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Abstract

Long-term time series prediction is a difficult task. This is due to accumu-
lation of errors and inherent uncertainties of a long-term prediction, which
leads to deteriorated estimates of the future instances. In order to make
accurate predictions, this paper presents a methodology that uses input pro-
cessing before building the model. Input processing is a necessary step due
to the curse of dimensionality, where the aim is to reduce the number of
input variables or features. In the paper, we consider the combination of
the Delta Test and the Genetic Algorithm to obtain two aspects of reduc-
tion: scaling and projection. After input processing, two fast models are
used to make the predictions: Optimally-Pruned Extreme Learning Machine
and Optimally-Pruned k -Nearest Neighbors. Both models have fast training
times, which makes them suitable choice for direct strategy for long-term
prediction. The methodology is tested on three different data sets: two time
series competition data sets and one financial data set.
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1. Introduction

Time series prediction is a difficult task, especially when trying to predict
several tens or hundreds time steps to the future. In order to make accurate
and reliable predictions, several aspects have to be considered. Some of these
aspects include selection of adequate inputs, choosing the accurate model,
proper validation method and the choice of long-term prediction strategy.
Moreover, one of the choices can greatly affect the other choices, making
the selection process very complex and hard to optimize. In this paper,
we focus on two problems: input processing and selection of the prediction
methodology.

Many techniques exist for the approximation of the underlying process
of a time series: linear methods such as ARX, ARMA and others [1, 2], and
nonlinear ones such as artificial neural networks [3, 4] and other computa-
tional intelligence techniques [5, 6]. In general, these methods try to build a
model of the process. The model is then used on the last values of the series
to predict the future values. The common difficulty is the determination of
sufficient and necessary information for an accurate prediction. Moreover,
both linear and nonlinear techniques have problems when facing with large
number of variables, a phenomenon known as the Curse of Dimensionality
[7]. Most of the models used for time series prediction are also used for finan-
cial forecasting [8, 9, 10]. Linear models are less desirable as models in this
domain, because financial time series tent to exhibit periods during which
they are harder to predict (which depend on the past values of the series).

Long-term prediction requires long historical data space, causing the in-
put to have a lot of variables or dimensions. Therefore, input processing is
necessary due to the Curse of Dimensionality. It is a well known phenomenon
that prevents all learning models from achieving a good performance. In
order to decrease the dimensionality, one can, for example, project the high-
dimensional data into a low-dimensional data space. This projection must
be done carefully and preferably in a supervised way in order to retain the
information contained in the original data. Another aspect of input process-
ing is the scaling of variables, which allows the interpretability by looking at
the scaling weights.

There are several techniques capable of performing the optimization of
the projection. Each technique comprises of the search algorithm and the rel-
evance criterion. The search algorithm guides the search through the solution
space, while the relevance criterion measures the quality of each solution en-
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countered during the search process. Examples of different search algorithms
are Forward Search, Backward Search [11, 12] and Genetic Algorithm [13].
As for the relevance criteria, there are for example Correlation, Mutual In-
formation, Gamma Test and Cross-validation error (for reference on these
criteria and others, see [14]). In the paper, we are using the Delta Test as
a relevance criterion, while the Genetic Algorithm is chosen as the search
algorithm. The Delta Test has already been used as a search criterion for
time series prediction, but in the problem of variable selection and a different
search algorithm [15].

After input processing steps, the next step is prediction of the values using
a suitable model. In the paper, we use Optimally-Pruned Extreme Learning
Machine (OPELM) and Optimally-Pruned k-Nearest Neighbors (OPKNN),
two nonlinear models with fast training times and accurate predictions.

The paper is structured as follows. Section 2 gives a short introduction to
time series prediction, and the notations used throughout the remainder of
the paper. Section 3 presents the global methodology (input processing and
prediction models). Experimental results, including preprocessing steps ap-
plied on two time series data sets, are showed in Section 4. Finally, conclusion
and discussion are given in Section 5.

