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Abstract. Proper selection of variables is necessary when dealing with
large number of input dimensions in regression problems. In the paper,
we investigate the behaviour of landscape that is formed when using
Delta test as the optimization criterion. We show that simple and greedy
Forward-backward selection procedure with multiple restarts gives opti-
mal results for data sets with large number of samples. An improvement
to multistart Forward-backward selection is presented that uses informa-
tion from previous iterations in the form of long-term memory.
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1 Introduction

The number of features or attributes in newly available data sets grows rapidly
mostly due to easier data acquisition, storage and retrieval. When the problem
is regression, i.e. predicting the real value for a fresh sample, most machine
learning methods use all available features which can degrades the predictions [IJ.
Therefore, proper selection of variables is needed before training the model.
Benefits of variable selection are twofold: increasing prediction accuracy and
interpretability.

One of the criteria used for variable selection is the Delta test, a noise variance
estimator as proposed in [2]. In order to select an optimal set of variables, one
should examine an exponential number of possibilities which depends on the
dimensionality of the data set. In the case of Delta test, certain variables subsets
may be ignored due to the nature of the criterion as explained in later sections.

Forward-backward selection [3] is a simple and widely used procedure for
variable selection. The idea is to either include or exclude a single variable at a
time and compute the criterion for the obtained subset of variables and repeat
the process until the criterion does not improve. This procedure is sufficient
when using Delta test and when there are enough samples, but it requires several
restarts from random subsets to reach a satisfying solution. When restarting is
involved a lot of information about the search process can be used to influence
the later stages. This information is reused in some search algorithms, such as
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Tabu search [4] and variants of Greedy randomized adaptive search procedures
(GRASP) [5][4].

The paper is organized as follows. Section 2] explains the Delta test criterion.
In Section Bl Forward-backward selection is briefly mentioned. Section M explains
the idea of multistart strategies and a specific implementation for Delta test
optimization. The results of experiments are given in Section Bl and finally in
Section [6] the concluding remarks are presented.

2 Delta Test

Delta test (DT) is a non-parametric noise variance estimator based on a near-
est neighbour principle. The estimator is used when a functional dependence is
assumed between inputs x; and output y; with additive noise term, i.e. y; =
g(x;) + €;, given finite number of samples (x;,1;) € R? x R, i =1,..., M. The
function ¢ is assumed to be smooth, and the noise terms ¢; are i.i.d. with zero
mean. The Delta test estimates the variance with the following formula:

2
Var(e 2M Z —YNN()) s (1)

where NN (i) defines the nearest nelghbour of sample x; in the input space. In [7]
it is shown that the estimator converges to the true value of the noise variance
in the limit M — oo.

As shown in [2], DT requires many samples in order to find correct subset of
variables in a noisy setting. On the other hand, when presented with an adequate
sample pool, it is able to distinguish between important and noisy variables in
most subsets (Section B]). In this case, Forward-backward selection is a potent
procedure to look for the optimal selection.

The case with an inadequate number of samples is an ill-posed situation.
Although DT overestimates the noise variance in this case [7], the selection with
the optimal DT selection may also include noisy variables. Therefore, the search
should focus on subsets that contain small number of variables to more precisely
estimate the variance, while the subsets with more variables can be completely
ignored.

The aim in variable selection is to find a subset of variables that minimizes
DT estimate. Previous work in this domain [3] is oriented on comparing different
search algorithms on data sets with small number of samples and with a time
constraint. The main focus in this paper is shape of Delta test landscape when
we have enough samples.

3 Forward-Backward Selection

Forward-backward selection (FBS) is a simple procedure for variable selection
involving any criterion in machine learning. For DT optimization, the proce-
dure starts from any solution s, i.e. any non-empty subset of variables. Then
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it evaluates all neighbours N(s) (solutions with either 1 more or 1 less variable
than in s) and picks the subset with the smallest DT value from N(s) as the
new s. These two phases (evaluation and selection) are repeated until no further
improvement is possible.

4 Multistart/Restart Strategies

Restarting phase to improve results has been of interest in different search algo-
rithm domains [5][I0][11]. Our focus is on simple construction of a solution, from
which FBS converges to a local minima. Such approach uses long-term memory,
a structure that originates from Tabu search [4]. The idea in these search proce-
dures is to construct a high quality solution from which greedy algorithm requires
less steps than from a random starting position.

Long-term memory structures keep track of certain aspects of solutions en-
countered during various stages of the search. Solutions that are good in terms
of criterion (also called objective function) are called elite solutions, and most
of long-term information relates to elite solutions. Information gathered usually
involves: frequency of a variable residing within elite solutions; and the impact
of a variable change on objective function value. The former is called consis-
tency and the latter strong determination [8]. This information is used in the
first phase of the approach — the construction phase used to build the starting
position. Each piece of information contributes to the energy of a variable E(3),
1 =1,...,d with d being the dimensionality of the data set. Construction is done
by adding single variable at a time, usually in a probabilistic setting. The proba-
bilities are obtained from energies in the usual way, i.e. p(i) = E(i)/ 2?21 Ei).
After the construction phase, greedy algorithm is used to find the local optimum.
Construction phase and convergence constitute one iteration of the approach.

