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Abstract. This paper presents a methodology for missing value imputa-
tion. The methodology is based on a combination of Self-Organizing Maps
(SOM), where combination is achieved by Nonnegative Least Squares al-
gorithm. Instead of a need for validation as when using traditional SOMs,
the combination proceeds straight into final model building. Therefore, the
methodology has very low computational time. The combination of SOMs
also increases accuracy at the same time. The performance is demon-
strated using a database from corporate finance field.

1 Introduction

The presence of missing values in the underlying time series is a recurrent prob-
lem when dealing with databases. Number of methods have been developed to
solve the problem and fill the missing values.

In this paper, we focus on Self-Organizing Maps [1] (SOM), which aim to
ideally group homogeneous individuals, highlighting a neighborhood structure
between classes in a chosen lattice. The SOM algorithm is based on unsuper-
vised learning principle where the training is entirely stochastic, data-driven.
No information about the input data is required. Recent approaches propose to
take advantage of the homogeneity of the underlying classes for data comple-
tion purposes [2]. Furthermore, the SOM algorithm allows projection of high-
dimensional data to a low-dimensional grid. Through this projection and focus-
ing on its property of topology preservation, SOM allows nonlinear interpolation
for missing values.

But how to find optimal SOM size and shape? One of the typical machine
learning paradigms is about finding the model that best fits the given data,
in terms of test or validation. Searching for such a model can be very time
consuming: finding the model class that best suits the type of data, optimizing
the possible hyper-parameters, and finally training the model once all details of
the model structure have been selected. This procedure can lead to a rather
good model, which fits the data and avoids the pitfalls of overfitting.

On the other hand, creating a combination of less good models might achieve
better performance, while alleviating the problem of extensive validation proce-
dure. Even faster model building is achieved through parallel computation,
which is easy to implement when several different models are built.



The goal is then to weight each model so that the overall output of a linear
combination of models has the best possible performance. Several ensemble
techniques have been proposed, out of which two kinds can be distinguished [3]:
the variable weights approach and the “average” ones. Traditionally, average
weights ensemble techniques are used and simply take an average of all the
built models. While this obviously has the advantage of having immediately
the weights of all models, it yields suboptimal results. The variable weights
ensemble techniques try to optimize the weight of each model in the ensemble
according to a criterion. Techniques such as the Genetic Algorithm have been
recently used for such optimization [4] but are very time consuming.

This paper describes a new method, which combines several SOMs in order to
enhance the accuracy of the nonlinear interpolation. The combination is achieved
with a classical constrained linear solution the Nonnegative Least Squares and
it improves the accuracy of the imputation as well as speeds up the process by
removing the need for validation.

The global methodology is presented in the next section, including all the
methods combined in the global methodology. The Section 3 demonstrates the
accuracy of the methodology by using an example from corporate finance.

2 Global Methodology

The global methodology is summarized in Figure 1.

Fig. 1: Global methodology summarized.

The core of the methodology is the Self-Organizing Map (SOM). Several
SOMs are trained using different number of nodes and the imputation results
of the SOMs are linearly combined. The linear coefficients are computed using
Nonnegative Least Squares (NNLS) algorithm. The SOM imputation method-
ology and the combination are explained more deeply in the following.

2.1 Imputation using SOM

The SOM algorithm is based on an unsupervised learning principle, where train-
ing is entirely data-driven and no information about the input data is required
[1]. Here we use a 2-dimensional network, composed of c units (or code vectors)
shaped as a square lattice. Each unit of a network has as many weights as the
length T of the learning data samples, xn, n = 1, 2, ..., N . All units of a network
can be collected to a weight matrix m (t) = [m1 (t) ,m2 (t) , ...,mc (t)] where
mi (t) is the T -dimensional weight vector of the unit i at time t and t represents
the steps of the learning process. Each unit is connected to its neighboring units



through a neighborhood function λ(mi,mj, t), which defines the shape and the
size of the neighborhood at time t. The neighborhood can be constant through
the entire learning process or it can change in the course of learning.

The learning starts by initializing the network node weights randomly. Then,
for a randomly selected sample xt+1, we calculate the Best Matching Unit
(BMU), which is the neuron whose weights are closest to the sample. The BMU
calculation is defined as

mBMU(xt+1) = arg min
mi,i∈I

{‖xt+1 −mi (t)‖} , (1)

where I = [1, 2, ..., c] is the set of network node indices, the BMU denotes the
index of the best matching node and ‖.‖ is a standard Euclidean norm.

