
Methodology for Behavioral-based Malware Analysis and Detection
using Random Projections and K-Nearest Neighbors Classifiers

Jozsef Hegedus, Yoan Miche, Alexander Ilin and Amaury Lendasse
Department of Information and Computer Science,

Aalto University School of Science,
FI-00076 Aalto, Finland

Email: firstname.lastname@aalto.fi

Abstract—In this paper, a two-stage methodology
to analyze and detect behavioral-based malware is
presented. In the first stage, a random projection is
decreasing the variable dimensionality of the problem
and is simultaneously reducing the computational
time of the classification task by several orders of
magnitude. In the second stage, a modified K-Nearest
Neighbors classifier is used with VirusTotal labeling
of the file samples. This methodology is applied to
a large number of file samples provided by F-Secure
Corporation, for which a dynamic feature has been
extracted during DeepGuard sandbox execution. As
a result, the files classified as false negatives are used
to detect possible malware that were not detected in
the first place by VirusTotal. The reduced number of
selected false negatives allows the manual inspection
by a human expert.

Keywords-malware detection; machine learning;
random projections; k nearest neighbors;

I. Introduction

Malware detection has been the subject of a large
number of studies (see [1], [2], [3] and [4], [5], [6], [7],
[8]), for example the work of Bailey [9] using signature-
based malware detection approach has shown that recent
malware types require additional information in order to
obtain a good detection.

In this paper, an approach based on the extraction of
dynamic features during sandbox execution is used, as
suggested in [7]. In order to measure similarities between
executable files, the Jaccard Index is used to measure the
similarities between hash values (encoding the dynamic
feature values obtained from the sandbox). The hash
values are transformed into a large number of binary
values which could be used to compute the Jaccard Index
(see [10] for original work in French or [11] in English).
Unfortunately, the dimensionality of such variable space
does not allow the use of traditional classifiers in a
reasonable computational time.

A two-stage methodology is proposed to circumvent
this dimensionality problem. In the first stage, a random
projection is decreasing the variable dimensionality of
the problem and is simultaneously reducing the com-
putational time by several orders of magnitude. In the

second stage, a modified K-Nearest Neighbors classifier
is used with VirusTotal [12] labeling of the file samples.
This two-stage methodology is presented in section III.

The practical implementation of the methodology and
the results are discussed in section IV. The different
parameters (the random projection dimension and the
number of nearest neighbors) are also analysed in this
section.

As a global result, the methodology enables to identify
the false negatives from the classification. Such samples
can then be used to detect possible malware that were
not detected in the first place by the VirusTotal labeling.
Thanks to the methodology, the reduced number of
identified false negatives allows for a manual inspection
by a human expert.

Indeed, without this pruning of possibly malicious
samples by the presented methodology, a manual inspec-
tion will not be possible since reliable experts are scarce
and their availability is highly limited.

Using the proposed methodology and the know-how
of one F-Secure Corporation expert, it has been possible
to extract 24 malware candidates out of 2441 original
candidates from which 25% are surely malicious and
50% which are probably malicious, have to be further
investigated in order to obtain a decisive classification.

In section II, the data gathering and sample labeling
are described. Section III presents the two-stage method-
ology while section IV shows the practical implementa-
tion, the results and the analysis of the results.

II. Behavioral Data Gathering and Sample
labeling

The data set used in this paper is focused on behavior-
based malware analysis and detection. The former ap-
proach of signature-based malware detection cannot be
considered as sufficient anymore for reliable detection
[9], [7]. Be it because of the development of polymorphic
and metamorphic malware or the approach of flash
worms — who only do some reconnaissance on the
machines/network they scan for future deployment of
targeted attacks —, the need for execution level identi-
fication is important.

A. Sandboxing and Extracting Behavioral Features
In this spirit, a currently popular approach [7], [6] is

to sandbox the execution of the malware and analyze
behavioral data extracted during the execution.

It has recently been demonstrated in [8] that the use of
public sandbox submission systems might reveal network
information regarding the sandbox machine identity.
Through submission of a decoy sample by an attacker,
it becomes possible to blacklist the hosts on which are
sandboxed the samples and have the malware circumvent
the sandbox execution and forth detection.