4.1 Multistart Strategy for Delta Test

For the experiments, both consistency and strong determination are used to
guide the construction phase towards promising starting solutions. After obtain-
ing the starting position, the FBS is used for descent phase.

For the rest of the paper we use the following notation: s is the solution or
subset of variables; f(s) is DT estimate using the solution s; fmi, the smallest
estimate found during search; C(7) is consistency of a variable i; S(4) is strong
determination of variable i; S, is the number of variables to add in construction
phase; s, an elite solution; S, a set of elite solutions (elite memory); and s*~ and
st indicate that i-th variable is excluded and included in solution s respectively.

Energy function is defined as

E@i) =AS(i)+C@), i=1,....d, (2)

where A controls the trade-off between the two terms and for the experiments
we set A\ to give equal weight to both terms.
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Consistency for a variable ¢ is computed as
Ci) = s ®3)
; f(se)

i.e. the sum of DT ratios between best solutions found during the search and
elite solutions that have i-th variable included. Consistency tells how frequent is
a variable in elite solutions with higher values indicating that a variable is more
important.

Strong determination is computed as

L fs)
S(i) = 7, (4)

K 2 j(st)
where the fraction denotes the change in objective function for each solution s;
when i-th variables is included, and K the number of such fractions. The higher
the value of the fraction in the sum indicates that variable ¢ should be included
in the current solution keeping all other variables intact. During the descent
phase with FBS, each variable is flipped to check the neighbouring solutions for
improvement. These flips also enable us to compute the strong determination

for all variables since both f (sé-_) and f (s§-+) are available.

We take only the last 3 changes of descent phases where new local minima are
discovered, since those are more important ones that contribute to the f around
local minimum. Also, the first iterations have longer descents than later ones
as better solutions are generated in later iterations, and we want to treat all
iterations equally. The idea of strong determination is too find variables which
are good no matter what area of optimization landscape the search algorithm is
exploring.

Since C(i) depends on the number of elite solutions, it is at most |Se|. To
make both terms equal in Equation (2)), A is set to |Se| and all values of S(¢) are
divided by the maximum among S(i). Thus, both terms have roughly the same
magnitude when computing energy.

Number of variables. Construction phase selects S, variables based on the fol-
lowing procedure. For S, passes a variable is selected probabilistically, but only
certain number of best variables (not included in the partial solution) are kept
for the selection step. Thus, we first take P% of the largest E(i) and then select
one variable based on p(i). The energy function usually includes the value of
objective function f(s°F) as an extra term, but in the case of Delta test it is
not needed as consistency and strong determination are sufficient to guide the
construction toward good solutions making the building phase much quicker.
In order to properly explore the solution space, a diversification strategy is
needed. One of the ways to achieve this is by changing the P value. With smaller
values, the focus is only on good variables and the generated solutions to not
differ too much. On the other hand, with P ~ 1 the generated solutions are too
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diverse and gathered information is not properly exploited. In the experiments,
we set P to a constant 0.5 value during complete search process. It is a good value
for tested data sets without hindering the exploration. More refined strategies
change P based on diversity of generated solutions with some kind of measure [9].
As mentioned, a constant value of 0.5 makes a good compromise that does not
involve any complex strategies with additional parameters.

The correct number of variables before the search is unknown, but since DT
estimates noise variance more precisely with less variables, the desired goal is
to obtain solution s with smallest number of variables and still keep estimate
f(s) minimized. Therefore, parameter S, should be initiated to a small value
and adjusted as the search progresses. In each iteration, S, is made equal to
the number of variables in the best solution found during search. The idea is to
have at most variables as in the best solution, and still focus on minimizing f.
Of course, more complex approaches are possible.

Diversity of solutions. The consistency value depends on elite solutions s, in
memory. To be able to produce diverse starting solutions, the elite ones have to
be diverse enough themselves. Therefore, we define solution s an elite solution
if:

1. f(s) < fmin i.e. it has the smallest DT estimate
2. f(s) < f(se,) for some s, and s is sufficiently diverse from better solutions

{s€j|f(s€j) < f(S),j:].,...,k*].}

The diversity is taken as the percent of different values of variables, but only
on those positions where the variables are set to 1. If Dy, = {i|s'T VT i =
1,...,d} defines a set of variables which have value 1 in s or ¢, then solutions
s and ¢ are diverse if >, p, | st £t > max(2, |Ds¢|/4), i.e. solutions s and ¢
have to disagree on at least quarter of selected variables combined together. If the
solution s enters the elite memory, then all similar solutions ¢ with f(¢) > f(s)
are removed from elite memory ensuring diversity over entire memory range.

