
Neurocomputing 74 (2011) 2413–2421
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

Aalto U

E-m
journal homepage: www.elsevier.com/locate/neucom
TROP-ELM: A double-regularized ELM using LARS and
Tikhonov regularization
Yoan Miche a,b,�, Mark van Heeswijk a, Patrick Bas b, Olli Simula a, Amaury Lendasse a

a Information and Computer Science Department, Aalto University School of Science and Technology, FI-00076 Aalto, Finland
b Gipsa-Lab, INPG 961 rue de la Houille Blanche, BP46 F-38402 Grenoble Cedex, France
a r t i c l e i n f o

Available online 13 May 2011

Keywords:

ELM

Regularization

Ridge regression

Tikhonov regularization

LARS

OP-ELM
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2010.12.042

esponding author at: Information and Com

niversity School of Science and Technology, F

ail address: yoan.miche@aalto.fi (Y. Miche).
a b s t r a c t

In this paper an improvement of the optimally pruned extreme learning machine (OP-ELM) in the form

of a L2 regularization penalty applied within the OP-ELM is proposed. The OP-ELM originally proposes a

wrapper methodology around the extreme learning machine (ELM) meant to reduce the sensitivity of

the ELM to irrelevant variables and obtain more parsimonious models thanks to neuron pruning. The

proposed modification of the OP-ELM uses a cascade of two regularization penalties: first a L1 penalty

to rank the neurons of the hidden layer, followed by a L2 penalty on the regression weights (regression

between hidden layer and output layer) for numerical stability and efficient pruning of the neurons. The

new methodology is tested against state of the art methods such as support vector machines or

Gaussian processes and the original ELM and OP-ELM, on 11 different data sets; it systematically

outperforms the OP-ELM (average of 27% better mean square error) and provides more reliable results –

in terms of standard deviation of the results – while remaining always less than one order of magnitude

slower than the OP-ELM.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Data sets in machine learning and statistical modeling are
becoming larger; thanks to improvements in acquisition processes
it becomes possible to obtain large amounts of information about a
studied phenomenon, with data to analyze more abundant, in terms
of number of variables and samples. While it is usually desirable to
have a large data set – as opposed to a small one from which very
few information is available – it raises various problems. First of, the
increase in the number of variables is likely to introduce new
relevant data regarding the phenomenon at hand, but causes an
accordingly high increase in the number of required samples, to
avoid ill-posed problems. Irrelevant variables are also likely to
appear, creating a new difficulty for the model building. The increase
in the number of samples can also become problematic, for it leads
to increased computational times for model building.

The extreme learning machine (ELM) as presented by Huang
et al. in [19] by its very design is fast enough to accommodate
such large data sets, where other traditional machine learning
techniques have very large computational times. The main idea
lies in the random initialization of the weights of a single hidden
ll rights reserved.

puter Science Department,

I-00076 Aalto, Finland.
layer feedforward neural network (SLFN), instead of the tradi-
tional – much more time-consuming – learning of these weights
through back-propagation [12], for example. In addition to its
speed, which takes the computational time down by several
orders of magnitude, the ELM is usually capable to compare with
state of the art machine learning algorithms in terms of perfor-
mance [19].

It has, however, been remarked in [22] that the ELM tends to
suffer from the presence of irrelevant variables in the data set, as
is likely to happen when dealing with real-world data. In order to
reduce the effect of such variables on the ELM model, Miche et al.
proposed in [22,24] a wrapper methodology around the original
ELM, which includes a neuron ranking step (via a L1 regularization
known as Lasso [31]), along with a criterion used to prune out the
most irrelevant neurons of the model (regarding this criterion):
the optimally pruned extreme learning machine (OP-ELM).
Section 2 gives a short introduction to the original ELM and fixes
the notations for the following presentation of the OP-ELM as
proposed in [22,24].

Section 2 then elaborates on one problem encountered by the
original OP-ELM, in the computation of the pruning criterion. The
leave-one-out criterion is originally used in the OP-ELM for the
pruning, which can be a computationally costly choice. Thanks to
the use of a closed form formula (Allen’s PRESS statistic [1]), its
computation is nevertheless very fast, but raises numerical
problems which possibly ‘‘disturb’’ the pruning strategy.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2010.12.042
mailto:yoan.miche@gmail.com<!--AQ4-->
dx.doi.org/10.1016/j.neucom.2010.12.042


Y. Miche et al. / Neurocomputing 74 (2011) 2413–24212414
The proposed solution to this situation in this paper is by the use
of L2 regularization in the OP-ELM. The concept of regularization –
using L1, L2 or other norms-based penalties on the regression
weights – for regression problems has been studied extensively
(see for example [6,9,13,26,29–32,34,35]) and some of the most
widely used methods are presented in Section 3: Lasso [31],
Tikhonov regularization [32,13], but also hybrid penalties such as
the elastic net [35] and the composite absolute penalties [34].

While these penalties are either of only one kind – L1 or L2,
traditionally – or a hybrid using both simultaneously (see Owen’s
hybrid [26] for example), an approach that could be described as
‘‘in cascade’’ is used in this paper, for the OP-ELM. Indeed, a L1

penalty is first used to rank the neurons, followed sequentially by
a L2 penalty to prune the network accordingly. Section 4 details
the approach used, by a modification of Allen’s PRESS statistic [1].

This newly modified OP-ELM is finally tested in Section 5
against three state of the art machine learning techniques
(Gaussian processes, support vector machines and multi-layer
perceptron) but also against the original ELM and OP-ELM. The
experiments are carried out using eleven publicly available
regression data sets and report the performances and timings
for all methods.
2. The optimally pruned extreme learning machine

2.1. The extreme learning machine

The extreme learning machine (ELM) algorithm is proposed by
Huang et al. in [19] as an original way of building a single hidden
layer feedforward neural network (SLFN). The main concept
behind the ELM is the random initialization of the SLFN internal
weights and biases, therefore, bypassing a costly training usually
performed by time-consuming algorithms (Levenberg–Marquardt
[3], back-propagation [12], etc.).

In [19] a theorem is proposed – on which lies the efficiency of
the ELM – stating that with a random initialization of the input
weights and biases for the SLFN, and under the condition that the
activation function is infinitely differentiable, the hidden-layer
output matrix can be determined and will provide an approxima-
tion of the target values as good as wished (nonzero).

Under the conditions detailed in [17] – that is, randomly
generated hidden nodes weights and bounded non-constant
piecewise continuous activation function – the ELM is a universal
function approximator [15,14]. It is worth noting that several
possible activation functions have been investigated for the ELM
nodes, for example thresholds [18], complex [21] and radial basis
functions [16].