If the randomly selected sample includes missing values, the BMU cannot be
solved outright. Instead, an adapted SOM algorithm, proposed by Cottrell and
Letrémy [5], is used. The randomly drawn sample xt+1 having missing value(s)
is split into two subsets xT

t+1 = NMxt+1 ∪Mxt+1, where NMxt+1 is the subset
where the values of xt+1 are not missing and Mxt+1 is the subset, where the
values of xt+1 are missing. We define a norm on the subset NMxt+1 as

‖xt+1 −mi (t)‖NMxt+1
=

∑
k∈NMxt+1

(xt+1,k −mi,k(t))
2 , (2)

where xt+1,k for k = [1, ..., T ] denotes the kth value of the chosen vector and
mi,k(t) for k = [1, ..., T ] and for i = [1, ..., c] is the kth value of the ith code
vector.

Then the BMU is calculated with

mBMU(xt+1) = arg min
mi,i∈I

{
‖xt+1 −mi (t)‖NMxt+1

}
. (3)

When the BMU is found the network weights are updated as

mi (t+ 1) = . . .

mi (t)− ε(t)λ
(
mBMU(xt+1),mi, t

)
[mi (t)− xt+1] , (4)

∀i ∈ I,

where ε(t) is the adaptation gain parameter, which is ]0, 1[-valued, decreasing
gradually with time. The number of neurons taken into account during the
weight update depends on the neighborhood function λ(mi,mj, t). The number
of neurons, which need the weight update, usually decreases with time.

After the weight update the next sample is randomly drawn from the data
matrix and the procedure is started again by finding the BMU of the sample.
The learning procedure is stopped when the SOM algorithm has converged.

Once the SOM algorithm has converged, we obtain some clusters containing
our data. Cottrell and Letrémy proposed to fill the missing values of the dataset



by the coordinates of the code vectors of each BMU as natural first candidates
for the missing value completion:

π(Mx) (x) = π(Mx)

(
mBMU(x)

)
, (5)

where π(Mx) (.) replaces the missing values Mx of sample x with the correspond-
ing values of the BMU of the sample. The replacement is done for every data
sample and then the SOM has finished filling the missing values in the data.

The procedure is summarized in Table 1. There is a toolbox available for
performing the SOM algorithm in [6].

Table 1: Summary of the SOM algorithm for finding the missing values.

1. SOM node weights are initialized randomly

2. SOM learning process begins

(a) Input x is drawn from the learning data set X

i. If x does not contain missing values, BMU is found according
to Equation 1

ii. If x contains missing values, BMU is found according to
Equation 3

(b) Neuron weights are updated according to Equation 5

3. Once the learning process is done, for each observation containing miss-
ing values, the weights of the BMU of the observation are substituted
for the missing values

2.2 Combination of Multiple SOMs

The aim is to find the optimal weights αi for the SOM maps Mi. Each SOM
map has different number of nodes and, thus, gives different imputation results
for the missing values in the database. For each missing value, every SOM in
the combination is giving an estimation and the final estimation of the missing
value is the linear combination of the individual SOM estimates. The Procedure
is summarized in Figure 2.

In order not to exaggerate the errors of each model in the combination, the αi

is set to be nonnegative. Assuming that each SOM is unbiased, the combination
can be made unbiased by having

∑
αi = 1.

For the determination of the weights αi, a classical constrained optimization
method called Non-Negative constrained Least-Squares (NNLS) algorithm [7] is
used to compute the solution. For the computation, a small set of the data is
removed and used as a calibration set. The size of the calibration set has to be
selected according to the number of missing values in the database.
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Fig. 2: Illustrative scheme of the combination of SOMs.

Then, the coefficients αi are solved from the constrained linear system, shown
in Equation (6), using the NNLS algorithm.

argmin
α

∥∥∥∥yCal −
n∑

i=1

αiŷ
Cal
i

∥∥∥∥
2

s.t. αi ≥ 0 . (6)

After solving the system on linear equations above, the combination of SOMs
can be used to fill the missing values on the whole database.

The way of combining the SOMs described above, removes the need for
lengthy and time consuming Cross-Validation procedure needed in traditional
SOM imputation. Each SOM size needs to be trained only once and the most
accurate ones are combined using the NNLS and the small calibration set. Fur-
thermore, the linear combination by the NNLS is known to converge in 1

2n steps
[7] and the result is notably more accurate than any individual SOM map used
in the combination.

3 Experiments

In the following section, the dataset used in the experiments is introduced. Then
the SOM methodology is compared with the combined one. Finally, in the end,
conclusions are stated.

3.1 Financial Dataset

The financial dataset used in the experiments represents a corporate finance
field and it collects information about companies and their performance. The
information is completely numerical and it inherently includes 14 percent of
missing values.

