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Abstract

This paper proposes a method which is the advanced modification of the original
Extreme Learning Machine with a new tool to solve the missing data problem. It uses
a cascade of Ly penalty (LARS) and Lo penalty (Tikhonov regularization) on ELM
to regularize the matrix computations and hence make the MSE computation more
reliable, and on the other hand, it estimates the expected pairwise distances directly
on incomplete data so that it offers the ELM a solution to solve the missing data
issues. According to the experiments on 9 data sets, the method shows its significant
advantages: fast computational speed, no parameter need to be tuned and it appears
more stable and reliable generalization performance by the two penalties, Moreover,
it completes ELM with a new tool to solve missing data problem even when half of
the training data are missing as the extreme case.

Key words: ELM, Ridge Regression, Tikhonov Regularization, LARS, Missing
data, Pairwise distance estimation

1 Introduction

Missing data is very common to confront for many different research fields,
for example, data from surveys, experiments, observational studies and etc.
typically contain missing values. Because most analysis procedures were not
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designed to handle incomplete data, researchers often resort to editing proce-
dures (deleting incomplete cases, replacing the missing values! with sample
means, etc.) to lend an appearance of completeness. A method for inference
from incomplete data was only developed in 1976. Immediately afterwards,
Dempster et al. invented the Expectation Maximization (EM) algorithm that
resulted in the use of the Maximum Likelihood (ML) methods for missing data
estimation[1]. Barely a decade later, Lit et al. did acknowledge the limitations
of Case Deletion and Single Imputations and then introduced Multiple Im-
putations [2]. Multiple Imputations would not have been achievable without
parallel progress in computational power because generally they are compu-
tationally expensive [3-6].

On the other hand, data sets in many research fields become larger and larger,
which are very time consuming when using some classic methods to deal with,
like Support Vector Machine, Multi-layer Neural Network, etc.. In this sense,
Extreme Learning Machine (ELM) is a competitively good solution for such
tasks. ELM as presented by Huang et al. in [7] is fast enough to accomodate
relatively large data sets, where other traditional machine learning techniques
have very large computational times. The main idea lying in ELM is the
random weights of a Single Hidden Layer Feedfoward Neural Network (SLEN).
In addition to its speed, which takes the computational time down by several
orders of magnitude, the ELM is usually capable to compare with state of the
art machine learning algorithms in terms of performance [8].

However, ELM tends to suffer from the presence of irrelevant variables in the
data sets, as is likely to happen when dealing with real-world data. In order to
reduce the effect of such variables on the ELM model, Miche et al. proposed in
[9] a wrapper methodology around the original ELM, which includes a cascade
of neuron ranking step (via a L; regularization), along with a criterion (L
regularization) used to prune out the most irrelevant neurons of the model.

Therefore, this paper proposes a method which uses the advanced modification
of the original Extreme Learning Machine with a new tool to solve the missing
data problem. In Section 2, the tool used to solve MD problem is introduced
as well as some general discussion on missing data. Section 3 shows the details
of the Double-Regularized ELM using LARS and Tikhonov Regularization.
The entire method is summarized in Section 4 with several major steps, and
followed by experiments in Section 5 and a short conclusion in Section 6.

I Missing data, or missing values, occur when no data value is stored for the vari-
able in the current observation. If input data has N observations (samples) with d
dimensions (variables), then, when we refer to a missing data in this data, it implies
one missing point among the original (N x d) points.



2 Pairwise Distance Estimation with Missing Data (MD)

Missing data (MD) is a part of almost all research, and researchers have to
decide how to deal with it from time to time. There are a number of alternative
ways of dealing with missing data, and in this section, a Pairwise Distance
Estimation is highlighted and introduced to solve the MD problem.

2.1 Nature of Missing Data

When confronting the Missing Data, the first common question you may ask
is why. There are several reasons why data may be missing, that is, the nature
of Missing Data can be categorized into three main types [10],

Missing completely at random (MCAR)[11]. When we say that data are
missing completely at random, we mean that the probability that an obser-
vation (X;) is missing is unrelated to the value of X or to the value of any
other variables. Thus, a nice feature of data which are MCAR is the analy-
sis remains unbiased. We may lose power for our design, but the estimated
parameters are not biased by the absence of data.

Missing at random (MAR). Often data are not missing completely at ran-
dom, but they may be classifiable as missing at random if the missingness
does not depend on the value of X; after controlling for another variable.
The phraseology MAR is a bit awkward because we tend to think of ran-
domness as not producing bias, and thus might well think that Missing at
Random is not a problem. Unfortunately it is a problem, although we have
ways of dealing with the issue so as to produce meaningful and relatively
unbiased estimates [12].