The Norman sandbox development kit [13] released in
2009 enables security companies to gather the behavioral
data obtained during sandboxed execution and analyze
that data with a custom engine. This avoids the pitfall
of a publicly available sandbox machine mentioned.

The results in this paper were obtained on the data of
32683 samples collected by F-Secure Corporation. The
samples data were produced by F-Secure by running the
samples through their sandbox engine [14], [15], [16],
which resulted in large numbers of feature-value pairs
extracted for each sample. Individual features may have
significant number of distinct values, and the values
come in the form of hashes. The data cannot be con-
sidered complete, as the sandbox, for instance, may not
be able to run some of the samples correctly or may miss
relevant execution paths.

The samples were labeled using an online sample
analysis tool explained in the next section.

B. Obtaining the Sample labeling
The VirusTotal [12] online analysis tool provides a

simple interface for sample submission, returning a list
of up to 43 (depending on the sample nature: executable,
archive. . .) mainstream anti-virus software detection re-
sults. Among the most widely used and known are F-
Prot, F-Secure, ClamAV, Antivir, AVG, BitDefender,
eSafe, Avast, McAffee, NOD32, Norman, Panda, Syman-
tec, TrendMicro, VirusBuster. . . See the VirusTotal web
site for the full list of used engines [12].

The result of the submission of a sample file is the
number of engines which detected the sample as mal-
ware. Figure 1 is a histogram of the detection levels
for the set of 32683 samples used in this paper. As can
be seen, a large proportion of the set is detected by at
least one engine as malware. Less than 2500 samples are
actually not detected by any engine.

In order to make the problem a binary classification
one (i.e. identifying whether a sample should be consid-
ered “malware” or “clean”), an a priori and arbitrary
threshold has been set on the amount of engines de-
tecting a sample as malware. It is considered that for
a sample i, if the amount mi of engines identifying the
sample as malware is such that 0 < mi < 11, then

-5 0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Number of engines detecting malware

N
um

be
r o

f s
am

pl
es

Figure 1. Histogram made using 32683 executable samples and
querying from www.virustotal.com how many anti-virus engines
raise a flag for each sample. Thus for each sample k a number mk

is obtained. For a given value x, on the x-axis, the y-axis shows for
how many samples k it is true that mk = x.

the sample is discarded. The disadvantage is that these
samples are not considered in the whole methodology
and therefore not classified. Nevertheless, they have also
no influence on the rest of the data set and the final
classification results.

This is equivalent to setting a certainty threshold on
the sample analysis, above which it can be considered
as indeed malware (and no more a set of false positives
from mi different engines). Therefore, samples with a
number mi of detecting engines strictly above 10 are
kept and considered as “malware” (with a relatively high
probability), and samples with 0 detecting engines are
kept and considered as “unpredictable” (and possibly
“clean”).

Figure 2 illustrates the pruned set of samples, with
only samples for which mi = 0 or mi > 10 are kept,
which amounts to 21053 (out of the original set of
32683): 18612 considered as “malware”, and 2441 as
“possibly clean”.

It is clear that flagging the 2441 samples for which
mi = 0 as “possibly clean” is likely to hide a certain
amount of false negatives (VirusTotal clearly states that
mi = 0 should in no way be considered as meaning
“clean”). The “meta” goal of this paper is to actually
identify such samples which are potential false negatives,
using a methodology based on the Jaccard similarity
[11], [10] measure and K-Nearest Neighbors classifiers.

III. Methodology

The overall process can be summarized by Figure 3,
with the dynamic feature extraction described in the

-5 0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Number of engines detecting malware

N
um

be
r o

f s
am

pl
es

Figure 2. The mk distribution for the samples used for this
histogram is identical to Figure 1 with the important difference
that samples such that 0 < mi < 11 are discarded. Here 2441
samples are depicted that can be considered as “clean” (mi = 0),
and 18612 samples that can be considered as malicious (mi > 10).

Sample

Dynamic
Behavioral

Feature

Sandbox

Random
ProjectionKNN

Malware

“Clean”

Figure 3. Global schematic of the methodology: a sample is
run through the sandbox to obtain a set of dynamic features; the
random projection approach then reduces the dimensionality of
the problem while retaining most of the information conveyed by
the original feature; finally, a K-Nearest Neighbors classifier in the
random projection space gives prediction on the studied sample
being malware or not.

previous section, followed by the actual methodology
to identify potential false negatives, using a Random
Projection approach and K-Nearest Neighbors classifiers
(described in detail in sections III-C and III-B).

