world.

Multiple rows in the data set may correspond to one single contract inside which
one delivery is described by multiple rows each of which specifies a single product
component in the contract.

Conceptually, the whole data set contains 6 high-level entities involved in the
business process – buyer, seller, utility, delivery, product and metering point. The
6 entities are unified together with other supportive information to form a contract
having the following structure with the attribute IDs matched to Table 5.1:

• Contract: X1

– Buyer: X3

– Seller: X2

– Contract Type: X14

– Utility: X15
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Table 5.1: Column attributes description.

Xi name size description
X1 ContractID 9729 serial number (SN) of the contract
X2 SellerID 3 only three sellers are involved in the data set.
X3 BuyerID 6580 SN of the energy consumer
X4 DeliveryID 9749 SN of delivery inside a contract
X5 DeliveryType 2 how often the reading of the consumption is checked
X6 Del.Start 168 the starting time of the delivery
X7 Del.Stop 495 the ending time of the delivery
X8 MPID 6675 SN of the metering point
X9 MEAS.Type 15 various measurements of gas, electricity and heating
X10 MEAS.DataType 5 how measurements are reported
X11 MEAS.CAL 8 with missing the measuring period
X12 MEAS.Start 2488 the starting time of the metering point
X13 MEAS.Stop 490 the ending time of the metering point
X14 ProductID 4 general feature of the product
X15 UtilityID 3 electricity, gas or district heating
X16 PComponent 4 product component related to charging
X17 PC.CalID 7 with missing the working period of a product component
X18 Pricelist 2 the price of a product component

– Deliveries: X4

∗ Delivery 1: X4

· Delivery Type: X5

· Validity: X6 and X7

· Product: X14

· Price List: X18

· Metering Point: X8

∗ Delivery 2: X4

∗ . . .

One contract may contain several deliveries each of which includes the con-
figurations of a product and its metering point. The diversity of products
directly reflects the complexity of the energy industry, which can be realized
by product components as following:

• Product: X14

– Product Type: X14

– Utility: attribute X15

– Product Components: X16
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∗ Component 1: X16

· Calendar: X17

∗ Component 2: X16

· . . .
∗ . . .

Another set of important configurations are related to the metering points
with the structure revealed as following:

• Metering Point: X8

– Utility: X15

– Measurements: no direct mapping to the data set

∗ Measurement 1: no direct mapping to the data set
· Validity: X12 and X13

· Data Type: X10

· Measurement Type: X9

· Calendar: X11

∗ Measurement 2
∗ Measurement 3
∗ Measurement 4

In order to further analyze the data set, the whole data set is then divided into 4
sections based on three utilities and their sellers.

1. Electricity: 211,419 rows

(a) SellerA: covers 62,707 rows

(b) SellerB: covers 148,712 rows

2. Gas: 21 rows

(a) SellerC : covers 21 rows

3. District Hearing

(a) SellerC : covers 324 rows

A visualization of the whole data set is shown in Figure 5.1.

5.2.1 Utility 1: electricity with seller A and seller B

Electricity is sold by both SellerA and SellerB and covers most of the data set.
The contracts related to electricity are divided by two sellers for the reason that two
sellers represent two energy companies having their own business models and rules.
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Figure 5.1: The whole data set with 3 columns: root→utility→seller→buyer. 3
utilities are divided from root node to expand to 3 directions each of which follows
the order of utility→seller→buyer. Electricity dominates the whole data set with
over-condensed (due to the fact that SellerA and SellerB each includes more than
6,000 buyers) connections with buyers as the leaf nodes. Gas only involves 2 buyers
as the leaf nodes. District heating involves 40 buyers as the leaf nodes.

(a) root → all (b) root → electricity

(c) root → gas (d) root → district heating
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Table 5.2: Summary of contracts related to SellerA.

utility electricity
contracts 3138 buyers 3077
deliveries 3144 delivery types 2

metering points 3088 metering type 6
metering data types 4 metering calendars 8

productIDs 1 product components 2
product calendars 6 price list 2

total rows 62707 rows with good Cal 8324
rows with only X11 missing 2185(3.5%) rows with only X17 missing 28506(45.5%)

rows with both X11, X17 missing 2118(3.4%) rows with no missing 29898(47.7%)
rows with either missing 32809(52.3%)

Table 5.3: Summary of contracts related to SellerB.

utility electricity
contracts 6547 buyers 6405
deliveries 6558 delivery types 2

metering points 6488 metering type 6
metering data types 4 metering calendars 8

productIDs 2 product components 4
product calendars 5 price list 1

total rows 148712 rows with good Cal 11132
rows with only X11 missing 5714(3.8%) rows with only X17 missing 67028(45.1%)

rows with both X11, X17 missing 5506(3.7%) rows with no missing 70464(47.4%)
rows with either missing 78248(52.6%)

Seller A

Summary of SellerA shown in Table 5.2 demonstrates the basic characteristics of
those contracts with SellerA. The integers denote the number of all possible unique
values of the according statistics in the table.