In this paper, the case of single-output regression is consid-
ered, but the ELM, OP-ELM and the proposed approach in Section
4 can be modified to solve multi-output regression and classifica-
tion problems.
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

Su
m

 o
f T

w
o 

Si
ne

s

Fig. 1. Illustration of the ELM model fit (light blue dots) on a toy example (sum of

augmented with a random noise variable (not displayed), on the rightmost part. Due to

[24]. (For interpretation of the references to color in this figure legend, the reader is r
Consider a set of n distinct samples ðxi,yiÞ,1r irn, with xiARp

and yiAR. A SLFN with m hidden neurons in the hidden layer can
be expressed by the following sum

Xm

i ¼ 1

bif ðwixjþbiÞ, 1r jrn, ð1Þ

with bi the output weights, f an activation function, wi the input
weights and bi the biases. Denoting by ŷi the outputs estimated by
the SLFN, in the hypothetical case where the SLFN perfectly
approximates the actual outputs yi, the relation is

Xm

i ¼ 1

bif ðwixjþbiÞ ¼ yj, 1r jrn, ð2Þ

which is written in matrix form as Hb¼ y, with

H¼

f ðw1x1þb1Þ � � � f ðwmx1þbmÞ

^ & ^

f ðw1xnþb1Þ � � � f ðwmxnþbmÞ

0
B@

1
CA, ð3Þ

b¼ ðb1, . . . ,bmÞ
T and y¼ ðy1, . . . ,ynÞ

T . The ELM approach is thus to
initialize randomly the wi and bi and compute the output weights
b¼Hyy by a Moore–Penrose pseudo-inverse [27] (which is
identical to the ordinary least squares solution for a regression
problem, see Section 3) of H, Hy.

There has been recent advances based on the ELM algorithm,
to improve its robustness (OP-ELM [24], CS-ELM [20]), or make it
a batch algorithm, improving at each iteration (EM-ELM [7], EEM-
ELM [33]). Here the case of the OP-ELM is studied, and specifically
an approach aimed at regularizing the output layer determination
and pruning.

2.2. The OP-ELM

The optimally pruned extreme learning machine (OP-ELM) is
proposed in [24,10] in an attempt to solve the problem that ELM
faces with irrelevant (or highly correlated) variables present in
the data set that can ‘‘corrupt’’ some of the neurons. As described
at more length in [24,22,23], it can be illustrated on a toy example
as in Fig. 1: the plots give the ELM fit in light blue dots over the
training points in black crosses. On the leftmost part of the figure,
the fit by the ELM is good, but when a pure random noise variable
is added, on the rightmost figure (the added noise variable is not
pictured on the figure), the fit becomes loose and spread.

Indeed, the ELM is not designed to cope with such variables
irrelevant to the problem at hand. In this spirit, the OP-ELM
proposes a three-steps methodology, shortly described here, to
address this issue.

The idea is to build a wrapper around the original ELM, with a
neuron pruning strategy. For this matter, as can be seen in Fig. 2,
the construction of the SLFN by the ELM is retained, and two steps
are added afterwards. First comes a ranking of the neurons by a
least angle regression (LARS [6]; in practice the MRSR [29]
implementation of LARS is used for it also applies to multi-output
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

Su
m

 o
f T

w
o 

Si
ne

s

sines, black crosses), for the normal data (leftmost part) and for the same data

the irrelevant additional variable, the fit of the ELM model is less accurate. From

eferred to the web version of this article.)



SLFN Construction
using ELM

Ranking of the best
neurons by LARS

Selection of the optimal
number of neurons by LOOData Model

Fig. 2. Illustration of the three OP-ELM steps: the SLFN is first built using the ELM approach (random initialization of internal weights and biases); then a LARS algorithm is

used to rank the neurons of the hidden layer; finally the selection of the optimal number of neurons for the OP-ELM model is performed using a Leave-One-Out criterion.

Y. Miche et al. / Neurocomputing 74 (2011) 2413–2421 2415
cases), which sorts them by their usefulness regarding the output.
And then a leave-one-out criterion is used to determine how
many of the – sorted – neurons should be kept for the final OP-ELM
model structure.

The LARS algorithm is not detailed here since it is described
and discussed at length (or more precisely the idea it implements,
Lasso) in Section 3, but it has the property of providing an exact
ranking of the hidden-layer neurons in the case of the OP-ELM,
since the relation between the neurons and the output is linear
(by design of the OP-ELM).

The leave-one-out (LOO) method is usually a costly approach
to optimize a parameter since it requires to train the model on the
whole data set but one sample, and evaluate on this sample,
repeatedly for all the samples of the data set. In the OP-ELM
structure though, the situation is linear (between the hidden layer
and the output one), and the LOO error has a closed matrix form,
given by Allen’s prediction sum of squares (PRESS) [1] (details of
the computation of the PRESS LOO error are given in Section 4).
This closed form allows for fast computation of the mean square
error and hence of the output weights b, making the OP-ELM still
computationally efficient and more robust than the original ELM
to irrelevant/ correlated variables.

Hence, the OP-ELM can be seen as a ‘‘regularized’’ ELM, by the
use of a LARS approach, which is a L1 penalty on a regression
problem, here.

Meanwhile, the decision over the final number of neurons to
retain (by a LOO criterion) has shown potential instabilities
(numerically), due to the nature of the matrix operations per-
formed in the PRESS formula (see Section 4 for these calculations).
The proposed solution in this paper is to use regularization in the
calculations of the PRESS formula. In the following are reviewed
the most well-known algorithms used to perform regularization,
using a L1 and L2 (and jointly L1 and L2) penalty on the regression
problem. The proposed approach in Section 4 combines both L1

and L2 penalties in the OP-ELM, to regularize the network.
3. The problem of regularization

Here are presented some of the most widely used methods to
regularize a regression problem (which is the situation between
the hidden layer and the output layer of the OP-ELM).

In the following, matrices are denoted by boldface; A is a n� p

matrix with A¼ ða1, . . . ,anÞ
T , aiARp. Also A can be referred by

A¼ ðai,jÞ
1r irn
1r jrp. Capital boldface A are used for matrices and low-

case boldface b for vectors.

3.1. General case

For the general setup, assume a single-output regression
problem of the form

y¼Xwþe, ð4Þ

with X¼ ðx1, . . . ,xnÞ
T the inputs of the problem (data set),

y¼ ðy1, . . . ,ynÞ
T the actual output, w¼ ðw1, . . . ,wpÞ

T the regression
weights and e¼ ðe1, . . . ,enÞ

T the residuals.
Traditionally, the ordinary least squares (OLS) solution (a.k.a.
Gauss–Markov solution) is a possible approach to solve this
problem. The problem can be formulated as a minimization of
the mean square error as

min
ŵ
ðy�XŵÞT ðy�XŵÞ, ð5Þ

or in a non-matrix form

min
ŵ

Xn

i ¼ 1

ðyi�xiŵÞ
2, ð6Þ

with ŵ ¼ ðŵ1, . . . ,ŵnÞ
T the estimated regression weights.