A. Measuring Similarity between Executables

In this section, an approach for measuring similarities
between executables is detailed. Let Ai denote the set of
hash values (produced by the sandbox) for file i.

Then, the JJaccard Jaccard similarity between two

executables i, i′ is calculated as

J i,i′

Jaccard =

∣∣∣Ai ∩Ai′
∣∣∣

|Ai ∪Ai′ |
. (1)

Similarly, the Jcosine cosine similarity is given by

J i,i′

cosine =

∣∣∣Ai ∩Ai′
∣∣∣√

|Ai| |Ai′ |
. (2)

Note that the Jcosine cosine similarity is expressed as a
scalar product.

Denote by

A =
N⋃

i=1
Ai = {a1, a2, ..., aD}, (3)

where N is the total number of samples and D is the
total number of unique hashes seen in all samples.

Then from an ordering of set A, N binary (0,1 valued)
vectors Bi can be constructed, each of K dimensions
such that ∣∣∣Ai ∩Ai′

∣∣∣ = 〈Bi,Bi′
〉, (4)

and
∣∣Ai
∣∣ =

∥∥Bi
∥∥2. Here ‖·‖ denotes vector norm and

〈·, ·〉 denotes scalar product. Since Bi is a binary vector
(with coordinates 0, 1 only),

∥∥Bi
∥∥2 is the number of the

coordinates in Bi that are equal to 1.
So, the normalized scalar product of Bi and Bi′

gives
the cosine similarity:

J i,i′

cosine = 〈Bi,Bi′
〉∥∥Bi

∥∥ · ∥∥∥Bi′
∥∥∥ . (5)

Using the relationship between Euclidean distance

Deuclidean =
∥∥∥Bi −Bi′

∥∥∥ (6)

and cosine similarity in the case of
∥∥Bi

∥∥ = 1 and∥∥∥Bi′
∥∥∥ = 1, it appears that

Jcosine = 2−D2
euclidean

2 . (7)

From Equation 7 it appears that a classification or
clustering based either on the cosine similarity or on the
Euclidean distance will yield the same result if the norm
of the feature vectors is unity.

B. K-Nearest Neighbor Classification
In this section, a standard method (K-NN, see for ex-

ample [17], [18], [19], [20]) is described; it can be used to
predict whether an unknown executable is malicious or
benign. The essential assumption of the method is that
malicious (resp. clean) executables are surrounded by

malicious (resp. clean) executables in the D dimensional
Euclidean space spanned by the normalized vectors

Bi∥∥Bi
∥∥ , (8)

with Bi the binary vectors defined in the previous sec-
tion. This means that the more hashes two samples have
in common the closer they are in this space (assuming
that the number of hashes in the two samples does not
change).

Let us denote the set of k nearest neighbors of sample
i by N i

k. The classification is based on the data provided
by VirusTotal, that is how many anti-virus engines have
considered a given executable as malicious. Let us denote
this number by mi for sample i. In the results section
is examined how well the mi of the neighboring samples
N i

k can actually predict if the sample i in question is
malicious or clean.

It is important to mention that to predict if a sample
i is malicious or not, only neighboring samples are used
and not the sample itself. This corresponds to a Leave-
One-Out [21], [22], [23], [24] (LOO) classification rate
when it comes to assessing the accuracy of the K-NN
classifier in the Results section. In [21], [22], it is shown
that the Leave-One-Out estimates well the generaliza-
tion performances of a classifier if the number of samples
is large enough, which is the case in the experiments.

As the dimensionality of Bi is too large, random pro-
jections are used in order to reduce this dimensionality
and therefore reduce the needed computational time
and memory by several orders of magnitude. Random
projections are explained in the following section.