2. Time Series Prediction

Time series prediction is a problem of predicting the values of some phe-
nomena, based on previously measured values of the same phenomena. The
previous values are used as inputs for the model. One-step ahead prediction,
usually referred to as the short-term prediction, is a task of predicting the
next value of a series. For example, for a series of values vj , j = 1, . . . , t, we
are interested in the next value at time step t + 1 as:

v̂t+1 = f(vt, vt−1, . . . , vt−d+1),

where f is the model and d denotes the number of previous values used to
build the regressor. Regressor is constructed by sliding a window of length d

over the complete series, and registering a range of d consecutive values as a
sample for the model. Given the series with t values, the j-th sample in the
regressor has the following values

(xj; yj) = (vj , vj+1, . . . , vj+d−1; vj+d), 1 ≤ j ≤ t − d. (1)
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Long-term prediction presents a new challenge in this field. The problem
consists of not just predicting the value vt+1, but also the next vt+l values
for l ≥ 2. In this setting, predicting the value vt+l is called the l–th step
ahead prediction, or the l–th horizon of prediction. This type of problem is
much harder since we are facing growing uncertainties arising from various
sources. In long-term prediction, there are several strategies to build the
models: Recursive and Direct [16], as well as their combination DirRec [17].

Direct strategy is adopted in the paper since it gives more accurate pre-
dictions than the recursive one [16]. With this approach, each horizon of
prediction requires a separate model. To predict the t + l–th value, the re-
gressor is build in a similar way as for the one-step ahead prediction given
in Equation (1), with the exception of different outputs. The samples are
formed in a following way:

(xj ; yj) = (vj, vj+1, . . . , vj+d−1; vj+d−1+l), 1 ≤ j ≤ t − d + 1 − L. (2)

where L is the maximum horizon of prediction. Finally, once the model is
trained on these samples, the final prediction is done using last known values
of the series, i.e.

v̂t+l = fl(vt, vt−1, . . . , vt−d+1), 1 ≤ l ≤ L. (3)

3. Methodology

The proposed methodology in this paper relies on various algorithms, for
both main stages of the processing. Figure 1 illustrates the global format of
the methodology.

The high-dimensional data is first projected, as detailed in Section 3.1,
using a Genetic Algorithm to determine the weights of the projection matrix.
The relevance criterion to be optimized is the Delta Test, presented in Section
3.1.3, which is a minimization problem.

Once the data is projected with a matrix obtained from the first step,
the predictions are made using two new inspiring methodologies (Sections
3.2 and 3.3). First one of the methodologies is called Optimally-Pruned
Extreme Learning Machine (OPELM), which originates from the ELM [18]
principle of fast training of a Single Layer Feedforward Neural Network. Sec-
ond methodology examined here is the Optimally-Pruned k -Nearest Neigh-
bors (OPKNN). It relies on the k -Nearest Neighbors approach as the kernel
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Figure 1: Global methodology summarized. The high-dimensional data is first pro-
jected using the Genetic Algorithm (GA) and the Delta Test (DT). After that, the
OPELM/OPKNN algorithm is used for the actual prediction. Numbers indicate the sec-
tions where the concepts are explained.

function. The OPKNN is deterministic and even faster than the OPELM,
also without any extra parameters.

3.1. Variable Projection

The goal of the variable projection is to decrease the input dimensionality.
Then, the applied methodologies should have most of the information of
the original data set contained in a smaller number of variables, and the
performance of the methodologies should increase, while the training times
should decrease. Projection also includes two special cases, selection and
scaling, which allow the interpretability of the variables, by examining the
selection subset and scaling weights, respectively. Although the projection is
the general approach for variable processing, the interpretability is lost when
considering this general case.

Let us consider the case where a data set X contains N samples and d

variables, i.e. X ∈ R
N×d. In a projection, a matrix P = [aij ]d×p with size

d × p is optimized according to the relevance criterion, and later used to
obtain new data set

XP = XP. (4)

In this setting, both selection and scaling can be represented as a d×d matrix
with weights wi on the main diagonal, i.e.
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d×d.

The values wi, i = 1, . . . , d, are either binary {0, 1} values in case of a
selection or the real values in [0, 1] range for the scaling.

A good property of the projection is the ability to linearly transform the
data set to a lower dimensional space when the matrix Pd×p has less columns
than rows, i.e. p < d. However, the number of parameters in Pd×p is dp,
making the problem harder compared to the selection and scaling problems
with d parameters. Furthermore, the correct value of p, the number of di-
mensions to project to, is an additional parameter that has to be optimized.
The advantage is the manual choice of p, enabling full control of the dimen-
sionality of the formed data set XP . In Section 3.1.4, we present an algorithm
to automatically select the projection dimension p when using the Delta Test
as the relevance criterion.

Following subsections give more details about the Genetic Algorithm, and
the setup for its parameters used in the experiments, the relevance criterion
Delta Test, and an algorithm to automatically select good value of the pro-
jection dimension.