The solution of Eq. (5) is then obtained by a classical pseudo-
inverse (Moore–Penrose [27]) as

ŵ
OLS
¼ ðXT XÞ�1XT y, ð7Þ

assuming that X is full rank.
This way of computing the solution involves matrix inversion

(for the computation of the inverse covariance matrix ðXT XÞ�1)
which tends to pose numerical problems in practice, since X is
sometimes not full rank (there might very well be irrelevant or
linear combinations of samples and/ or variables in the data set).
A numerically more stable solution is to use the singular value
decomposition (SVD) of X to compute the pseudo-inverse. The
proposed approach presented in Section 4 makes use of the SVD
for faster computations and numerical stability.

Two classical critiques of the OLS solution relate to the two
main aspects that one expects from a model. First, the OLS is
likely to perform poorly on real data (for example for the
numerical reasons invoked before), while it is expected that the
model should perform reasonably well on the training data.
Second, it is usually desirable to have a sparse model which
makes interpretation possible, regarding the relationships
between variables and the output. Again, the OLS is not designed
in this sense and does not provide sparse models at all.

Also, it has been shown (e.g. in [2,30]) that there exists
solutions which achieve lower mean square error (MSE) than
the OLS one – for numerical instability reasons, in practice – for
example by the use of regularization factors, which can be seen as
penalties added to the minimization problem in Eq. (5). In
addition, regarding the generalization error, the OLS solution
found in training is possibly not the best one (in terms of
generalization MSE).

Here are detailed two different approaches to regularization,
using either a L1 or L2 penalty term.

3.2. The L1 penalty: LASSO

Let us first consider the case of the L1 penalty. In this setup, the
minimization problem of Eq. (6) becomes

min
l,ŵ

Xn

i ¼ 1

ðyi�xiŵÞ
2
þl

Xp

j ¼ 1

jŵjj

2
4

3
5, ð8Þ

again with ŵ ¼ ðŵ1, . . . ,ŵnÞ
T . An instance of this very problem is

studied by Tibshirani in [31] and is commonly known as the



Y. Miche et al. / Neurocomputing 74 (2011) 2413–24212416
LASSO (least absolute shrinkage and selection operator). Due to
the nature of the minimization problem (L1 penalty on the
regression coefficients), the Lasso produces solutions that exhibit
sparsity, making interpretability possible. Control over this spar-
sity of the final model is obtained by modifying the l value: the
smaller is l, the more ŵj coefficients are non-zero and hence the
more variables are retained in the final solution.

Generally, the computation of the solution to Eq. (8) is a
quadratic programming problem with linearity constraint which
can be intensive. In [6], a computationally more efficient algo-
rithm is presented as the LARS algorithm (least angle regression),
of which the Lasso is a specific instance. LARS actually generalizes
both the Lasso and the forward stagewise regression strategy (see
[11] for example): the algorithm starts similarly to forward
selection, with all coefficients equal to zero and finds the variable
most correlated with the output. The direction of this first
selected variable is followed until another variable has as much
correlation with the output. LARS then follows the direction of the
equiangular between first and second selected variables, until a
third variable as much correlated with the output is found. The
set of selected variables grows until none remain to be chosen
(please refer to the original paper [6] for the computationally
efficient implementation proposed by the authors).

By enforcing a restriction on the sign of the weights (which has
to be the same as that of the current direction of the correlation),
the LARS algorithm thus implements Lasso effectively. The
authors claim an order of magnitude greater speed than the
classical quadratic programming problem, using their algorithm.

Meanwhile, as noted by Zou and Hastie in [35] for example,
the Lasso presents some drawbacks:
�
 If p4n, i.e. there are more variables than samples, the Lasso
selects at most n variables [6].

�
 For classical situations where n4p, and if the variables are

correlated, it seems (from experiments in [31]) that the
Tikhonov regularization (in the following subsection 3.3) out-
performs the Lasso.

A common drawback of the L1 penalty and, therefore, of the Lasso
approach is that it tends to be too sparse in some cases, i.e. there
are many j such that ŵj ¼ 0. In addition, the control over the
sparsity by the parameter l can be challenging to tune.

3.3. The L2 penalty: Tikhonov regularization

Another possible approach to find a solution which deems a
lower MSE than the OLS one is to use regularization in the form of
Tikhonov regularization proposed in [32] (a.k.a. ridge regression
[13]).

This time, the minimization problem involves a penalty using
the square of the regression coefficients

min
l,ŵ

Xn

i ¼ 1

ðyi�xiŵÞ
2
þl

Xp

j ¼ 1

ŵ
2
j

2
4

3
5: ð9Þ

Thanks to a bias–variance tradeoff, the Tikhonov regulariza-
tion achieves better prediction performance than the traditional
OLS solution. And as mentioned in the previous Subsection 3.2, it
outperforms the Lasso solution in cases were the variables are
correlated. One famous advantage of the Tikhonov regularization
is that it tends to identify/ isolate groups of variables, enabling
further interpretability (this grouping can be very desirable for
some data sets, as mentioned in [35]).

The major drawback of this regularization method is similar to
one mentioned for the OLS: it does not give any parsimonious
solution, since all variables are retained, due to the L2 penalty.
Therefore, contrary to the Lasso which actually performs variable
selection ‘‘internally’’ – given that l is large enough to set some
coefficients to zero – the Tikhonov regularization does not select
variables directly.

3.4. Hybrid penalties

In an attempt to overcome the drawbacks of each of the two
approaches, hybrid solutions have been developed, which use both
the L1 and the L2 penalties in the same minimization problem. Below
are proposed three approaches that tackle this problem: the elastic
net [35], the composite absolute penalties [34], and finally an original
approach by Owen [26] using an ‘‘inverted’’ Huber loss function.