C. Random Projections
As mentioned earlier the cosine similarity is calculated

as
J i,i′

cosine = 〈Bi,Bi′
〉∥∥Bi

∥∥ · ∥∥∥Bi′
∥∥∥ . (9)

However, for practical purposes storing the vector Bi is
inconvenient as it requires too much memory (even if
stored as a sparse vector). The reason for this is that D,
the dimensionality of Bi is in the range of a few millions.
In order to alleviate this memory (and the related time)
complexity, random projections are used. For the matter
of projecting to a lower dimensional space, Johnson and
Lindenstrauss [25] have shown that for a set of N points
in d-dimensional space (using an Euclidean norm), there
exists a linear transformation of the data toward a
df -dimensional space, with df ≥ O(ε−2 log(N)) which
preserves the distances (and hopefully the “topology” of
the data) to a 1± ε factor. Achlioptas [26] has recently
extended this result and proposed a simpler projection
matrix that preserves the distances to the same factor

than the Johnson-Lindenstrauss theorem mentions, at
the expense of a probability on the distance conser-
vation. For theory and other applications of random
projections in machine learning and classification, see for
example [27], [28], [29], [30], [31].

To describe the random projection approach, let m ∈
Ai, and

Xi
m = [Xi

m,1, X
i
m,2, . . . , X

i
m,d],Xi

m ∼ N (0, I) (10)

such that Xi
m ⊥⊥ Xi′

m′ if m 6= m′, however, if m = m′

then Xi
m = Xi′

m′ . N (0, I) represents a d-dimensional
standard normal distribution for which the covariance
matrix is the identity matrix, I.
Then, for each file i the corresponding random pro-

jection is the d-dimensional random vector Yi defined
as

Yi = 1√
d

1√
|Ai|

∑
m∈Ai

Xi
m. (11)

The scalar product of the random vectors gives the
similarity J , which is a scalar valued random variable.
Using

J i,i′
= 〈Yi,Yi′

〉 (12)

and the definition of Yi, one can see that Pr(J i,i = 1) =
1. Also if file i and i′ do not have any hashes in common,
i.e. Ai ∩Ai′ 6= ∅, then E(J i,i′) = 0.

As an illustrative example, let us calculate the ex-
pected similarity, E(J i,i′) by assuming that

∣∣Ai
∣∣ =∣∣∣Ai′

∣∣∣ = l and
∣∣∣Ai ∩Ai′

∣∣∣ = k. Note that the Jaccard
distance between i and i′ in this case is k/l. Also, due
to independence

E(〈Xi
m,X

i′

m′〉) = 0⇐⇒ m 6= m′. (13)

On the other hand, the following scalar product (in
case of matching hashes, m = m′) has the chi-square
distribution:

〈Xi
m,X

i′

m〉 ∼ χ2(d) (14)

where χ2(d) denotes the chi-square distribution with d-
degree of freedom, whose expectation value is d. Since
only the 〈Xi

m,X
i′

m〉 terms contribute to E(J i,i′) it can
be deduced that

E(J i,i′
) = k

l
(15)

which agrees with the Jaccard and cosine similarity in
this case. Note that in general if

∣∣Ai
∣∣ 6= ∣∣∣Ai′

∣∣∣ then
E(J i,i′) 6= JJaccard but still E(J i,i′) = Jcosine. There-
fore, the Jaccard index is approximated using the cosine
similarity approach defined previously.

-5 0 5 10 15 20 25 30 35 40 45
0

200
400
600
800

1000
1200
1400
1600
1800
2000

Mean of the number of detecting engines of the 10 nearest neighbors

N
um

be
r o

f s
am

pl
es

number of detecting engines = 0
number of detecting engines >10

Figure 4. Illustration of the prediction accuracy of the K-NN
method: Histogram of the number of detecting engines for k = 10
nearest neighbors.

IV. Results
In this section, Euclidean distance is used in the d-

dimensional space spanned by the random projected
representations Yi of the samples. As noted earlier, the
use of Euclidean distance instead of cosine similarity
does not change the results presented in this section as
Pr(J i,i = 1) = 1. The Yi are normalized to unity.

A. Accuracy of K-NN Classifier
An illustration of the prediction accuracy of the K-

NN method (see section III-B) is shown in Figure 4, and
described in detail in the following.

Let N i
10 be the set of 10 nearest samples to sample i,

then the prediction of the K-NN method for mi is the
mean m̂i of values {mi′ : i′ ∈ N i

10} expressed as

m̂i =
∣∣N i

10
∣∣−1

∑
i′∈Ni

10

mi′ . (16)

For a given value x on the x-axis, the height of the bar on
y-axis shows for how many samples m̂i = x, i.e. y(x) =
|{i : m̂i = x}| is true.