Seller B

Similarly, the summary of SellerB is shown in Table 5.3.

5.2.2 Utility 2: gas with seller C

The summary of SellerC selling gas is shown in Table 5.4. Note that due to the
speciality of district heating which is provided by SellerC to its 2 buyers all the year
round, column 11 (MEAS.CAL) and column 17 (PC.CALENDARID) are always
missing value indicating the gas is offered and transmitted all the time.
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Table 5.4: Summary of contracts related to SellerC with gas.

utility gas
contracts 4 buyers 2
deliveries 5 delivery types 1

metering points 4 metering type 2
metering data types 2 metering calendars 0 (Missing)

productIDs 2 product components 2
product calendars 0 (Missing) price list 1

total rows 21 rows with good Cal 21
rows with only X11 missing 21(100%) rows with only X17 missing 21(100%)

rows with both X11, X17 missing 21(100%) rows with no missing 21(100%)
rows with either missing 0(0%)

Table 5.5: Summary of contracts related to SellerC with district heating.

utility district heating
contracts 40 buyers 40
deliveries 42 delivery types 1

metering points 40 metering type 8
metering data types 3 metering calendars 0 (Missing)

productIDs 1 product components 2
product calendars 0 (Missing) price list 1

total rows 324 rows with good Cal 312
rows with only X11 missing 324(100%) rows with only X17 missing 324(100%)

rows with both X11, X17 missing 324(100%) rows with no missing 324(100%)
rows with either missing 0(0%)

5.2.3 Utility 3: district heating with seller C

The summary of SellerC selling district heating is shown in Table 5.5. Similarly as
gas, due to the speciality of heating which is provided by SellerC to its 40 buyers
at the same time period (winter) of a year, column 11 (MEAS.CAL) and column 17
(PC.CALENDARID) always have missing values indicating the heating is offered at
the same time of the whole year.

5.3 Preprocessing and visualization

The first step of data processing focuses on the nature of those missing values in
the data set. We demonstrate the way to correctly understand those missing values.
Then in the second step, we manually define a rule with respect of the correctness
of calendars in the data set. This intuitive rule serves as an example to show
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that misconfiguration location can be performed by just specifying rules and check
those contract records that break those rules. However, due to the little domain
knowledge, we cannot rely on this rule-based anomaly detection since we barely know
any business rules. In the last step, we formally define 4 subsets after attributes
reduction and they are used in the next chapter to locate the anomalous locations.

5.3.1 Missing values

Table 5.6: SellerA and SellerB: some examples showing the rules of missing values
in X11 and X17.

seller appearances (rows) X9 X10 X16 X11 is missing X17 is missing

SellerA

2117 1 3 1 Y Y
2184 1 3 2 Y N
5725 3 1 1 N Y
5724 3 2 1 N Y
8402 3 6 1 N Y
217 1080 1 1 N Y

SellerB

5363 1 3 1 Y Y
5431 1 1 1 Y Y
5499 1 3 2 N Y
12013 3 1 1 N Y
12018 3 2 1 N Y
5363 1 3 2 Y N

As has been stated before, when it comes to SellerC , the missing value is under-
standable. However, there are still a large portion of data containing missing values
regarding SellerA and SellerB. This section we uncover the rules leading to those
missing values.

We investigate individually all the contracts related to SellerA and SellerB and
find that attributes X9, X10 and X16 decide as a whole the appearances of missing
values in X11 and X17. Note that we use the actual value directly from the data set.
One does not need to understand the real meaning of those values since this needs
some expertise from the energy industry. The missing values are generated by rules
with some examples shown in Table 5.6.