3.4.1. The elastic net

Zhou and Hastie in [35] propose to alleviate the problems
encountered by the Tikhonov regularization (lack of sparsity)
while keeping its good performance thanks to the L2 penalty. This
is done using a composite of the Lasso and Tikhonov regulariza-
tion, by combining the two penalties L1 and L2 in the form of a
weighted penalty

l1

X
jŵjjþl2

X
ŵ

2
j , ð10Þ

with l1 and l2 positive (controlling the sparsity of the model).
This version of the penalty term is denoted as the ‘‘naı̈ve’’ elastic
net by the authors, which admits an easily computed solution,
provided that l1 and l2 are defined and already optimal. As the
authors mention in [35], this naı̈ve version of the algorithm is fast
to obtain and rather efficient, but creates a greater shrinkage
effect (on the regression coefficients) than the original Lasso,
which adds bias to the solution, while not reducing significantly
the variance of it. In the end, the naı̈ve version only seems to work
well when it is close enough to the Tikhonov or Lasso case (i.e. l1

very small or l2 very small).
The ‘‘normal’’ version of the elastic net is then a scaled naı̈ve

one: defining Y� ¼ ð Y
0p�1
Þ , X� ¼ ð1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þl2

p
Þ Xffiffiffiffi

l2

p Ip�p

� �
and ŵ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þl2

p
ŵ, the minimization problem for the elastic net is then

min
ŵ�

Xnþp

i ¼ 1

ðy�i�x�i ŵ
�
Þ
2
þ

l1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þl2

p Xp

j ¼ 1

jŵjj

2
4

3
5: ð11Þ

The scaling performed allows to reduce the problem of
shrinkage present in the naı̈ve version of the elastic net, while
retaining the advantages of the original naı̈ve approach (e.g. the
automatic variable selection).

In practice, the algorithm is implemented as a modification of
the LARS algorithm (the LARS-EN) since once l2 is fixed, the
computations are similar to that of a Lasso.

While the LARS-EN is a very efficient way of implementing the
elastic net approach, it remains that two parameters need
optimizing: l1 and l2. Usually, this is done by the use of classical
cross-validation (CV) which is unfortunately costly for it requires
a two-dimensional search, which is hardly feasible if one wants to
keep the ELM speed property.

3.4.2. Composite absolute penalty (CAP)

In [34], Zhao et al. propose to use a more generalized version
of the penalty term, by using a vector of penalties on which is
computed a norm. Denoting by

JaJg ¼
1

n

Xn

i ¼ 1

jaij
g

 !1=g

, ð12Þ

the g-norm of a vector a¼ ða1, . . . ,anÞ
T for gAN�, the method of

composite absolute penalties (CAP) generalizes the concept used



Y. Miche et al. / Neurocomputing 74 (2011) 2413–2421 2417
in the elastic net penalty to

JðJŵG1
Jg1

,JŵG2
Jg2

, . . . ,JŵGk
Jgk
ÞJg0

, ð13Þ

where Gj is a subset of f1, . . . ,pg and ŵGj
is obtained by extracting

the components denoted in Gj from ŵ.
It can be seen that the penalty term is, therefore, a g0-norm on

a vector of penalties JŵGi
Jgi

. This general formulation of the
penalty for example comes down to the Lasso when gj ¼ 1,8j.

While the generalization capability of the CAP approach is
clear, the determination of the groups Gj and of the gj is time-
consuming and prone to heuristics/ a priori information on the
variables. Again, cross-validation is typically used for the deter-
mination of the gj, leading to important computational times,
again not ‘‘compatible’’ with the ELM speed.

3.4.3. Owen’s hybrid

A slightly different approach is proposed by Owen in [26], by
the use of an original loss function for the penalty. The problem is
formulated as

min
Xn

i ¼ 1

Lðyi�xiŵÞþ
Xp

j ¼ 1

PðŵjÞ

2
4

3
5, ð14Þ

where the Lð�Þ function can be assumed to be a 2-norm J � J2
2 in

this case. The emphasis is here put on the P function, which is
chosen (or more ‘‘designed’’) to behave like an absolute value
function for small ŵj for sparse solutions to arise, and like a
quadratic function on large ŵj to retain the properties of the
Tikhonov regularization.

The author proposes an ‘‘inverted’’ Huber loss function for that
purpose. While the Huber function is such that

HðzÞ ¼
z2 for jzjr1

2jzj�1 for jzjZ1
,

(
ð15Þ

the ‘‘inverted’’ version (also scaled to accommodate thresholding)
is given by

BMðzÞ ¼

jzj for jzjrM

z2þM2

2
for jzjZM

:

8<
: ð16Þ

The M value permits to choose where the transition between
the absolute value function and the quadratic one takes place.

The minimization problem ends up as a convex one, with a
large number of constraints (see [26] for more details), which is
unfortunately computationally very expensive for significant
data sets.

In the end, it can be noted that all the variants of the
minimization problem presented here are convex problems and
have hence an optimal solution that is reachable by standard
convex optimization techniques. Unfortunately, the large number
of parameters or constraints on the minimization problem makes
it more difficult to solve, and cross-validation is often used for the
determination of the parameters. This in turn implies large
computational times.

While the properties of both the Lasso and the Tikhonov
regularization are desirable, the penalties combining both lead
to complex minimization problems which take too long for the
application to OP-ELM.

The following Section 4 proposes to use the two approaches in
turn, instead of together, along with fast matrix computations.

4. Regularized ELM

Recently, Deng et al. in [5] proposed a regularized extreme
learning machine algorithm, which is essentially a L2 penalized
ELM, with a possibility to weight the sum of squares in order to
address outliers interference. Using the notations from the pre-
vious section, the minimization problem is here

min
l,d,ŵ

l
Xn

i ¼ 1

ðdiðyi�xiŵÞÞ
2
þ
Xp

j ¼ 1

ŵ
2
j

2
4

3
5, ð17Þ

where the di are the weights meant to address the outliers.
This extension of the ELM clearly (from the results in [5])

brings a very good robustness to outliers to the original ELM.
Unfortunately, it suffers from the problems related to L2 penalties,
that is the lack of sparsity for example.

As described before, the original OP-ELM already implements a
L1 penalty on the output weights, by performing a LARS between
the hidden and output layer.

It is here proposed to modify the original PRESS LOO criterion
for the selection of the optimal number of neurons by adding a
Tikhonov regularization factor in the PRESS, therefore, making the
modified PRESS LOO a L2 penalty applied on the L1 penalized
result from the LARS.

In the following are used matrix operations such as A=B to
refer to the matrix C such that ðci,jÞ ¼ ai,j=bi,j. Also the diagð�Þ
operator is used to extract the diagonal of a matrix,
diagðAÞ ¼ ða1,1, . . . ,an,nÞ

T .

4.1. L1 and L2 regularized OP-ELM

4.1.1. Allen’s PRESS

The original PRESS formula used in the OP-ELM was proposed
by Allen in [1]. The original PRESS formula can be expressed as

MSEPRESS
¼

1

n

Xn

i ¼ 1

yi�xiðX
T XÞ�1xT y

1�xiðX
T XÞ�1xT

i

 !2

, ð18Þ

which means that each observation is ‘‘predicted’’ using the other
n�1 observations and the residuals are finally squared and
summed up. Algorithm 1 proposes to implement this formula in
an efficient way, by matrix computations.