The question is how well the number of detecting
engines mi given by VirusTotal compare with their
predicted values, m̂i. In order to answer that question,
the samples are divided into two categories: category 1
as ’supposedly clean’ (i.e. mi = 0) and category 2 as
’supposedly malicious’ (i.e. mi > 10). They are shown
in Figures 4 and 5. Assuming that m̂i = 0 means that
sample i is predicted to be clean and that m̂i > 10 that
sample i is predicted to be malicious, there would be
a considerable amount of false positives . The number
of false positives can be reduced by introducing a third
class into the K-NN classifier: ’unpredictable’. The next
section details the results obtained using this additional
third class and a modified K-NN.

B. Accuracy of Modified K-NN Classifier
Figure 5 shows the prediction accuracy of the modified

K-NN classifier. Now, the K-NN classifier has 3 classes:

-5 0 5 10 15 20 25 30 35 40 450

200

400

600

800

1000

1200

1400

Mean of the number of detecting engines of the 10 nearest neighbors

N
um

be
r o

f s
am

pl
es

number of detecting engines = 0
number of detecting engines >10

true negatives

false positives

true positives

false negatives

Figure 5. Prediction accuracy of the modified K-NN classifier.

’predicted to be clean’, ’predicted to be malicious’, ’un-
predictable’.

A sample i is classified as ’clean’ if m̂i = 0. It is
classified as ’malicious’ if mi′ > 10 : ∀i′ ∈ N i

10, i.e. if
all the 10 nearest neighbors N i

10 of i are ’supposedly
malicious’. A neighboring sample is considered ’suppos-
edly malicious’ if mi′ > 10, i.e. if it has been flagged
as malicious by more than 10 AV-engines. Furthermore,
a sample i is considered to be ’unpredictable’ if it does
not fulfill the requirement to be classified as ’clean’ or
’malicious’. In the production of the histogram depicted
in Figure 5, samples that are ’unpredictable’ are omitted.
In Figure 5, the concepts of false negative, false positive,
true positive and true negative are illustrated.

Introducing the ’unpredictable’ class considerably im-
proves the prediction accuracy for the two other classes.
This improvement is due to the fact that the uncertainty
on the neighbors is used to separate the ’predictable’ and
’unpredictable’ samples. An unpredictable sample is a
sample i, such that not all of its neighbors are either
’supposedly’ malicious (i.e. mi′ > 10) or ’supposedly’
clean (i.e. mi′ = 0).

C. Influence of the Number of Nearest Neighbors in the
Modified K-NN Classifier on the Confusion Matrix

In Figure 5 are illustrated the notions of false posi-
tive, false negative, true positive and true negative. A
prediction for a sample i is considered to be a false
positive if mi′ > 10 : ∀i′ ∈ N i

k and mi = 0 are true
at the same time. This means that all the k-nearest-
neighbors N i

k of sample i are ’supposedly’ malicious
(mi′ > 10 : ∀i′ ∈ N i

k), however, sample i itself is
considered to be ’supposedly’ clean (mi = 0). Similarly,
true positive means that mi′ > 10 : ∀i′ ∈ N i

k and
mi > 10 are true for sample i. Furthermore, false
negatives are characterized by mi′ = 0 : ∀i′ ∈ N i

k and
mi > 10, while a true negative is a sample i for which
mi′ = 0 : ∀i′ ∈ N i

k and mi = 0 holds.
The entries of the confusion matrix (false positive,

false negative, true positive and true negative) are plot-
ted in Figure 6 as a function of the parameter k, the

256
1024
4096

16384

256
512

1024
2048

true negatives

1
4

16
64

256

false negatives

5756
7483
9728

12646
16440

true positives

0 10 20 30 40 50 60 70 80 90 100
16
64

256
1024

false positives

Number k of nearest neighbors

unpredictable

A
m

ou
nt

Figure 6. The entries of the confusion matrix (false positive, false
negative, true positive and true negative) are plotted in this figure
as a function of the parameter k, the number of nearest neighbors.
In addition, the number of ’unpredictable’ samples is represented.