Notice that for both sellers, when the values of X9, X10 and X16 are fixed, the
appearance of missing values in either X11 or X17 is decided. This can be explained
as the rule for missing values. Note that for SellerA there exists only two out of
32,809 rows that violate the pattern shown in Table 5.6 which are very likely to be
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misconfigurations. In SellerB there exists 1,118 (1.43% of 78,248) rows that violate
this pattern. However, by a close observation, all the violations from SellerB result
from the alternation between value “141440” and the missing value. For instance,
there are in all 5,431 rows in SellerB with X9 = 1, X10 = 1, X16 = 1. We expect
X11 = Missing and X17 = Missing according to the rule in Table 5.6. Instead,
all the 68 violations out of 5,431 rows take the value X11 = Missing which is cor-
rect and X17 = 141440 which violates the rule. Similarly, by checking all the other
rules causing missing values in SellerB, we find that all the violations are caused by
replacing the attribute that is meant to be missing by the value of “141440”. We
suspect that the value alternation may be caused by a large scale machine malfunc-
tion. The actual reason is beyond our knowledge to induce, which would be left for
the experts who have a better understanding of this application domain.

Briefly put, there is no need to fill the missing values, they are missing because
they obey some business rules. Hence, missing values are missing because they
should be missing.

5.3.2 Filtering by rules

We propose here a rule as an example to discover a large proportion of miscon-
figurations from the data set before going to any further discussion. Consider the
4 columns {X6, X7, X12, X13} in Table 5.1. We define the rule rule0 = (X6 ≥
X12)

⋂
(X7 ≤ X13)

⋂
(X6 < X7)

⋂
(X12 < X13). By applying this rule, we detect

19,789 out of 211,764 rows that have the configuration violating rule0, which means
90.6% of the whole set has the inconsistent calendar information for the products
and their metering points. We believe that there are likely to be more extra incon-
sistencies hidden inside those configurations with wrong calendars. Therefore, we
continue to use those configuration with both good and bad calendars for future
analysis.

5.3.3 Attributes reduction

As explained before, in order to facilitate the preceding anomaly location in the next
chapter, we divide the whole data set into subsets by utilities and their sellers. Since
the purpose of this work is to perform the anomaly location within the categorical
data set, there are several attributes that are not related to this task. In partic-
ular, for all the 18 attributes describing a contract (row), we exclude 4 columns
{X6, X7, X12, X13} by using the rule on calendars introduced in Section 5.3.2. Fur-
thermore, another 5 columns {X1, X2, X3, X4, X8} are also excluded since those are
merely the IDs that have nothing to do with any potential misconfigurations. That
finally leaves us 9 columns {X5, X9, X10, X11, X14, X15, X16, X17, X18}.

Since X15 specifies the type of utility, the data set with those 9 columns are further
divided into 3 subsets by X15. Each of the 3 subsets are divided into even smaller
subsets by sellers. Therefore, we have the following 4 data sets Xs with K = 8
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dimensions prepared for the anomaly location in the next chapter:

• XElectricity,SellerA : N = 62, 707 rows

• XElectricity,SellerB : N = 148, 712 rows

• XGas,SellerC : N = 21 rows

• XHeating,SellerC : N = 324 rows

Before getting into the next chapter, we would like to show another visualization
of one of those 4 data sets XElectricity,SellerA in Figure 5.2.

At the higher level, the figure shows the tree structure of the configurations related
to SellerA starting from the root node in the middle, branching by the sequence of:
root → X5 → X9 → X10 → X11 → X14 → X16 → X17 → X18. Those 8 attributes
form 8 levels of the tree after the root node. In the figure, root node expands into
firstly 2 branches since there are 2 possible values X5 can take, thus divide the whole
tree into upper and lower part. Continue with the lower part, X5 = 1 is expanded
into 6 parts since X9 can have in all 6 different values when X5 = 1. Following the
this pattern, the whole tree is constructed.

When branching, the frequency of a specific node is also taken into consider-
ation. Again, starting from the root, X5 = 1 (the parent of the lower part)
and X5 = 2 (the parent of the upper part) have different appearances mean-
ing that there are different number of rows in the data set having X5 = 1 and
X9 = 2. The number of rows taking X5 = 1 is 122 and X5 = 2 is 62,585. Dif-
ferent frequency range is marked in the tree by different color. Thus the connec-
tion between root node and the node of X5 = 1 is yellow. Similarly the node
of X5 = 2 is colored red. Take the lower part again. When X5 = 1, X9 may
take 6 values {1, 2, 3, 4, 8, 1080} with different frequencies, thus with different col-
ors. Particularly, Freq(X5 = 1, X9 = 1) = 10, Freq(X5 = 1, X9 = 2) = 10,
Freq(X5 = 1, X9 = 3) = 74, Freq(X5 = 1, X9 = 4) = 4, Freq(X5 = 1, X9 = 8) = 4
and Freq(X5 = 1, X9 = 1080) = 20, the sum of which is exactly the frequency of
X5 = 1, which is the frequency of their parent node.