Algorithm 1. Allen’s PRESS algorithm, in a fast matrix form.

1: Compute the utility matrix C¼ ðXT XÞ�1

2: And P¼XC;

3: Compute the pseudo-inverse w¼ CXT y;

4: Compute the denominator of the PRESS D¼ 1�diagðPXT
Þ;

5: And finally the PRESS error e¼ y�Xw
D ;

6: Reduced to a MSE, MSEPRESS
¼ 1

n

Pn
i ¼ 1 e2

i .

The main drawback of this approach lies in the use of a
pseudo-inverse in the calculation (in the Moore–Penrose sense),
which can lead to numerical instabilities if the data set X is not
full rank. This is unfortunately very often the case, with real-
world data sets.

The following approach proposes two improvements on the
computation of the original PRESS: regularization and fast matrix
calculations.

4.1.2. Tikhonov-regularized PRESS (TR-PRESS)

In [9], Golub et al. note that the singular value decomposition
(SVD) approach to compute the PRESS statistic is preferable to the
traditional pseudo-inverse mentioned above, for numerical rea-
sons. In this very same paper is proposed a generalization of
Allen’s PRESS, as the generalized cross-validation (GCV) method,
which is technically superior to the original PRESS, for it can
handle cases were the data is extremely badly defined—for
example if all X entries are 0 except the diagonal ones.



SLFN Construction
using ELM

Data Model
Ranking of the best
neurons by LARS:
       -regularization

Selection of the optimal number
of neurons by TR-PRESS:

       -regularization

Fig. 3. The proposed regularized OP-ELM (TROP-ELM) as a modification of Fig. 2.

10 20 30 40 50 60

5
6
7
8
9

10
11
12
13
14
15 x 106

Number of Neurons

M
ea

n 
Sq

ua
re

 E
rr

or
Fig. 4. Comparison of the MSE for the original OP-ELM (gray dashed line) and the

proposed TROP-ELM (solid black line) for one data set (Auto Price, see Section 5)

for a varying amount of neurons (in the order ranked by the LARS). The

regularization enables here to have a more stable MSE along the increase of the

number of neurons.

Y. Miche et al. / Neurocomputing 74 (2011) 2413–24212418
In practice, from our experiments, while the GCV is supposably
superior, it leads to identical solutions with an increased compu-
tational time, compared to the original PRESS and the Tikhonov-
regularized version of PRESS presented below.

Algorithm 2 gives the computational steps used, in matrix
form, to determine the MSETR�PRESS

ðlÞ from

MSETR�PRESS
ðlÞ ¼

1

n

Xn

i ¼ 1

yi�xiðX
T XþlIÞ�1xT y

1�xiðX
T XþlIÞ�1xT

i

 !2

, ð19Þ

which is the regularized version of Eq. (18). The notation A3B

denotes element-wise product between matrices A and B (Schur
product). It is used in step 4 of Algorithm 2 for it is faster than
standard matrix product.

Algorithm 2. Tikhonov-regularized PRESS. In practice, the
REPEAT part of this algorithm (convergence for l) is solved by a
Nelder–Mead approach [25], a.k.a. downhill simplex.
1: Decompose X by SVD: X¼USVT ;

2: Compute the products (used later): A¼XV and B¼UT y;
3: repeat
4: Using the SVD of X, compute the C matrix by:

C¼A3

S11

S2
11
þl � � �

Snn

S2
nnþl

^ ^ ^
S11

S2
11
þl � � �

Snn

S2
nnþl

0
BBB@

1
CCCA;

5: Compute the P matrix by: P¼ CB;

6: Compute D by: D¼ 1�diagðCUT
Þ;

7: Evaluate e¼ y�P
D and the actual MSE by

MSETR�PRESS
¼ 1

n

Pn
i ¼ 1 e2

i ;

8: until convergence on l is achieved

9: Keep the best MSETR�PRESS and the l value associated.
1 A toolbox implementing the used TROP-ELM will be available at http://

www.cis.hut.fi/projects/eiml/research/downloads.
Globally, the algorithm uses the SVD of X to avoid computa-
tional issues, and introduces the Tikhonov regularization para-
meter in the calculation of the pseudo-inverse by the SVD. This
specific implementation happens to run very quickly, thanks to
the pre-calculation of utility matrices (A, B and C) before the
optimization of l.

In practice, the optimization of l in this algorithm is per-
formed by a Nelder–Mead [25] minimization approach, which
happens to converge very quickly on this problem (fminsearch
function in Matlab).

Through the use of this modified version of PRESS, the OP-ELM
has an L2 penalty on the regression weights (regression between
the hidden and output layer), for which the neurons have already
been ranked using an L1 penalty. Fig. 3 is a modified version of
Fig. 2 illustrating the TROP-ELM approach.

Fig. 4 illustrates the effect of the regularization factor intro-
duced in the TR-PRESS: the mean square error is more stable
regarding the increase of the number of neurons following the
ranking provided by LARS (L1 penalty). The introduction of the L2

penalty has a very visible regularization effect here (the situation
is similar for the other data sets), avoiding numerical instabilities,
for example.

The following section proposes a comparison of the modified
OP-ELM1 (denoted TROP-ELM for Tikhonov-regularized OP-ELM )
with the original OP-ELM on 11 different regression data sets
from the UCI machine learning repository [8], along with other
classical machine learning methods.
5. Experiments

In order to compare the proposed TROP-ELM with the original
OP-ELM and other typical machine learning algorithms, eleven
data sets from UCI machine learning repository [8] have been
used. They are chosen for their heterogeneity in terms of problem,
number of variables, and sizes.

Table 1 summarizes the details of each data set.
The data sets have all been processed in the same way: for

each data set, 10 different random permutations are taken with-
out replacement; for each permutation, two thirds are taken for
the training set, and the remaining third for the test set (see
Table 1). Training sets are then normalized (zero-mean and unit
variance) and test sets are also normalized using the very same
normalization factors than for the corresponding training set. The
results presented in the following are hence the average of the 10
repetitions for each data set. This also enables to obtain an
estimate of the standard deviation of the results presented (see
Table 2).

It should be noted that most of the results presented in
Tables 2 and 3 are from [24] and are reproduced here for
comparison purposes.