number of nearest neighbors. Sample i is ’unpredictable’
if neither mi′ = 0 : ∀i′ ∈ N i

k nor mi′ > 10 : ∀i′ ∈ N i
k is

true. The number of ’unpredictable’ samples increases
monotonically with increasing k, this must be so as
increasing k by one introduces an additional condition
that has to be fulfilled in order for a sample to be
classified as ’predictable’ . In fact, if a sample is labeled
as ’unpredictable’ for k, it cannot become ’predictable’
for k + l, l > 0.
In Figure 6, one can note that the number of false

and true negatives stops decaying at k = 40. However,
at k = 40 the number of true and false positives are still
decaying at a rapid rate. The reason for this difference
might be that there are much less ’supposedly clean’
samples than ’supposedly malicious’ ones. Also, the
cluster size distribution might be different for these two
categories, which could manifest itself in these different
decay behaviors in Figure 6.

Figure 6 can be used to choose the parameter k that
fits the needs of the user of the modified K-NN method.
Furthermore, note the difference in the decay exponents
for true and false positive rates. If k is increased from 2 to
100 the number of true positives decreases from 17150 to
6204, while the number of false positives decreases from
531 to 17. The decrease in the true positives is 64% while
the decrease in false positives is 97%. So if one wants
to increase the true positive/false positive ratio then its
advisable to increase the number of neighbors, k. On the
other hand one should not forget that by increasing k one
also increases the number of ’unpredictable’ samples. In
order to limit this amount of ’unpredictable’ samples, the
number of nearest neighbors k to use has been chosen

as 11 for the final detection of the false negatives.

D. Influence of the Random Projection Dimension on
the Confusion Matrix

In the previous section, the dependency of the con-
fusion matrix with respect to the number of neighbors
is discussed and the dimension of the random projected
vectors is fixed to be d = 300. In this section, the effects
of varying d on the confusion matrix are investigated.
In order to have a very small number of false negatives
and to demonstrate the influence of d, the number of
neighbors k is chosen to be 30 in this section. Figure
7 shows the dependency of the confusion matrix on
the number of dimensions d of the projected vectors.
Clearly, increasing d improves the results: the number of
unpredictable samples decrease while the true positives
increase and the false positives decrease.

The true and false negatives do not change much with
increasing d. This might be related to the fact that at
k = 30 the decay of true and false negatives in Figure 6
has almost completely stopped. So, even though the low
value of d = 300 might mean that the distances in the
d = 300 dimensional Euclidean random projected space
are noisy compared to the D > 106 dimensional original
space. The samples that are true and false negatives are
insensitive to this noise.

Figure 7 indicates that convergence in all confusion
matrix elements can be reached by using d = 700. By
increasing d even more, no significant improvement is
observed.

The necessity to use the random projection method is
almost unavoidable: if one would like to use the original
space (with dimensionality D > 106) the complexity of
the problem (in terms of memory and computational
time) can become an issue as D has been as high as
5.108 in other related experiments. In this situation, if
one wishes to calculate distances between vectors in the
original space then all the data needs to be located in
the memory (since the original space is spanned by all
the hashes produced by the sandbox). Furthermore, here
a set of samples of cardinality of the order of 104 as
been considered. However, future experiments will be on
the scale of 106 samples, where using the original space
might become prohibitive.

The total computational time needed to run the
methodology on the 21053 samples is a few hours using
Python implementation of the random projections and
K-NN. In comparison, without the random projection
approach, the computational time would be estimated
to take few weeks, due to the dimensionality of Bi.

Finally, based on these results one might improve the
previously presented random projection method by using
different number of dimensions d for each pair of distance
calculated. One could treat larger distances with less

accuracy (lower d) while treating smaller distances with
better accuracy (higher d). This is a possible direction
for future research.

0.9

1.1

1.3 x 104

315

325

335

true negatives

2

2.5

3

false negatives

8000

10000
12000

true positives

0 100 200 300 400 500 600 700
40
60
80

100

d, dimension of the random projected vectors

false positives

unpredictable

A
m

ou
nt

Figure 7. Dependency of the elements of the confusion matrix with
respect to the number of dimensions d of the projected vectors.