5 Experiments
5.1 Synthetic Data

In order to see how good FBS is, consider a simple artificial data set as a function
of three variables f(z1,x2,x3) = cos(2mzy)cos(4dmas)exp(xa)exp(223) + € with
signal-to-noise ratio close to 1 (as used in [2]) and with increasing number of
completely irrelevant ones. Figure[[lshows the influence of the number of samples
and dimensions on the number of local minima and the optimization landscape.
More samples makes the valley around global minima more steeper and “wider”
enabling FBS to reach optimal solution from most starting points. When the
number of samples is low, the global minima does not necessary correspond to
correct selection of variables. Nevertheless, even in such a scenario, using FBS
provides that global solution from certain number of starting positions which
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decreases with increasing number of dimensions. The number of samples clearly
separates the problem into two categories, and thus different algorithms are
needed depending on the situation.
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Fig. 1. Average number of local minima (left) and average percentage of all solutions
from which FBS converges to global minimum (right). Results are averages over 100
generated data sets with M=256 samples (dashed line) and M=8192 (solid line).

With high number of samples DT more easily identifies noisy variables from
important ones in almost complete optimization landscape. To make sure the
global minimum is reached with FBS, several starting positions are needed, but
not too many since from most solutions FBS converges to the global one. The
next subsection shows results when evaluation of all solutions in not feasible due
to the high number of variables.

5.2 Real-World Data

We denote with M.,q the restart strategy with FBS from a random point, and
with Mcon the proposed strategy with construction phase. The strategies are
tested on two data sets. One is modified Anthrokidd!l data set with removed
missing values, containing 1019 samples in 53 dimensions. The other data set
is formed from well known Santa Fe Competition Data — Series , but with
training and test parts combined. The data set is formed by having a regressor
of size 36 producing 10057 samples.

FigurePlshows the convergence of both strategies for two data sets. The results
are averages over 10 runs for both strategies, and the parameters for Santa Fe
are (S, = 5,|S¢| = 10) and for Anthrokids (S, = 10,|S.| = 20). Construction
phase in the first couple of iterations should not heavily favor any variables until
enough solutions have been evaluated. Thus, strong determination is slightly
altered by adding constant value of 10 to the sum in Equation {) for the first 5
iterations, after which it is dropped.

From the figure we see that the final value of DT estimate is almost the same
given more iterations, but the proposed Mo, strategy has the advantage of
converging to those values faster. For Santa Fe 9 variables are selected giving
DT estimate of 7.0107, while for Anthrokids we have 15 variables and estimate

!http://research.ics.tkk.fi/eiml/datasets/Anthrokids.zip
2 http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html
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Fig. 2. Convergence of DT as a function of iterations for Santa Fe (left) and Anthrokids
(right). Dashed line represents Mynq strategy and solid line Mcon strategy.

of 0.0085 (normalized output). Given more iterations for Anthrokids (greater
than 50), even better solution is possible: 0.0083 with 12 variables.

Figure [B] shows the number of steps per iteration for the same set of ex-
periments. Proposed Mo, strategy clearly enables better starting position by
including long-term memory information. Therefore, a lot less changes are re-
quired to converge to a local minima and the total number of DT evaluations is
decreased.

Santa Fe Anthrokids

20 25
(23 - N ’ A A 0 ] -
a M ANPAVN ~ 7 - A aQ - - !
S5 TN T me T £20F -, l«I’\ AN \ R
kS S \1\ AR Vv V \\I"\
5 10 5 15 N ! v N
5 5 5 10
f= <

0 5

10 20 30 40 50 10 20 30 40 50
iteration iteration

Fig. 3. Average number of steps for FBS per iteration for Santa Fe (left) and An-
throkids (right). Dashed line is Mynq and solid line Mcon strategy.

One downside of the approach is reliance on FBS which requires examining
all d neighbours at each step. In situations where d is large, making a single flip
can be computationally demanding, as well as one iteration. In this situation,
one approach is to fix variables with higher energies before construction phase,
or those that are included in all elite solutions.

6 Conclusions

We proposed a multistart strategy for Delta test optimization for variable se-
lection. Due to the nature of landscape that is formed by DT and given the
adequate number of samples, the estimator is able to distinguish between noisy
and useful variables in most of the optimization landscape. The simple Forward-
backward selection procedure is able to reach global minimum given couple of
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starting points. To speed up convergence, long-term memory information in form
of consistency and strong determination is used. In the experiments, this infor-
mation showed to be good both in terms of faster convergence and generating
solution from which couple of changes are needed to reach local minima.

For further work, a lot more data sets must be tested with large number of
samples and without information about relevancy of variables. Proposed strat-
egy includes a lot of parameters, but their meanings should be more intuitive
compared to other optimization algorithms and constitute a trade-off between
speed of convergence and quality of solutions. For much higher dimensional data
sets with over 100 variables, the strategy should be able to provide good results
in few iterations.
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