As mentioned in the original paper [24], experiments are
performed using the online available versions of the methodolo-
gies, unaltered. All experiments have been run on the same
x86_64 Linux machine with at least 4 GB of memory (no swapping

http://www.cis.hut.fi/projects/eiml/research/downloads
http://www.cis.hut.fi/projects/eiml/research/downloads


Table 1
Details of the data sets used and the proportions for training and testing sets for each (two thirds of the whole set for training and one third for testing), along with the

number of variables.

Abalone Ailerons Elevators Computer Auto P. CPU Servo Breast C. Bank Stocks Boston

# of Variables 8 5 6 12 15 6 4 32 8 9 13

Training 2784 4752 6344 5461 106 139 111 129 2999 633 337

Test 1393 2377 3173 2731 53 70 56 65 1500 317 169

Table 2
Mean Square Error results in boldface (standard deviations in regular) for all six methodologies for regression data sets. ‘‘Auto P.’’ stands for Auto Price and ‘‘Breast C.’’ for

Breast Cancer data sets. Results for all algorithms but TROP-ELM are originally in [24] and are reproduced for comparison purposes.

Abalone Ailerons Elevators Computer Auto P. CPU Servo Breast C. Bank Stocks Boston

SVM 4.5 1.3e�7 6.2e�6 1.2eþ2 2.8eþ7 6.5eþ3 6.9e�1 1.2eþ3 2.7e�2 5.1e�1 3.4eþ1
2.7e�1 2.6e�8 6.8e�7 8.1eþ1 8.4eþ7 5.1eþ3 3.3e�1 7.2e�1 8.0e�4 9.0e�2 3.1eþ1

MLP 4.6 2.7e�7 2.6e�6 9.8 2.2eþ7 1.4eþ4 2.2e�1 1.5eþ3 9.1e�4 8.8e�1 2.2eþ1
5.8e�1 4.4e�9 9.0e�8 1.1 9.8eþ6 1.8eþ4 8.1e�2 4.4eþ2 4.2e�5 2.1e�1 8.8

GP 4.5 2.7e�8 2.0e�6 7.7 2.0eþ7 6.7eþ3 4.8e�1 1.3eþ3 8.7e�4 4.4e�1 1.1eþ1
2.4e�1 1.9e�9 5.0e�8 2.9e�1 1.0eþ7 6.6eþ3 3.5e�1 1.9eþ2 5.1e�5 5.0e�2 3.5

ELM 8.3 3.3e�8 2.2e�6 4.9eþ2 7.9eþ9 4.7eþ4 7.1 7.7eþ3 6.7e�3 3.4eþ1 1.2eþ2
7.5e�1 2.5e�9 7.0e�8 6.2eþ1 7.2eþ9 2.5eþ4 5.5 2.0eþ3 7.0e�4 9.35 2.1eþ1

OP-ELM 4.9 2.8e�7 2.0e�6 3.1eþ1 9.5eþ7 5.3eþ3 8.0e�1 1.4eþ3 1.1e�3 9.8e�1 1.9eþ1
6.6e�1 1.5e�9 5.4e�8 7.4 4.0eþ6 5.2eþ3 3.3e�1 3.6eþ2 1.0e�6 1.1e�1 2.9

TROP-ELM 4.8 2.7e�8 2.0e�6 2.4eþ1 7.0eþ6 4.1eþ3 6.1e�1 1.1eþ3 1.1e�3 8.4e�1 1.9eþ1
4.2e�1 1.5e�9 5.2e�8 6.2 2.2eþ6 2.9eþ3 2.2e�1 1.7eþ2 3.4e�5 5.8e�2 4.4

Table 3
Computational times (in seconds) for all five methodologies on the regression data sets. ‘‘Auto P.’’ stands for Auto Price and ‘‘Breast C.’’ for Breast Cancer data sets. Timings

for all algorithms but TROP-ELM are originally in [24] and are reproduced for comparison purposes.

Abalone Ailerons Elevators Computer Auto P. CPU Servo Breast C. Bank Stocks Boston

SVM 6.6eþ4 4.2eþ2 5.8eþ2 3.2eþ5 2.6eþ2 3.2eþ2 1.3eþ2 3.2eþ2 1.6eþ3 2.3eþ3 8.5eþ2

MLP 2.1eþ3 3.5eþ3 3.5eþ3 8.2eþ3 7.3eþ2 5.8eþ2 5.2eþ2 8.0eþ2 2.7eþ3 1.2eþ3 8.2eþ2

GP 9.5eþ2 2.9eþ3 6.5eþ3 6.3eþ3 2.9 3.2 2.2 8.8 1.7eþ3 4.1eþ1 8.5

ELM 4.0e�1 9.0e�1 1.6 1.2 3.8e�2 4.2e�2 3.9e�2 4.8e�2 4.7e�1 1.1e�1 7.4e�2

OP-ELM 5.7 16.8 29.8 26.2 2.7e�1 2.0e�1 2.1e�1 4.2e�1 8.03 1.54 7.0e�1

TROP-ELM 12.2 14.6 44.3 13.9 4.8e�1 1.2 8.4e�1 7.8e�1 4.4 1.1 1.5

Y. Miche et al. / Neurocomputing 74 (2011) 2413–2421 2419
for any of the experiments) and 2þ GHz processor. Also, even
though some methodologies implementations are taking advan-
tage of parallelization, computational times are reported consider-
ing single-threaded execution on one single core, for the sake of
comparisons.

The SVM is performed using the SVM toolbox [4]; MLP [3] is
using a neural network toolbox, part of the Matlab software from
the MathWorks, Inc; the GPML toolbox for Matlab from Rasmus-
sen and Williams [28] is used for the GP; finally, the OP-ELM was
used with all possible kernels, linear, sigmoid, and Gaussian,
using a maximum number of 100 neurons and similarly for the
TROP-ELM. For more details on the parameters used for each
toolbox, please refer to [24].

First are reported the mean square errors (and standard devia-
tions) for the six algorithms tested. It can be seen that the proposed
TROP-ELM is always at least as good as the original OP-ELM, with an
improvement on the standard deviation of the results, over the 10
repetitions for each data set (only for the Boston housing case is the
standard deviation larger for the TROP-ELM than the OP-ELM): over
the 11 data sets, the TROP-ELM performs on average 27% better than
the original OP-ELM and gives a standard deviation of the results 52%
lower than that of the OP-ELM (also on average over the 11 data sets).

Also, the TROP-ELM is clearly as good (or better) as the GP in six
out of the 11 data sets – Ailerons, Elevators, Auto Price, Breast Cancer,
Bank and Boston – in which cases it has a similar (or lower) standard
deviation of the results. This with a computational time usually two
or three orders of magnitude lower than the GP.