E. Manual Analysis by a Human Expert and Further
Work

Using d = 100 projection dimension and a modified K-
NN with k = 11, 24 false negatives have been extracted
out of the 2441 ’possibly clean’ files. This reduced
number allows the manual analysis by a human expert.
According to an F-Secure Corporation expert, 25% of
these 24 files are surely malicious. 50% have a relatively
high probability to be also malicious. The remaining 25%
are considered as clean by the expert.

Even with such a reduced number of candidates,
a human analysis is taking time and has high costs
(especially if the 50% of “unsure” samples have to be
further investigated). This shows the usefulness of the
presented methodology since it would be impossible to
find enough highly qualified experts to analyze the initial
2441 “possibly clean” files.

The same methodology will be applied in the future
using different labeling than the one provided by Virus-
Total. Also, different dynamic features will be investi-
gated and eventually combined with some static features
(code signatures, packer information. . .), and possibly
other types of malware in the sample set.

V. Conclusion
In this paper, a robust two-stage methodology has

been introduced in order to both perform classification
of executable files and detect the files with the highest
probability of being false negatives (malware that are
labeled as possibly clean files). It has been shown that

the methodology is not only accurate but is also reducing
by several orders of magnitude the computational time.
This makes the proposed methodology a valid candidate
as a pre-processing tool to provide inputs to forensic
experts in order to detect malwares that have not yet
been detected by the AV engines used in VirusTotal.
Furthermore, this methodology can also be applied to
other labeling. Also, new and different dynamic features
will be investigated and combined with static features
(code signatures, packer information. . .) extracted from
the samples before sandbox execution. This will be the
natural continuation of the presented work.

Acknowledgments

The authors of this paper would like to acknowledge F-
Secure Corporation for providing the data and software
required to perform this research. Special thanks go to
Pekka Orponen (Head of the ICS Department, Aalto
University), Alexey Kirichenko (Research Collaboration
Manager F-Secure) and Daavid Hentunen (Researcher
F-Secure) for their valuable support and many useful
comments. This work was supported by TEKES as part
of the Future Internet Programme of TIVIT. Part of the
work of Amaury Lendasse and Alexander Ilin is funded
by the Adaptive Informatics Research Centre, Centre of
Excellence of the Finnish Academy.

References

[1] Y. Liu, L. Zhang, J. Liang, S. Qu, and Z. Ni, “Detecting
trojan horses based on system behavior using machine
learning method,” in Machine Learning and Cybernetics
(ICMLC), 2010 International Conference on, vol. 2, July
2010, pp. 855 –860.

[2] I. Firdausi, C. Lim, A. Erwin, and A. Nugroho, “Anal-
ysis of machine learning techniques used in behavior-
based malware detection,” in Advances in Computing,
Control and Telecommunication Technologies (ACT),
2010 Second International Conference on, December
2010, pp. 201 –203.

[3] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici,
“Improving malware detection by applying multi-
inducer ensemble,” Computational Statistics & Data
Analysis, vol. 53, no. 4, pp. 1483 – 1494, 2009.

[4] L. Sun, S. Versteeg, S. Boztaş, and T. Yann, “Pat-
tern recognition techniques for the classification of mal-
ware packers,” in Information Security and Privacy, ser.
Lecture Notes in Computer Science, R. Steinfeld and
P. Hawkes, Eds. Springer Berlin / Heidelberg, 2010,
vol. 6168, pp. 370–390.

[5] J. Kinable and O. Kostakis, “Malware classification
based on call graph clustering,” Journal in Computer
Virology, pp. 1–13, 2011.

[6] A. Srivastava and J. Giffin, “Automatic discovery of
parasitic malware,” in Recent Advances in Intrusion
Detection (RAID’10), ser. Lecture Notes in Computer
Science, S. Jha, R. Sommer, and C. Kreibich, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6307, pp. 97–
117.

[7] C. Willems, T.Holz, and F. Freiling, “Toward automated
dynamic malware analysis using cwsandbox,” IEEE Se-
curity and Privacy, vol. 5, pp. 32–39, March 2007.