3.1.1. Genetic Algorithm

Genetic Algorithm (GA) is a population based stochastic algorithm used
for optimization purposes. It has been successfully applied for variable se-
lection problem [12, 19, 20, 21, 22, 23], because of its ability to carry out
optimization on a global scale. The convergence properties depend on the
available resources, as well as the correct control parameters of the algorithm
itself.

In this work, the GA serves as the search algorithm to optimize the projec-
tion matrix P in order to minimize the Delta Test. The GA has already been
used with the Delta Test for variable selection [12], where the chromosomes
are binary arrays of zeros and ones. In the scaling and projection problems,
where parameters have real values, a natural choice is to consider Real-Coded
Genetic Algorithm. This setup is reported in [24] with the combination of
scaling and projection performed at the same time. In the experiments, we
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are not using the projection and the scaling at the same time, but instead
we consider the problems separately.

3.1.2. Genetic Algorithm Setup for the Methodology

The GA population consists of individuals/chromosomes that represent
the values of the matrix P. The initial population is created to have a lot
of zero values in the majority of chromosomes. This approach improves over
pure random initialization in terms of returned DT values [24]. Table 1
summarizes the approach that is adopted for the experiments.

Table 1: Summary of the custom initialization of the GA population. The random val-
ues are uniformly selected from the interval [-1,1]. Genes to be set to zero are selected
randomly.

Standard Custom Initialization, 80 % of the population
20 % Part 1 Part 2 Part 3

100 % 90 % zeros 80 % zeros 70 % zeros
random 10 % random 20 % random 30 % random

In the experiments for the projection, 80% of the individuals have many
zeros, while the remaining 20% are created in a standard way by choosing
randomly from a uniform distribution over [-1,1] range. The custom individ-
uals are further divided into three equally sized parts in which individuals
have different number of zero genes, as presented in Table 1. In the case of
scaling, the initial population is created in the same way as for the projection,
except that the range of the random genes is set to [0, 1].

The rest of the operators of the GA (selection, crossover, mutation) and
their parameters have been set up according to [12], a setup which returns
good solutions in terms of small DT values, while the stopping condition is
set to 100 completed generations.

3.1.3. Delta Test

In this paper, the Delta Test (DT) is used as a relevance criterion to
optimize the projection matrix. It is a nonparametric noise estimator based
on the nearest neighbor principle. The nearest neighbor of a point is defined
as the (unique) point, which minimizes a distance metric to that point.

In function approximation, the main goal is to design a function that
represents given input points and their associated scalar outputs. That is,
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given N samples of input-output pairs (xj ; yj) ∈ R
d × R, we wish to find a

functional dependence between x and y with the following equation:

yj = f(xj) + rj , 1 ≤ j ≤ N

where f is the unknown function and rj is additive noise term. The function
f is assumed to be smooth, and the noise terms rj are independent and iden-
tically distributed with zero mean. Noise variance estimation is the study of
how to give a priori estimate for Var[r] given some data, without considering
any specific shape of f .

Let us denote the nearest neighbor of a point xj ∈ R
d as xNN(j). The

nearest neighbor formulation of the DT estimates Var[r] by

Var[r] ≈ δ =
1

2N

N
∑

j=1

(yj − yNN(j))
2 , (5)

where yNN(j) is the output of xNN(j). This is a well-known and widely used
estimator, and it has been shown [25] that this estimate converges to the
true value of the noise variance when N → ∞.

3.1.4. Automatic Selection of the Projection Dimension

Before optimizing the projection matrix Pd×p, the question that remains
is what is the correct value of p when using the DT. Let us denote with
dtk the best value returned by the DT when optimizing matrix Pd×p. Now,
suppose that we have two projection matrices Pd×p and Pd×p+1. Since the
computation of the DT is based on nearest neighbors, the matrix Pd×p+1

also includes the problems with less dimensions, that is, it generalizes the
optimization of the matrix Pd×p. This is done by setting the last column of
Pd×p+1 to zero column. The zero column does not have any influence in the
search for nearest neighbors, and this effectively becomes the problem with
one less dimension in the projection matrix, i.e. it becomes Pd×p.