Low frequencies are of our special interests because it follows the fundamental
assumption in Chapter 3 that misconfigurations appear much less than correct ones.
By investigating the figure, not only can we understand general structure of the
configurations, but also we spot some special values with extremely low appearances
colored by blue, which might be considered as misconfigurations.
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Figure 5.2: Visualization of XElectricity,SellerA . Colors denote the frequency: blue
= [0,10], green = (10,20], aqua = (20,40], purple=(40,80], yellow = (80,160],
red=otherwise.





Chapter 6

Anomaly Location with
Bayesian Networks

In this chapter, theory from Chapter 4 is applied to the data set introduced in
Chapter 5. In particular, structural learning of Bayesian networks finds the opti-
mal network structure with the highest Bayesian score. Then the optimal structure
is used to factorize the joint probability, detecting the factors with relatively low
frequencies. For each of the configurations, anomalous attributes are located by
constructing the hypercube and investigating the distribution of the data points
(instances), as discussed in Chapter 3. The final result is a collection of masks cor-
responding to all the data points. The mask, as discussed in Chapter 3 and 4, can
be effectively used to indicate the potential attributes causing a misconfiguration.

We retain 9 columns{X5, X9, X10, X11, X14, X15, X16, X17, X18} from the original
18-column data set for the reason explained in Chapter 5 and thus divide the 9-
column data set into 4 subsets, which generates 4 data sets each of which has 8
columns. The optimal Bayesian network is learned given each of the 4 data sets.
However, not every column is necessarily involved in the learning process. The col-
umn is not used if it only takes one value for all the instances, which already clearly
indicates the statistical independence of this column from the others. Even though
those columns are not used in the structural learning, they are manually inserted
back into the learnt Bayesian network by simply adding the nodes representing those
columns into the learned DAG. No edge is needed for those independent nodes.

For the convenience of the following discussion in this chapter and consistency
with the notations used in the two toy examples in Chapter 4, we represent the 8
columns as {X1, X2, X3, X4, X5, X6, X7, X8} and a configuration (instance) as xn
and its joint probability as P (xn). n denotes any given instance.

6.1 Electricity

Over 98% of the data set is covered by contracts related to electricity.
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6.1.1 Seller A

This section uses data set XElectricity,SellerA with 62,707 rows of 214 unique config-
urations which contain an uncertain number of misconfigurations. By a close exam-
ination, the column X14 gets only one value through all the configurations. So it is
discarded temporarily and added back to the learned Bayesian network. According
to Table 4.1, 7 nodes construct 1.1×109 graphs that cover the complete graph space.

By following the discussion in Chapter 4, PSRF checks the convergence of the
MCMC searching process. MCMC is run 5 times each of which starts from a differ-
ent initial graph. In order to achieve the convergence, each of the 5 runs contains
2,000 iterations, generating 2,000 graphs. After the convergence is guaranteed, 5
chains are combined together, forming a collection of 10,000 graphs. Then each of
the graphs is scored by scoreB. The graph with the highest score is considered as
the optimal structure for the factorization of the joint probability.

PSRF =



− 1.02 1.07 1.12 1.07 1.18 1.02
1.07 − 1.02 1.10 1.00 1.02 1.02
1.14 1.01 − 1.01 1.01 1.00 1.02
1.27 1.11 1.01 − 1.01 1.00 1.01
1.09 1.00 1.02 1.03 − 1.07 1.02
1.21 1.02 1.02 1.00 1.06 − 1.01
1.07 1.00 1.02 1.05 1.01 1.04 −


The optimal graph is shown in Figure 6.1 and the factorization of joint probability

according to Figure 6.1 is:

P (xn) = P (xn,1)P (xn,2|xn,1, xn,3, xn,4, xn,7)P (xn,3|xn,1, xn,4, xn,7)
P (xn,4|xn,1)P (xn,5)P (xn,6|xn,2, xn,3, xn,4, xn,7)P (xn,7|xn,1, xn,4)
P (xn,8|xn,1, xn,2, xn,3, xn,4, xn,6, xn,7)

In order to intuitively understand the goodness of this factorization, we compare
two joint probabilities, real joint probability and the one approximated by the fac-
torization above for each of the 214 unique instances. The average difference on all
214 pairs is 2.95× 10−15, which convincingly proves a reliable factorization.