The source of the data is Thomson One Banker and it includes almost 6000
French and British companies. Each company is represented by 45 yearly key
numbers from years 1999 to 2006, including three binary variables for the op-
erative field. All companies are either registered in Paris Stock Exchange or
London Stock Exchange and most of the companies are medium sized (51-500
employees) or large (more than 500 employees).

In the 45 key numbers, some characteristics such as assets, current assets,
total debt or total equity are taken into account. The objective in this dataset
is to build indicators able to explain the variable long term debt (Y) (i.e. long



term debt/total debt). 7 variables are built. Each variable is an indicator to
explain Y. The main indicators are Market value of shares/Book value of shares,
variation of sales, Altman’s score, size, corporate performance (EBITDA/Total
assets), industrial sector and the characteristics of the legal system (creditor
oriented or common law system for UK firms and debtor oriented or civil law
système for French firms). The following Table 2 shows a small piece of the data.

Table 2: Corporate finance dataset. Companies are on the rows and key numbers
in columns. The three first columns are in binary format and represent the sector
where the company operates. Empty cells are representing missing values.

Sector
Company 1 0 0 1 176 201 266 -1395

2 0 0 1 65451 174 0,580
3 0 0 1 65579 131 1,571
4 1 0 0 53880 128 55 1,396
5 1 0 0 59575 124 46 1,554
6 0 1 0 1195 17 1
7 0 1 0 8951 41 0,137

3.2 Results

Before the filling process is started, we need to remove the test set and the
calibration set from the data. Test set is removed in order to estimate the
accuracy of the methodology and the calibration set is needed for the estimation
of the linear combination of the SOM maps. The sets are selected randomly, but
with restrictions that no column or row should be left completely empty and
that the calibration and test sets do not overlap.

In the experiments, when combining the SOM maps, a total of 50 SOMs
were trained from which the combination was created. Each SOM has different
amount of nodes aligned into a two-dimensional lattice using hexagonal neigh-
borhood. The size of the SOM was defined as described in [1] and in [6] in SOM
algorithm implementation in SOM Toolbox. According to the heuristic, the SOM
map sizes ranged from 2 × 3 to 51 × 116. All SOMs were trained with default
settings.

In order to study the influence of the amount of calibration data removed,
the filling procedure was repeated 5000 times with different amount of calibra-
tion points ranging from 50 to 2000. The Figure 3 shows the average errors in
calibration and in test when using the combination of SOMs. In each repeti-
tion, the test was selected also randomly and it included 2000 points. The error
measure used in the experiments is Normalized Mean Square Error (NMSE).

Naturally, the calibration error goes lower all the time when the calibration
set is increased, but the test error levels out after 1200 points. This suggests
that the amount of calibration points should be at least 1200 points or higher.
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Fig. 3: Test NMSE with respect to different amounts of calibration points in the
combination of SOMs. The dashed blue line denotes the calibration error and
the solid red line the test error.

Comparing the test performance of individual SOMs and the combination of
them, Figure 4 summarizes the results.
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Fig. 4: Percentage of times the combination of SOMs outperforms the best
individual SOM with respect to the amount of calibration points.

From Figure 4, it can be seen that already with 400 calibration points the
combination outperforms the best individual SOM in more than 95 percent of
the cases. The 99 percent limit is reached with 1000 calibration points and the
2000 points gives us 99.98 percent.

Figure 5 shows the normalized validation and test errors for the individual
SOMs and the test errors for the combination of SOMs.

Figure 5 clearly shows that the combination outperforms the individual
SOMs in terms of the test NMSE. Whereas the best individual SOM achieves a
test error of 0.1949, the combination gives us more than 14 percent lower test
error, 0.1668.

4 Conclusion

This paper demonstrates many benefits of using a combination of SOM maps
instead of traditional SOM methodology. The combination achieves better per-
formance than any individual SOM, based on the obtained test errors.
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Fig. 5: Validation and test NMSE with respect to different SOM sizes. The
validation NMSE is presented by the blue dotted line and the test errors by red
solid line. The red dashed horizontal line denotes the test error of the obtained
combination of SOMs.

Wheres in traditional SOM algorithm, one has to make carefully sure that
the trained SOM has converged correctly and is viable to be used for the filling
of the missing values, the combination methodology select the valid SOMs au-
tomatically upon the filling procedure. This makes the combination robust and
reliable filling methodology.

Finally, the computational time is lower, when using the combination of
SOMs than traditional SOM method. The SOMs need to be trained only once,
instead of a lengthy cross-validation procedure for the size and other parame-
ters.
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