Since the last column of Pd×p+1 contains real values, the optimization of
Pd×p+1 should be able to reach the value dtp+1 that is at least as small as
dtp. However, adding new d parameters to Pd×p increases the complexity of
the problem, adds new local minima and the optimization of Pd×p+1 becomes
more challenging. This complexity can prevent the optimization process to
reach good DT estimates, and it is possible that the value dtp+1 is larger than
dtp.
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Thus, as p is increasing, the DT estimates dtp should always decrease.
In practice, large number of parameters prevents P matrices with large p to
reach the same results of those cases with lower p. When optimizing the DT
as a projection problem, there will be a value of p = pt after which the search
procedure, in our case the GA, is unable to return lower dt values. Thus, we
can conclude that matrix Pd×pt

is our best projection and considering p > pt

values is a waste of resources.
Previous discussion stems the strategy for automatic selection of p and

the projection matrix P. Start with p = 1 and optimize Pd×1 to obtain
DT estimate dt1. Then, increase p by 1, optimize Pd×p acquiring dtp and
compare dtp with dtp−1. If it holds that dtp < dtp−1 then continue increasing
p, otherwise stop the process and return the pair (dtp−1,Pd×p−1) as the final
solution. This strategy is presented in Algorithm 1.

Algorithm 1 Automatic selection of projection dimension

1: bestDT = ∞
2: p = 1
3: while true do

4: (dt, Pd×p) = optimize(X, Y, p)
5: if dt ≥ bestDT then

6: break
7: end if

8: bestDT = dt

9: bestP = Pd×p

10: p = p + 1
11: end while

12: return (bestDT, bestP )

In the Algorithm 1, function optimize at line 4 uses the GA. The input
parameters are the data set (X,Y) and target projection dimension p. Since
the result of the GA will depend on the initial population, several calls of op-
timize function are necessary for a reliable DT estimate. In the experiments
we have chosen to run the optimization function 10 times for each value of
p.

At the end of these steps, a suitable projection dimensionality p has been
found, after which the data is projected. One can then use this projected
data for the actual time series prediction using the OPELM/OPKNN models
presented in the following subsections.
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3.2. Optimally-Pruned Extreme Learning Machine

The Optimally-Pruned Extreme Learning Machine (OPELM) methodol-
ogy is based on the original Extreme Learning Machine (ELM) [18] algorithm
from which it borrows the original Single Layer Feedforward Neural Network
(SLFN) construction. In the following, the main concepts and theory of
the ELM algorithm are shortly reviewed, with an example on the possible
problems encountered by the ELM on data sets with irrelevant variables.

The OPELM algorithm is introduced as a robust methodology regarding
irrelevant variables situation. The steps of the algorithm are detailed in
the following subsections and include: the original ELM idea; Multiresponse
Sparse Regression, a network pruning algorithm; and two model structure
selection methods: Leave-One-Out error and the Hannan-Quinn information
criterion.

3.2.1. Extreme Learning Machine

The ELM algorithm was originally proposed by Guang-Bin Huang et al.
in [18] and it makes use of the Single Layer Feedforward Neural Network.
The main concept behind the ELM lies in the random initialization of the
SLFN weights and biases. The theorem given in [18] states that the input
weights and biases do not need to be adjusted, and it is possible to calculate
implicitly the hidden layer output matrix and hence the output weights. The
network is obtained with very few steps and, thus, a very low computational
cost.

Consider a set of N distinct samples (xj; yj) with xj ∈ R
d and yj ∈ R;

then, a SLFN with C hidden neurons is modeled as the following sum

C
∑

i=1

βif(wixj + bi), j ∈ J1, NK, (6)

with f being the activation function, wi the hidden layer weights, bi the
biases and βi the output weights.

In the case where the SLFN perfectly approximates the data, the errors
between the estimated outputs ŷj and the actual outputs yj are zero and the
relation is

C
∑

i=1

βif(wixj + bi) = yj, j ∈ J1, NK, (7)
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which is written in matrix form as Hβ = y.
Huang et al. state that with randomly initialized input weights and bi-

ases for the SLFN, and under the condition that the activation function is
infinitely differentiable, then the hidden layer output matrix can be deter-
mined and provides an approximation of the target values as good as wished
(non-zero).

The way to calculate the output weights β from the knowledge of the
hidden layer output matrix H and target values, is proposed with the use of
a Moore-Penrose generalized inverse of the matrix H, denoted as H† [26].

Theoretical proofs and more details about the ELM algorithm are pre-
sented in the original paper [18].

3.2.2. Pruning out irrelevant variables

As already mentioned, the ELM models tend to have problems when
irrelevant or correlated variables are present in the training data set. This
drawback has been shown in [27] on a toy example and a real world data
set. For this reason, OPELM proposes a pruning of irrelevant variables, via
pruning of the related neurons of the SLFN built by the ELM. The procedure
consists of three main steps that are summarized in Figure 2.