Then, the masks for locating the anomalous attributes in XElectricity,SellerA are
generated based on the discussion from Chapter 3. For each of the 214 unique
configurations, a close examination reveals that there are 4 masks mapping to 8
columns. Those 4 masks follow the same pattern on attributes xn,5 and xn,6. For
instance, the configuration {1, 1, 1, 141440, 1, 1, 0, 1} are assigned the following four
masks:

1. 0 1 1 1 0 0 1 1
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1:DType

2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal

8:Price

Figure 6.1: Optimal Bayesian network for seller A.

2. 0 1 1 1 0 1 1 1

3. 0 1 1 1 1 0 1 1

4. 0 1 1 1 1 1 1 1

Attributes xn,5 and xn,6 get {mn,5,mn,6} as {0, 0}, {0, 1}, {1, 0}, {1, 1} which include
all the 0-1 combinations. The reason for this phenomenon can be explained as
following:

• Attribute X5 gets only one value for all configurations, resulting in pmax and
pmin taking the same value on the 5th direction. So any point in the Euclidean
space overlaps pmax and pmin on its 5th direction, getting both masks 0 from
pmin and 1 from pmax.

• Attribute X6 receives half 0 and half 1 on mn,6. In fact, it is the fac-
torization P (xn,6|xn,2, xn,3, xn,4, xn,7) that makes it getting only 1 value in-
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Table 6.1: Examples of configurations and masks for seller A.
configuration X1 X2 X3 X4 X7 X8 frequency

x1 1 3 3 610869 0 1 2
mask 0 1 1 1 1 1 -
x2 2 3 1 141440 0 1 5427

mask 1 1 1 1 1 1 -
x3 2 3 1 141447 0 1 4

mask 1 1 0 1 1 1 -
x4 2 1080 1 141440 0 1 93

mask 1 1 1 1 1 1 -
x5 2 4 3 610870 0 1 1

mask 1 1 1 0 1 1 -
x6 2 1080 1 141452 141452 1 37

mask 1 1 1 1 1 1 -

stead of 2 because there exists another clear pattern in the data set that if
xn,2, xn,3, xn,4, xn,7 are fixed, there is only one value xn,6 can get.

So both mn,5 and mn,6 are useless to explain the anomalous location and are
excluded from the masks. Not surprisingly, after this operation, every single unique
configuration is assigned only one mask. Out of 214 different configurations, 172
of them get one anomalous attribute and 42 of them are perfectly normal. The
average frequency of all the configurations getting 1 anomalous attribute is 8.94 out
of 62,707 while the average frequency of all the normal configurations is 1,456.40
out of 62,707, which is consistent with the fundamental assumption made at the
beginning of Chapter 3 that normal configurations dominate the whole data set.

Table 6.1 shows some of the examples of configurations and their masks. Gen-
erally, the higher the frequency, the more likely the configuration is normal. Con-
figuration x2, as one of the most frequent, is perfectly normal, as well as x4 and
x6. Compared with the total number of rows 62,707, the frequencies of x4 and x6

are both small, however, they are considered as normal due to the use of effective
factorization.

6.1.2 Seller B

Similarly as the experiment on seller A, this section uses data set XElectricity,SellerB

with 148,712 rows containing 153 unique configurations which include an uncer-
tain number of misconfigurations. The column X8 gets only one value through all
the configurations. So it is discarded temporarily and added back to the learned
Bayesian network. The graph space has the same size as that of seller A.
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PSRF is still employed to monitor the convergence of the MCMC searching pro-
cess. MCMC is run 5 times each of which starts from different initial graph. Each of
the 5 runs contains 2,000 iterations, thus generating 2,000 graphs. Even though the
size of the data set doubles compared with that of seller A, the number of unique
configurations declines. In fact 2,000 iterations suffice to achieve the convergence.
After the convergence has been justified by PSRF, 5 chains are combined together,
forming a collection of 10,000 graphs each of which is scored by scoreB. The graph
with the highest score is considered as the optimal structure for the factorization of
the joint probability.