Table 3 gives the computational times for each algorithm and
each data set (average of the 10 repetitions).

It can be seen that the TROP-ELM keeps computational times of
the same order as that of the OP-ELM (although higher on average),
and remains several orders of magnitudes faster than the GP, MLP or
SVM. Of course, as for the OP-ELM, the computational times remain
one to two orders of magnitude above the original ELM.

Finally, in Table 4 are reported the average number of neurons
(average over the 10 repetitions for each data set) selected for the
final model structure of the OP-ELM and TROP-ELM. It can be seen
that only in the cases of computer activity and stocks data sets are all
the neurons selected for the final model (which suggests that a larger
number of neurons given initially to the model might lead to better



Table 4
Average (over the ten repetitions) of the number of neurons selected for the final model (out of 100 initially in the model) for both OP-ELM and TROP-ELM.

Abalone Ailerons Elevators Computer Auto P. CPU Servo Breast C. Bank Stocks Boston

OP-ELM 36 75 74 100 14 33 36 12 98 100 66

TROP-ELM 42 80 53 100 15 28 42 14 93 100 59

Y. Miche et al. / Neurocomputing 74 (2011) 2413–24212420
resultsy). Otherwise, the selected amount varies largely over the
data sets and slightly between the OP-ELM and TROP-ELM.

The effect of the L1 penalty is here obvious, on the number of
neurons retained in the final model structure (compared to the
ELM or regularized ELM, for example, which are less parsimo-
nious), while the L2 penalty introduced enables to regularize the
weights chosen and improve the performances of the final model
(compared to the OP-ELM, that is).
6. Conclusions and future work

In this paper is proposed a modification of the original
optimally pruned extreme learning machine (OP-ELM), by the
use of a L2 penalty in the PRESS leave-one-out estimation and a
fast matrix computation strategy.

The OP-ELM was proposed in the first place as a wrapper
around ELM to improve its robustness by adding a neuron
pruning strategy based on LARS (L1 penalty) and leave-one-out
(LOO). Here the LOO criterion is modified to add a L2 penalty
(Tikhonov regularization) to the estimate, in order to regularize
the matrix computations and hence make the MSE computation
more reliable. The modified OP-ELM (TROP-ELM), therefore, uses
‘‘in cascade’’ L1 and L2 penalties, avoiding the large computational
times problems commonly encountered when attempting to
intertwine the two penalties (as in the elastic net or the compo-
site absolute penalty approaches).

The TROP-ELM shows better performance than the original
OP-ELM, with an average of 27% better MSE for the considered
data sets (and improvements between 0% and 96% over the data
sets used). Also notable is the decrease of the standard deviation
of the results over the multiple repetitions for each data set,
illustrating that the regularization introduced has a visible effect.
In the end, the TROP-ELM performs rather similarly to the
Gaussian processes on more than half the data sets tested, for a
computational time which remains two to three orders of
magnitude below—and less than an order of magnitude slower
than the OP-ELM, in the worst case among the data sets used.

Future work on the TROP-ELM includes a generalization to
multi-output regression and classification (binary and multi-
class), by the use of the MRSR implementation of LARS which
makes it possible.
References

[1] M.A. David, The relationship between variable selection and data augmenta-
tion and a method for prediction, Technometrics 16 (1) (1974) 125–127.

[2] J. Berger, Minimax estimation of a multivariate normal mean under arbitrary
quadratic loss, Journal of Multivariate Analysis 6 (2) (1976) 256–264.

[3] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, USA, 1996.

[4] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software
available at /http://www.csie.ntu.edu.tw/� cjlin/libsvmS, 2001.

[5] W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE
Symposium on Computational Intelligence and Data Mining, CIDM ’09, March
30th–April 2nd 2009, pp. 389–395.

[6] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, Least angle regression, Annals of
Statistics 32 (2004) 407–499.
[7] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning
machine with growth of hidden nodes and incremental learning, IEEE
Transactions on Neural Networks 20 (8) (2009) 1352–1357.

[8] A. Frank, A. Asuncion, UCI machine learning repository, /http://archive.ics.
uci.edu/mlS, 2010.

[9] G.H. Golub, M. Heath, G. Wahba, Generalized cross-validation as a method for
choosing a good ridge parameter, Technometrics 21 (2) (1979) 215–223.

[10] EIML Group. The op-elm toolbox, Available online at /http://www.cis.hut.fi/
projects/eiml/research/downloads/op-elm-toolboxS, 2009.

[11] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, second ed., Springer, 2009.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, second ed.,
Prentice Hall, 1998 ISBN 0132733501.

[13] A.E. Hoerl, Application of ridge analysis to regression problems, Chemical
Engineering Progress 58 (1962) 54–59.

[14] G.-B. Huang, L. Chen, Convex incremental extreme learning machine, Neu-
rocomputing 70 (16–18) (2007) 3056–3062 ISSN 0925-2312.

[15] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme
learning machine, Neurocomputing 71 (16–18) (2008) 3460–3468 ISSN
0925-2312.

[16] G.-B. Huang, C.-K. Siew, Extreme learning machine with randomly assigned rbf
kernels, International Journal of Information Technology 11 (1) (2005) 16–24.

[17] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental
constructive feedforward networks with, IEEE Transactions on Neural Net-
works 17 (2005) 879–892.

[18] G.-B. Huang, Q.-Y. Zhu, K.Z. Mao, C.-K. Siew, P. Saratchandran,
N. Sundararajan, Can threshold networks be trained directly? IEEE Transac-
tions on Circuits and Systems II: Express Briefs 53 (3) (2006) 187–191 ISSN
1549-7747.

[19] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1–3) (2006) 489–501.

[20] Y. Lan, Y.C. Soh, G.-B. Huang, Constructive hidden nodes selection of extreme
learning machine for regression, Neurocomputing 73 (16-18) (2010)
3191–3199.

[21] M.-B. Li, G.-B. Huang, P. Saratchandran, N. Sundararajan, Fully complex extreme
learning machine, Neurocomputing 68 (2005) 306–314 ISSN 0925-2312.

[22] Y. Miche, P. Bas, C. Jutten, O. Simula, A. Lendasse, A methodology for building
regression models using extreme learning machine: OP-ELM, in: M. Verleysen
(Ed.), ESANN 2008, European Symposium on Artificial Neural Networks, Bruges,
Belgium, d-side publ, (Evere, Belgium), 23–25 April 2008, pp. 247–252.

[23] Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a
toolbox, in: R. Neruda, V. Kurková, J. Koutnı́k (Eds.), LNCS-Artificial Neural
Networks—ICANN 2008—Part I, Lecture Notes in Computer Science, vol.
5163, Springer Berlin / Heidelberg, September 2008, pp.145–154.