Figure 2: Three steps of the OPELM algorithm.

The very first step of the OPELM methodology is the actual construc-
tion of the SLFN using the original ELM algorithm with a large number
of neurons. Second and third step are meant for effective pruning of pos-
sibly useless neurons of the SLFN. The second step, Mutliresponse Sparse
Regression (MRSR), ranks the neurons according to their usefulness, while
the actual pruning is performed using the results of the model structure se-
lection criterion for the model: Leave-One-Out error or the Hannan-Quin
information criterion.

The OPELM algorithm uses a combination of three different types of
kernels: linear, sigmoid and gaussian, for robustness and more generality,
where the original ELM uses only sigmoid and sine kernels. Having linear
kernels in the network helps when the problem is linear or nearly linear.
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Initialization of the network kernels is done in the following way. The
gaussian kernels have their centers taken randomly from the data points,
similarly as in [28], and widths randomly drawn between percentile 20 percent
and percentile 80 percent of the distance distribution of the input space, as
suggested in [29]. The sigmoid weights are drawn randomly from a uniform
distribution in the interval [−5, 5] in order to cover the whole zero mean and
unit variance data range.

3.2.3. Multiresponse Sparse Regression

In order to remove useless neurons of the hidden layer, the Multiresponse
Sparse Regression (MRSR), proposed by Timo Similä and Jarkko Tikka in
[30], is used. It is mainly an extension of the Least Angle Regression (LARS)
algorithm [31] and hence, it is actually a variable ranking technique, rather
than a selection one.

An important property of the MRSR is that the obtained ranking is exact,
if the problem is linear. In fact, this is the case with the OPELM, since the
neural network built in the previous step is linear between the hidden layer
and the output. Therefore, the MRSR provides an exact ranking of the
neurons for our problem.

Because of the exact ranking provided by the MRSR, it is used to rank
the neurons of the neural network model. The target is the actual output yi,
while the ”variables” considered by the MRSR are the outputs of the hidden
layer kernel functions hi = Ker(xT

i ), the columns of H.

3.2.4. Model Selection Criteria

Since the MRSR only provides a ranking of the neurons, the decision over
the actual best number of neurons for the model is needed. Two possible
model structure selection criteria are used to obtain sufficient number of
neurons for the model, a classical Leave-One-Out computed using the fast
PRESS Statistics, and the Hannan-Quinn information criterion.

Leave-One-Out (LOO). Computing the standard LOO error can be very time
consuming, if the data set has a high number of samples. Fortunately, the
PRESS (PREdiction Sum of Squares) statistics provides a direct and exact
formula for the calculation of the LOO error for linear models. The basic
idea of the PRESS is that it iteratively increases the number of samples of
the linear model, without actually calculating the model, but only the LOO
error. See [32] and [33] for details of this formula and its implementations.
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The PRESS formula can be written as

εPRESS =
yi − hibi

1 − hiQhT
i

, (8)

where Q is defined as Q = (HTH)−1, H is the hidden layer output matrix
and hi is the output of the added neuron.

The final decision over the appropriate number of neurons for the model
can then be taken by the LOO error versus the number of neurons used.
Here, the neurons are already ranked by the MRSR.

Hannan-Quinn criterion (HQ). Another criteria for complexity selection in
machine learning are the ones based on information theory. Typical examples
are the Akaike’s Information Criterion (AIC) [34] and the Bayesian Informa-
tion Criterion (BIC) [35]. Their expressions are based on the residual sum
of squares (Res) of the considered model (first term of each criterion) plus
a penalty (second term). Differences between criteria mostly occur on the
penalty term.

The AIC is known to have consistency problems [36]. The other criterion,
BIC, does not give a proper complexity selection for the OPELM, most likely
due to too rapid increase of the penalty term with the number of samples.
The Hannan-Quinn Information Criterion [37] is close to the two previously
mentioned criteria and it is shown in Equation (9).

HQ = N × log

(

Res

N

)

+ 2 × B × log log N (9)

The value B is the number of free parameters of the model. The idea
behind the design of this criterion is to provide a consistent criterion, in
which the penalty term 2×B× log log N grows, but at a very slow rate with
respect to the number of samples. In this way, the HQ is in the middle of
the two other criteria, the AIC and the BIC.