PSRF =



− 1.01 1.00 1.01 1.08 1.01 1.01
1.03 − 1.00 1.06 1.15 1.01 1.11
1.00 1.09 − 1.10 1.11 1.00 1.00
1.03 1.11 1.10 − 1.20 1.06 1.18
1.02 1.01 1.05 1.19 − 1.06 1.35
1.00 1.01 1.00 1.10 1.26 − 1.06
1.01 1.03 1.00 1.19 1.21 1.06 −


The optimal graph is shown in Figure 6.2 and the factorization of the joint prob-

ability according to Figure 6.2 is:

P (xn) = P (xn,1|xn,4, xn,5, xn,6, xn,7)P (xn,2|xn,3, xn,4, xn,5, xn,6, xn,7)
P (xn,3|xn,1, xn,4, xn,5, xn,6, xn,7)P (xn,4|xn,5)P (xn,5)P (xn,6|xn,4, xn,5, xn,7)
P (xn,7|xn,4, xn,5)P (xn,8)

Both joint probabilities — real joint probability and estimated one by the factor-
ization above, are compared on each of the 153 unique instances. The average
difference on all 153 pairs is 3.80 × 10−14, which is small enough to convincingly
prove an accpetable approximation.

For seller B, the attribute X8 causes the phenomenon of multiple masks, for the
same reason explained in the experiment of seller A. So mn,8 is useless to explain
the anomalous location and is excluded from the masks. After this operation, every
single unique configuration gets only one mask. Out of 153 different configurations in
all 148,712 rows, 107 of them get 1 anomalous attribute, 6 of them get 2 anomalous
attributes and 40 of them are perfectly normal. The average frequency of all the
configurations getting 1 anomalous attribute is 16.13 while getting 2 anomalous
attributes is 6 and perfectly normal is 3,673.45, which again is consistent with the
fundamental assumption made before. Some examples are shown in Table 6.2.
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Table 6.2: Examples of configurations and masks for seller B.
configuration X1 X2 X3 X4 X5 X6 X7 frequency

x1 1 1 1 141440 2 1 0 12
mask 0 0 1 1 1 1 1 -
x2 1 1 1 141440 4 1 141440 3

mask 1 1 1 1 0 1 1 -
x3 1 3 6 141440 2 1 0 3

mask 0 1 1 1 1 1 1 -
x4 2 3 1 141440 2 1 0 12,000

mask 1 1 1 1 1 1 1 -
x5 1 8 1 141440 2 1 0 4

mask 0 0 1 1 1 1 1 -
x6 2 3 2 141451 2 1 141440 180

mask 1 1 1 1 1 1 1 -
x7 2 3 3 141447 2 1 0 5364

mask 1 1 1 1 1 1 1 -
x8 2 3 6 141440 2 1 0 1

mask 1 1 0 1 1 1 1 -
x9 2 3 6 141440 2 2 141451 68

mask 1 1 1 1 1 1 0 -
x10 2 8 1 0 2 1 0 39

mask 1 1 1 1 1 1 1 -
x11 2 3 6 141452 2 4 141440 1

mask 1 1 1 1 1 1 0 -
x12 2 3 2 141440 4 1 0 5

mask 1 1 1 1 0 1 1 -
x13 1 3 3 610869 2 1 0 4

mask 1 1 1 0 1 1 1 -
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1:DType

2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal

8:Price

Figure 6.2: Optimal Bayesian network for seller B.

6.2 Gas

XGas,SellerC only covers 21 out of 211,764 rows in the whole data set. There are
only 9 unique configurations in all 21 rows. Even though it is fairly easy for any
human expert to evaluate those configurations one by one to detect anomalous at-
tributes, for the completeness of this work, the same methodology for seller A and
B is repeated in this section. Note that 21 rows with 9 unique configurations are
not statistically reliable to draw any significant conclusion of the general population
and its internal conditional dependencies.

Another speciality of XGas,SellerC is that 4 attributes X1, X4, X7, X8 get single
value across all the data set, leaving 4 attributes X2, X3, X5, X6 to be taken into
consideration. From the perspective of MCMC, 5 different chains with 200 iterations
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for each of them suffice to make the satisfactory convergence with

PSRF =


− − − 1.01

1.12 − 1.01 1.00
1.11 1.01 − 1.01
− 1.00 1.00 −


with “−” denoting zero variance, as has been discussed in Chapter 4.

As the case of the second toy example in Chapter 4, multiple optimal networks
are expected since the data set is too small to fully differentiate between those op-
timal graphs by scoreB. In fact, from 543 possible graphs, 6 equivalently optimal
Bayesian networks are returned from the MCMC process, as shown in Figure 6.3.