[24] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM:
optimally pruned extreme learning machine, IEEE Transactions on Neural
Networks 21 (1) (2010) 158–162.

[25] J.A. Nelder, R. Mead, A simplex method for function minimization, The
Computer Journal 7 (4) (1965) 308–313.

[26] A.B. Owen, A robust hybrid of lasso and ridge regression, Technical Report,
Stanford University, 2006.

[27] C. Radhakrishna Rao, S.K. Mitra, Generalized Inverse of Matrices and Its
Applications, John Wiley & Sons Inc, 1971.

[28] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning,
The MIT Press, 2006.

[29] T. Similä, J. Tikka, Multiresponse sparse regression with application to
multidimensional scaling, in: International Conference on Artificial Neural
Networks (ICANN), Lecture Notes in Computer Science, vol. 3697, Warsaw,
Poland, 11–15 September 2005, pp. 97–102.

[30] R.A. Thisted, Ridge regression, minimax estimation, and empirical bayes
methods, Technical Report 28, Division of Biostatistics, Stanford University,
1976.

[31] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the
Royal Statistical Society, Series B 58 (1994) 267–288.

[32] A.N. Tychonoff, Solution of incorrectly formulated problems and the regular-
ization method, Soviet Mathematics 4 (1963) 1035–1038.

[33] L. Yuan, S. Yeng Chai, G.-B. Huang, Random search enhancement of error
minimized extreme learning machine, in: M. Verleysen (Ed.), European
Symposium on Artificial Neural Networks (ESANN) 2010, d-side Publications,
Bruges, Belgium, April 28–30th 2010, pp. 327–332.

[34] P. Zhao, G.V. Rocha, B. Yu, Grouped and hierarchical model selection through
composite absolute penalties, Annals of Statistics 37 (6A) (2009) 3468–3497.

[35] H. Zou, T. Hastie, Regularization and variable selection via the elastic net,
Journal of the Royal Statistical Society Series B 67 (2) (2005) 301–320.

http://www.csie.ntu.edu.tw/<mml:math altimg=
http://www.csie.ntu.edu.tw/<mml:math altimg=
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.cis.hut.fi/projects/eiml/research/downloads/op-elm-toolbox
http://www.cis.hut.fi/projects/eiml/research/downloads/op-elm-toolbox


Y. Miche et al. / Neurocomputing 74 (2011) 2413–2421 2421
Yoan Miche was born in 1983 in France. He received
an Engineer’s Degree from Institut National Polytech-
nique de Grenoble (INPG, France), and more specifi-
cally from TELECOM, INPG, on September 2006. He
also graduated with a Master’s Degree in Signal, Image
and Telecom from ENSERG, INPG, at the same time. He
recently received his Ph.D. degree in Computer Science
and Signal and Image Processing from both the Aalto
University School of Science and Technology (Finland)
and the INPG (France). His main research interests are
steganography/steganalysis and machine learning for
classification/regression.
Mark van Heeswijk has been working as an exchange
student in both the EIML (Environmental and Indus-
trial Machine Learning, previously TSPCi) Group and
Computational Cognitive Systems Group on his Mas-
ter’s Thesis on ‘‘Adaptive Ensemble Models of Extreme
Learning Machines for Time Series Prediction’’, which
he completed in August 2009. Since September 2009,
he started as a Ph.D. student in the EIML Group, ICS
Department, Aalto University School of Science and
Technology. His main research interest is in the field of
high-performance computing and machine learning. In
particular, how techniques and hardware from high-

performance computing can be applied to meet the

challenges one has to deal with in machine learning. He is also interested in
biologically inspired computing, i.e. what can be learned from biology for use in
machine learning algorithms and in turn what can be learned from simulations
about biology. Some of his other related interests include: self-organization,
complexity, emergence, evolution, bioinformatic processes, and multi-agent
systems.
Patrick Bas received the Electrical Engineering degree
from the Institut National Polytechnique de Grenoble,
France, in 1997 and the Ph.D. degree in Signal and
Image processing from Institut National Polytechnique
de Grenoble, France, in 2000. From 1997 to 2000, he
was a member of the Laboratoire des Images et des
Signaux de Grenoble (LIS), France where he worked on
still image watermarking. During his post-doctoral
activities, he was a Member of the Communications
and Remote Sensing Laboratory of the Faculty of
Engineering at the Université Catholique de Louvain,
Belgium. His research interests include synchronisa-

tion and security evaluation in watermarking, and
steganalysis.
Olli Simula received the Doctor of Science (Tech.)
degree in computer science and engineering from
Helsinki University of Technology (TKK), Finland, in
1979. Dr. Simula is Professor of Computer Science and
Engineering at the Department of Information and
Computer Science at Aalto School of Science and
Technology (formerly TKK). He is also Dean of the
Faculty of Information and Natural Sciences at Aalto.
During the academic year 1977–78 Dr. Simula was a
research fellow at Delft University of Technology,
Delft, The Netherlands.
Amaury Lendasse was born in 1972 in Belgium. He
received the M.S. degree in Mechanical Engineering
from the Universite Catholique de Louvain (Belgium)
in 1996, M.S. in control in 1997 and Ph.D. in 2003 from
the same university. In 2003, he has been a post-
doctoral researcher in the Computational Neurody-
namics Lab at the University of Memphis. Since 2004,
he is a chief research scientist and a docent in the
Adaptive Informatics Research Centre in the Aalto
University School of Science and Technology (pre-
viously Helsinki University of Technology) in Finland.
He has created and is leading the Environmental and

Industrial Machine Learning (previously Time Series

Prediction and Chemoinformatics) Group. He is chairman of the annual ESTSP
conference (European Symposium on Time Series Prediction) and member of the
editorial board and program committee of several journals and conferences on
machine learning. He is the author or the coauthor of around 140 scientific papers
in international journals, books or communications to conferences with reviewing
committee. His research includes time series prediction, chemometrics, variable
selection, noise variance estimation, determination of missing values in temporal
databases, nonlinear approximation in financial problems, functional neural net-
works and classification.


	TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization
	Introduction
	The optimally pruned extreme learning machine
	The extreme learning machine
	The OP-ELM

	The problem of regularization
	General case
	The L1 penalty: LASSO
	The L2 penalty: Tikhonov regularization
	Hybrid penalties
	The elastic net
	Composite absolute penalty (CAP)
	Owen’s hybrid


	Regularized ELM
	L1 and L2 regularized OP-ELM
	Allen’s PRESS
	Tikhonov-regularized PRESS (TR-PRESS)


	Experiments
	Conclusions and future work
	References