3.3. Optimally-Pruned k-Nearest Neighbours

The Optimally-Pruned k-Nearest Neighbors (OPKNN) algorithm from
[38] shares many similarities with the OPELM algorithm. The ranking of
neurons and the model structure selection are identical to the OPELM case.
The only difference between the two algorithms is the type of kernels they
use. The OPELM employs gaussian, linear and sigmoid kernels, while the
OPKNN uses k-Nearest-Neighbors approach. This means that each neuron
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of the SLFN represents a certain nearest neighbor for each input point. The
process can be presented as

C
∑

i=1

βiyNNi(j), j ∈ J1, NK, (10)

where yNNi(j) denotes the outputs of the ith nearest neighbor of the jth sam-
ple.

The OPKNN has proven to be somewhat more robust than the OPELM in
some applications, and it has the interesting advantage of being deterministic,
since it does not use any random parts, but only the k -Nearest-Neighbors
approach.

4. Experiments

4.1. Data sets

We used three different data sets in the experiments, one financial data
set and two time series prediction competition data sets. Each data set1

and the associated preprocessing steps are briefly introduced in the following
section.

4.1.1. Financial Data Set

In this experiment, we use the data [39] related to 200 French companies
during a period of 5 years. We have 36 input variables and 535 samples
without any missing values. The input variables are financial indicators that
are measured every year (for example debt, number of employees, amount of
dividends) and the last variable is the Return on asset (ROA) value of the
same year. The target variable is the ROA of the next year for each sample.

Return on assets (ROA) is an important indicator to explain corporate
performance, showing how profitable a company is before leverage, and is fre-
quently compared with companies in the same industry [40]. However, since
it is not easy to analyze which characteristics of the companies mainly affect
the ROA value, especially when trying to predict it, the problem becomes
more difficult. Table 2 shows the description of all the variables contained in
the database.

1The data sets can be downloaded from
http://www.cis.hut.fi/projects/tsp/index.php?page=timeseries.

14



Table 2: The meaning of the variables in the Finance data set

Index       Variable   Meaning 

1       Sector   Industry 

2       Transaction  Number of shares exchanged during the year 

3       Rotation   Security turnover rate 

4       Vrif Rotation  Not useful 

5       Net dividend  Amount of dividend for one share during the year 

6       E!ectifs   Number of employees 

7       CA    Sales 

8       II    Other assets 

9       AMORII   Dotations on other assets 

10       IC    Property, plant and equipment 

11       AMORIC   Dotations on property, plant and equipment 

12       IF    Not useful 

13       AI    Fixed assets 

14       S    Stocks or inventories 

15       CCR    Accounts receivables 

16       CD    Not useful 

17       L    Cash in hands and at banks 

18       AC    Total of current assets 

19       CPPG   Total of capital of group (in book value)1 

20       PRC    Not useful 

21       FR    Accounts payables 

22       DD    Not useful 

23       DEFI   Financial debt 

24       Debt-1AN   Debt whose maturity is inferior to 1 year 

25       Debt+1AN   Debt whose maturity is superior to 1 year 

26       TD    Total Debt 

27       CPER   Cost of workers 

28       CPO   Not useful 

29       DA    Dotations on amortizations 

30       REXPLOI   Operating income before tax 

31       CFI    Interests taxes 

32       RFI    Financial income 

33         RCAI   Operating income before tax + Financial income 

34       REXCEP   Extraordinary item 

35       IS    Taxes from State 

36       ROA   net income / total assets 

Output1  ROA   the value of next year 

4.1.2. ESTSP 2007 Competition Benchmark

This data set is from a prediction competition organized in the European
Symposium of Time Series Prediction conference (ESTSP) in 2007. The data
set has 875 samples and it is shown in Figure 3.

There is a clear seasonality present throughout the data, except around
time point 400. Since the data seems to be corrupted or otherwise completely
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Figure 3: ESTSP 2007 competition data.

different from the rest of the data, we decided to remove the portion from
the data set prior to any other preprocessing. In order to keep the phase
correct, two full sequences of 52 were removed.

After that, the data set was separated into learning and test sets. First
two thirds of the data was used in the learning and the remaining third as a
test set.

Then, a sawtooth wave was fitted into the learning data and then removed
from both data sets, in order to get rid of the seasonality. In other words, the
preprocessing for the test set is done only based on the information available
in the learning set.

After these steps, we have the preprocessed learning data shown in Figure
4.

4.1.3. ESTSP 2008 Competition Data 2 (ESTSP 2008-2)

Like the previous data set, this one is also from a prediction competition,
except now it is taken from the ESTSP conference organized in 2008. In
the prediction competition there were three data sets, out of which one was
chosen for the experiments in this paper.