By following the 6 optimal Bayesian networks, joint probability can be factor-
ized into 6 forms, leading to the dilemma of deciding the factorization to be used.
Unfortunately, there is nothing one can do without any further knowledge of the
problem domain, i.e., a priori knowledge is needed at this stage. Simply comparing
the approximation accuracy between the factorized joint probability and real joint
probability offers no help since this computation shows all 6 factorizations are exact
factorizations with 100% accuracy.

6.3 District heating

XHeating,SellerC covers 324 rows with 18 unique configurations. It is more statis-
tically reliable than XGas,SellerC yet still not informative enough compared with
XElectricity,SellerA and XElectricity,SellerB . The attributes {X1, X4, X5, X7, X8} get
only one possible value and need to be excluded from the structural learning pro-
cess, which leaves only 3 attributes {X2, X3, X6}. This makes the exhaustive search
feasible since the graph space consists only 25 candidates that have already been
shown in Figure 4.3(a) in Chapter 4.

The scoreB for all the DAGs are:
−464.77 −461.55 −462.39 −460.68 −239.34
−236.96 −455.91 −452.69 −453.53 −451.82
−241.21 −238.82 −238.16 −234.93 −12.73
−229.30 −14.59 −432.99 −429.76 −430.60
−428.89 −207.56 −371.66 −368.44 −146.23


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3:MDType

4:MCal

5:ProductID

6:PComp
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(a) g∗1

1:DType 2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal 8:Price

(b) g∗2

1:DType 2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal 8:Price

(c) g∗3

1:DType 2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal 8:Price

(d) g∗4

1:DType 2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal 8:Price

(e) g∗5

1:DType 2:MType

3:MDType

4:MCal

5:ProductID

6:PComp

7:PCCal 8:Price

(f) g∗6

Figure 6.3: 6 optimal DAGs learned from MCMC with XGas,SellerC
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Thus the best DAG g∗1 and second best DAG g∗2 are:

g∗1 =

0 1 1
0 0 0
0 0 0

 , g∗2 =

0 1 1
0 0 0
0 1 0


Meanwhile, the optimal DAG found by 5 MCMC chains with 200 iterations is

1:DType 2:MType

3:MDType

4:MCal 5:ProductID

6:PComp

7:PCCal 8:Price

Figure 6.4: Optimal Bayesian network for XHeating,SellerC .

shown in Figure 6.4, which is exactly the best DAG g∗1 by exhaustive search. The
convergence monitor

PSRF =

 − − 1.01
1.00 − −
− 1.02 −


Thus the joint probability can be factorized as:

P (xn) = P (xn,1)P (xn,2)P (xn,3|xn,2)P (xn,4)P (xn,5)P (xn,6|xn,2)P (xn,7)P (xn,8)

which is an exact factorization of the real joint probability with zero difference be-
tween them.

The 6th factor P (xn,6|xn,2) exhibits an unusual pattern. Even though xn,6 may
get two possible values when xn,2 is fixed, the possibilities of getting two values are
equal. Therefore, for all the 18 unique configurations, P (xn,6|xn,2) ≡ 0.5, which
directly makes the 6th element of the mask mn,6 being equally likely to take either
0 or 1. So mn,6 should be excluded.

Finally, some examples are shown in Table 6.3. There are only 9 unique con-
figurations left after all the unrelated columns are eliminated. In the table, only
{xn,2 = 22, xn,3 = 1} and {xn,2 = 23, xn,3 = 1} receive the perfect mask {mn,2 =
1,mn,3 = 1} indicating normal configurations. All the other 7 configurations are
anomalous with possible misconfigured attributes on either xn,2 or xn,3. One may
notice the strangeness when considering, for example, x4 in which x4,3 can only take
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Figure 6.5: The hypercube reduces to a rectangle with XHeating,SellerC .

Table 6.3: Examples of configurations for XHeating,SellerC .
configuration X2 X3 frequency mask mn,2 mn,3

x1 → r1 → p1 22 1 42 m1 1 1
x2 → r2 → p2 23 1 42 m2 1 1
x3 → r3 → p3 23 5 42 m3 1 0
x4 → r4 → p4 25 3 6 m4 1 0
x5 → r5 → p5 26 3 6 m5 1 0
x6 → r6 → p6 27 3 6 m6 1 0
x7 → r7 → p7 28 3 6 m7 0 1
x8 → r8 → p8 31 3 6 m8 0 1
x9 → r9 → p9 65 3 6 m9 0 1

the value 3 when x4,2 = 25. However, according to the m4, x4,3 = 3 is incorrect. If
one needs to correct the value of x4,3, there are basically no suitable values to be
selected to replace those incorrect values. The reason can be explained in Figure
6.5. The blue rectangle constraints all the data points inside its realm in which p4

overlaps the bottom right point of the boundary. Even though in the direction of
xn,2, p4 behaves perfectly as it reaches the vertex on the bottom right corner, it
meanwhile has the longest distance to the top boundary and therefore it is consid-
ered as incorrect in the vertical direction. There is no replacement of x4,3 because
no instance lies on the boundary line between mask(1,0) and mask(1,1).