[8] K. Yoshioka, Y. Hosobuchi, T. Orii, and T. Matsumoto,
“Vulnerability in public malware sandbox analysis sys-
tems,” in Proceedings of the 2010 10th IEEE/IPSJ In-
ternational Symposium on Applications and the Internet,
ser. SAINT ’10. Washington, DC, USA: IEEE Com-
puter Society, 2010, pp. 265–268.

[9] M.Bailey, J. Andersen, Z. Morleymao, and F. Jaha-
nian, “Automated classification and analysis of internet
malware,” in Recent Advances in Intrusion Detection
(RAID’07), 2007.

[10] P. Jaccard, “Etude comparative de la distribution florale
dans une portion des alpes et des jura,” Bulletin de la
Societe Vaudoise des Sciences Naturelles, vol. 37, pp.
547–579, 1901.

[11] P. Tan, M. Steinbach, and V. Kumar, Introduction to
Data Mining. Addison Wesley, 2005.

[12] Hispasec Systemas, “Virus total analysis tool,” 2011,
http://www.virustotal.com.

[13] Norman ASA, “Norman launches sandbox sdk,” April
2009, http://www.norman.com/about_norman/press_
center/news_archive/2009/67431/en.

[14] F-Secure Corporation, “F-secure deepguard – a proac-
tive response to the evolving threat scenario,” Novem-
ber 2006, http://www.rp-net.com/online/filelink/340/
20061106%20F-secure_deepguard_whitepaper.pdf.

[15] ——, “F-secure deepguard 2.0 - white paper,”
September 2008, http://www.f-secure.com/system/
fsgalleries/white-papers/f-secure_deepguard_2.0_
whitepaper.pdf.

[16] ——, “Information about system control and deep-
guard,” January 2011, http://www.f-secure.com/kb/
2034.

[17] D. Aha and D. Kibler, “Instance-based learning algo-
rithms,” in Machine Learning, 1991, pp. 37–66.

[18] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
“When is "nearest neighbor" meaningful?” in Int. Conf.
on Database Theory, 1999, pp. 217–235.

[19] C. Bishop, Neural Networks for Pattern Recognition,
1st ed. Oxford University Press, USA, Jan. 1996.

[20] P. Devijver and J. Kittler, Pattern recognition: A statis-
tical approach. Prentice Hall, 1982.

[21] B. Efron and R. Tibshirani, An Introduction to the
Bootstrap. New York: Chapman & Hall, 1993.

[22] ——, “Improvemenets on cross-validation: The .632+
bootstrap method,” Journal of the American Statistical
Association, vol. 92, no. 438, pp. 548–560, 1997.

[23] A. Lendasse, V. Wertz, and M. Verleysen, “Model selec-
tion with cross-validations and bootstraps - application
to time series prediction with rbfn models,” Lecture
Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 2714, pp. 573–580, 2003, cited By
(since 1996) 8.

[24] Q. Yu, Y. Miche, A. Sorjamaa, A. Guillén, A. Lendasse,
and E. Séverin, “OP-KNN: Method and applications,”
Advances in Artificial Neural Systems, vol. 2010, no.
597373, February 2010, 6 pages.

[25] W. B. Johnson and J. Lindenstrauss, “Extensions of
lipschitz mappings into a hilbert space,” in Conference
in Modern Analysis and Probability, New Haven, USA,
1982, pp. 189–206.

[26] D. Achlioptas, “Database-friendly random projections:
Johnson-lindenstrauss with binary coins,” J. Comput.
Syst. Sci., vol. 66, no. 4, pp. 671–687, 2003.

[27] S. Dasgupta, “Experiments with random projection,” in
Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, ser. UAI ’00. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 143–
151.

[28] X. Fern and C. Brodley, “Random projection for high
dimensional data clustering: A cluster ensemble ap-
proach,” in International Conference on Machine Learn-
ing (ICML’03), 2003, pp. 186–193.

[29] D. Fradkin and D. Madigan, “Experiments with random
projections for machine learning,” in KDD ’03: Proceed-
ings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining. New York,
NY, USA: ACM, 2003, pp. 517–522.

[30] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten,
and A. Lendasse, “OP-ELM: Optimally-pruned extreme
learning machine,” IEEE Transactions on Neural Net-
works, vol. 21, no. 1, pp. 158–162, January 2010.

[31] S. Vempala, The Random Projection Method, ser. DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society,
2005, vol. 65.