The competition data set 2 has 1300 samples and it is shown in Figure 5.
Before any preprocessing steps, the data set was divided into learning and
test sets containing the first two thirds and the last third, respectively.

For this data set, two preprocessing steps were used. First one takes
care of the clear upward jump around time point 600 and the second one
deals with the seasonality of the series. Both steps are done using only the
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Figure 4: ESTSP 2007 competition data after preprocessing.

200 400 600 800 1000 1200

0.5

1

1.5

2
x 10

9

Time

E
S

T
S

P
 2

00
8 

D
at

a 
2

Figure 5: ESTSP 2008-2 competition data.

information available in the learning set, even when preprocessing the test
set.

Step function fitting found the exact place of the jump at time point 588.
The large scale seasonality was removed using a double square wave. The
fitting of the double square is visualized in Figure 6 along with the learning
data after removing the jump.

Finally, the standard deviation of the data was removed according to the
fitted double square wave, in the high parts and in the low parts separately.
Finally, our preprocessed learning data is shown in Figure 7.
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Figure 6: ESTSP 2008-2 data preprocessing. The fitted double square is shown in red.
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Figure 7: ESTSP 2008-2 data after preprocessing.

4.2. Results

Each data set was associated with a different number of prediction steps
and input sample dimensionality along with different number of samples in
learning and testing. Table 3 summarizes the specifications of all data sets.

For the competition time series, the input dimensionality means the width
of the sliding window used in the original data vector in order to make the
input matrix or the regressor. For the long-term prediction, we use the Direct
Strategy, which has proven to be accurate and easily implementable choice
[16].

For each data set and each prediction horizon, the projection and scaling
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Table 3: Summary of all three data sets used in the experiments.

Samples
Learning Test Input Variables Horizon

Finance 357 178 36 1
ESTSP 2007 406 148 60 50
ESTSP 2008-2 717 285 50 100

using the GA and the DT was performed. Then, all four presented methods,
the OPELM and the OPKNN both with the LOO and the HQ parameter
selection methodologies, were applied. Table 4 summarizes the performance
of the methods in each data set.

Table 4: Summary of the average test errors over all prediction horizons for all four
methods.

OPELM OPKNN
LOO HQ LOO HQ

Finance projection 0.0016 0.0016 0.0020 0.0020
scaling 0.0016 0.0017 0.0019 0.0018

original 0.0016 0.0017 0.0019 0.0019
ESTSP 2007 projection 0.7824 0.7703 0.9797 0.9695

scaling 0.6231 0.5915 1.0161 1.0187
original 0.6376 0.5935 1.0198 1.0190

ESTSP 2008-2 projection 1.0375 0.9985 0.9935 0.9790
scaling 0.9281 0.9402 0.9839 0.9652

original 0.9349 0.9339 0.9924 0.9727

From Table 4, we can observe that the OPELM performs generally better
than the OPKNN. Furthermore, it is interesting to see that the OPKNN in
the case of ESTSP 2007 data is the only one which actually benefits from the
projection, in terms of accuracy. Finally, the HQ seems to perform better
more often than the LOO, when taking into account both methods and all
data sets.

Going more into details regarding each data set, we see from Table 4 that
scaling is a little bit better than projection in the financial case. On the
other hand, the scaling also has the advantage of easier interpretability of
each variables. Table 5 shows the obtained scaled weights for some important
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variables for Finance data set.

Table 5: Scaling factors for Finance data

Index Variable Scaling factor
15 CCR 0.99
22 DD 0.98
9 AMORII 0.84
28 CPO 0.83
33 RCAI 0.76
27 CPER 0.68
2 Transaction 0.62
31 CFI 0.56
12 IF 0.52
7 CA 0.52
4 Vrif Rotation 0.48
25 Debt+1AN 0.45
18 AC 0.44
29 DA 0.40
26 TD 0.38
20 PRC 0.32
35 IS 0.32
8 II 0.21

As can be seen from Table 5, each variable has different importance for
the ROA prediction. For example, not surprisingly, we find variable ’CCR’ in
the first place as accounts receivables help maximizing the ROA by providing
a focused collection system while supplying the credit controls necessary to
avoid bad debt losses. Therefore, scaling is the best choice we could have
for the ROA prediction, not only because the test error is acceptable, but
also because of the interpretability, which helps in analyzing the influences
of each variable to the target.

Moving on to the ESTSP 2007 data, Figure 8 shows an example of the
prediction performance with respect to the prediction horizon for all four
models.