Chapter 7

Conclusion

Motivated by the task of misconfiguration detection for the energy industry, this
work introduces a procedure of anomaly (misconfiguration) detection and location
that can be used not only in the energy industry but also in more general sce-
narios. Given a multivariate categorical data set generated from an application
domain, without any training labels, it is fair to believe that normal instances are
more common than anomalous ones. Based on this, we establish a fundamental
assumption that an anomalous instance takes the attributes appearing with low fre-
quencies in the data set while a normal instance takes attributes appearing with
high frequencies. This assumption directs the approach of anomaly detection and
location. Anomaly detection considers an instance as a whole and reports whether
an instance is anomalous by analyzing its joint probability. However, anomaly de-
tection overlooks the relationships among attributes. Compared with anomaly de-
tection, anomaly location utilizes those relationships and reports, for each instance,
its potentially anomalous attributes, thus providing a useful tool for inspecting and
correcting it. This work focuses mainly on anomaly location.

Anomaly location needs the information of relationships among attributes to in-
vestigate each attribute inside an instance instead of considering an instance as a
whole. However, due to the lack of a priori knowledge of the application domain gen-
erating the data set, this information can only be learnt from data. In this work we
assume that this information can be extracted from factorizing the joint probability
of an instance into a number of factors equal to the number of attributes. Each fac-
tor is modeled by a conditional probability of one attribute given some others. The
factorization can be obtained in different ways. One may assume that the attributes
are independent of each other or one attribute is dependent on all the others, which
are both arbitrary. We look for such a factorization that, for each of its factors, the
according attribute and those it conditions on are as dependent as possible. Such a
factorization can be realized by learning a Bayesian network from data. The DAG
with the maximal Bayesian score by MCMC-based structural learning indicates the
optimal factorization. Then a low-frequency factor suggests an anomalous attribute
and a high-frequency one suggests a normal attribute. There are several methods to
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differentiate low-frenquency factors from high-frequency ones. In this work, we set
up a number of prototypical instances (PI) whose factors define a space enclosing
all the instances in the data set. Each instance is associated with one of PI using
a nearest neighbor approach. As a result, each instance receives a mask from its
nearest PI indicating the anomalous attributes.

Our method of anomaly location has several merits. Firstly, it provides masks
from which the reasons causing the anomalies are deduced from anomalous at-
tributes. Secondly, it does not rely on any specific domain knowledge. One can
simply perform anomaly detection even though he/she understands little about the
categorical data set. Thirdly, Bayesian networks learnt from the data set not only
provides a factorization but also gives some insights of the data set. The condi-
tional dependencies/independencies discovered by the Bayesian network may offer
valuable information to understand the application domain.

With regard to future work, there are three possible improvements. Firstly, if one
does have some domain knowledge of the data set, for instance, the conditional de-
pendencies among a group of variables, this knowledge should be embedded into the
construction of the Bayesian network as a fixed connection between parent nodes and
their child node. When structural search moves from one DAG to another, the new
DAG should always retain the fixed connection. Secondly, the score-based struc-
tural learning of Bayesian networks suffers from the enormousness of the searching
space. MCMC can take extremely long time before the theoretical convergence is
reached. When it comes to data sets from some real world applications with hun-
dreds of thousands of configurations across hundreds of dimensions, the convergence
may become too slow to accept. It remains an open question of how to speed up the
convergence of the Markov chain. Thirdly, the method currently works only on the
complete observed categorical data set. When there are missing values, computing
the Bayesian score is computationally challenging since it involves marginalization
(a complex integration) over all the possible missing values, which usually makes
exact computation intractable. Thus methods such as variational Bayesian approx-
imation, Laplace approximation and Cheeseman-Stutz approximation can be used
to approximate the posterior. An alternative approach is to perform structural EM
algorithm in which a heuristic is constructed to help identify helpful moves during
the graph search.
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