From Figure 8, we can see that there is no difference between the two
selection methods in case of the OPKNN. Both, the LOO and the HQ give
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Figure 8: ESTSP 2007 competition data. Prediction errors of all methods. Solid lines
are denoting methods optimized with the LOO and dashed ones with the HQ. Lines (red)
with circles denote the OPELM methodology and the ones (blue) without any markers
are denoting OPKNN.

very similar performance. That is not the case with the OPELM, where
clear differences can be seen, but it is not clear which performs better. The
performance of all methods are stable for the whole prediction horizon of 50
steps.

Figure 9 shows the values of the Delta Test for all prediction horizons for
original, projected and scaled data.
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Figure 9: ESTSP 2007 competition data. The Delta Test values for original (solid line),
projected (circles) and scaled (crosses) data set for all prediction horizons.

As we can see, the scaling obtains the lowest DT values, while the original
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data set using all 60 unprocessed inputs has the highest values. The projec-
tion lies in between. Comparing this ranking with the results presented in
Table 4, both methodologies, the OPELM and the OPKNN, achieve roughly
the same performance with the original data and the scaled one, even though
the scaling obtains the lowest DT and the original the highest. The corre-
spondence between the DT values and the actual performance of the predic-
tion methodologies warrants further study.

Figure 10 shows the predictions and the 50 real values of the series in the
test set. The predictions are obtained with OPELM with HQ using scaled
data, since it showed the best performance.
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Figure 10: ESTSP 2007 competition data. Prediction for 50 time steps in the test set.
Blue solid line represents the real data and red dashed one the prediction.

Finally, we move to ESTSP 2008-2 data set. First, two examples of
the DT value evolution with respect to the projection dimension for two
prediction horizons are shown in Figure 11.

From the two examples, we can see that the GA achieves lower DT value
in horizon 8 than in horizon 78, thus leading to smaller final projection
dimension. Also, from both examples, it is clear to see that the first 5 or 8
dimensions decrease the DT value quickly.

Figure 12 shows the number of GA rounds done with respect to the
projection dimension.

As the average projection dimension is close to 6, Figure 12 also shows
that the dimensions close to 6 have the largest amount of GA optimization
rounds performed. The largest selected projection dimension is 14, which is
still less than one third of the original dimensionality of the data. It means
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Figure 11: ESTSP 2008-2 data, prediction horizons 8 and 78. Example evolutions of the
DT value of each projection dimension. Solid line denotes the horizon 78 and the dashed
one the horizon 8.
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Figure 12: ESTSP 2008-2 data. Number of GA calculation rounds with respect to the
projection dimension.

that even the projection ends up using 14 dimensions, it is still huge decrease
from the original input space dimensionality.

Figure 13 shows the prediction for 100 steps ahead in the test set, as well
as 100 real values of the series. OPELM with LOO is used to produce the
estimations.
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Figure 13: ESTSP 2008-2 data. Prediction for 100 steps ahead in the test set. Blue solid
line represents the real data and red dashed one the prediction.

5. Conclusion

In this paper, we have presented a working solution to input process-
ing and compared several methods for the long-term time series prediction.
Also, one example from the field of Finance is included to demonstrate the
interpretability achieved with scaling, a special case of variable projection.

We have also demonstrated that for each different data set, several input
processing and prediction methods should be tried in order to have the op-
timum performance. It is not clear how to assess the performance a priori
for any combination of methods when using different data sets. From the
obtained results, the predictions from models trained on complete data set
are very accurate, and in some cases more reliable than models that include
variable projection/scaling as a preprocessing step (OPELM with HQ for
ESTSP 2008-2 data). However, for ESTSP 2007 data for both models, input
processing is needed to improve the prediction.

Using the GA with the DT for optimizing the projection matrix is a
working combination, providing low-dimensional input sets for further pro-
cessing, like time series prediction. The combination is able to provide low-
dimensional input set, which can be crucial for methods that cannot handle
large dimensions effectively. Out of the two tested models, only OPKNN
benefits from projection, giving improved results for ESTSP 2007 data and
comparable predictions for ESTSP 2008-2.

On the other hand, even though the scaling does not necessarily reduce
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the dimensionality, the obtained scaled inputs are usable, providing better
test errors than the original. Furthermore, the number of parameters to
optimize is lower than in projection, which makes the scaling faster.

For further work, the relationship between the DT values and the actual
model performance will be studied. Also, the obtained projection perfor-
mance will be evaluated in even more high-dimensional cases, to ensure the
validity of the global search ability of the GA and to study the limits of the
search.
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