Missing Not at Random (MNAR). If data are not missing at random or
completely at random then they are classed as Missing Not at Random
(MNAR). When we have data that are MNAR we have a problem. The only
way to obtain an unbiased estimate of parameters is to model missingness.
In other words we would need to write a model that accounts for the missing
data. Therefore, MNAR is not covered in this paper. This paper focus on
developing the method to solve the MD problem using Extreme learning
machine, rather than to analyze the data of any specific field or MD for any
specific reasons.

2.2 Ezisting approach for MD problem

By far the most common approach is to simply omit those observations with
missing data and to run the analyses on what remains. This is so called listwise



deletion. Although listwise deletion often results in a substantial decrease in
the sample size available for the analysis, it does have important advantages. In
particular, under the assumption that data are missing completely at random,
it leads to unbiased parameter estimates.

Another branch of approach is imputation, meaning to substitute the missing
data point with a estimated value. A once common method of imputation was
Hot-deck imputation where a missing value was imputed from a randomly
selected similar record [13]. Besides, Mean substitution method uses the idea
of substituting a mean for the missing data [14,15], etc.

There are also some advanced methods such as Maximum Likelihood and
Multiple Imputation [16-18]. There are a number of ways to obtain maximum
likelihood estimators, and one of the most common is called the Expectation-
Maximization algorithm (EM). This idea is further extended in Expectation
conditional maximization (ECM) algorithm [19]. ECM replaces each M-step
with a sequence of conditional maximization (CM) steps in which each pa-
rameter ; is maximized individually, conditionally on the other parameters
remaining fixed. In the following paragraph, a distance estimation method is
presented based on ECM.

2.8 Pairwise Distance Estimation

Pairwise Distance Estimation efficiently estimates the expectation of the squared
Euclidean distance between observations in datasets with missing data [20].
Therefore, in general, it can be embedded into any distance-based method,
like & Nearest Neighbors, Support Vector Machine (SVM), Multidimensional
scaling (MDS), etc., to solve Missing data problem.

Given two samples z and y with missing values, in a d dimensional space.
Denote by M,, M, C [d] = 1,...,d the indexes of the missing components in
the two samples. Here we assume the data are MCAR or MAR, that is, the
missing value can be modeled as random variables, X;,i € M, and Y;,i € M,,.
Thus,

E[Xi|zos] if i € M,,

T; otherwise

Where 2’ and 3/ is the imputed version of z and y which the missing value has
been replaced by its conditional mean. The corresponding conditional variance
becomes:



Var|X;|zes| if i€ M,,

0 otherwise

Let y; and a§7i be defined analogously. Then, the expectation of the squared
distance can be expressed as:

Elll z =y lI") = >_((x} —4)* + 075 + 0,) (3)
or, equivalently,
Ell e —y P =lla" =y I” + >_ oz:+ > oy, (4)
€M, i€M,

According to Eirola [20], covariance matrix can be achieved through the ECM
(Expectation Conditional Maximization) method provided in the MATLAB
Financial Toolbox [21], implementing the method of [19] with some improve-
ments by [22], which makes the calculation of conditional means and variances
of the missing elements possible. Therefore, each pairwise squared distance can
be calculated with the missing values replaced by their respective conditional
means and by adding the sum of the conditional variances of the missing values
respectively.

Since this algorithm is suitable for methods which rely only on the distance
between samples, in this paper, we use this estimation algorithm embedded
with £ nearest neighbors to solve missing data problem.

3 Double-Regularized ELM: TROP-ELM

Miche et al. in [23] proposed a double regularized ELM algorithm, which
uses a cascade of two regularization penalties: first a Ly penalty to rank the
neurons of the hidden layer, followed by a Ly penalty on the regression weights
(regression between hidden layer and output layer). This section introduces
this algorithm briefly.

3.1 Extreme Learning Machine (ELM)

The Extreme Learning Machine algorithm is proposed by Huang et al. in
[7] as an original way of building a single Hidden Layer Feedforward Neural



Network (SLEFN). The essence of ELM is that the hidden layer of it need not
to be iteratively tuned [8,7], and moreover, the training error || HF —y || and
the norm of the weights || 5 || are minimized.

Given a set of N observations (x;,1;),1 < N. with z; € R? and y € R. A
SLFN with m hidden neurons in the middle layer can be expressed by the
following sum:

S Bf(wir; +b), 1<j<N (5)
=1

where f3; is the output weights, f be an activation function, w; the input
weights and b; the biases. Suppose the model perfectly describe the data, the
relation can be written in matrix form as Hf =y, with

flwizr +01) ... flwmzr + bn)
H= : : (6)

f(wlxn + bl) ce f(wmxn + bm)

B=(B1,..., Bm)T and y = (y1,...,yn)T. The ELM approach is thus to initialize
randomly the w; and b; and compute the output weights 5 = H'y by a Moore-
Penrose pseudo-inverse [24].

The significant advantages of ELM are its extreme fast learning speed, relative
better generalization performance while being a simple method [7]. There has
been recent advances based on the ELM algorithm, to improve its robustness
(OPELM [9], CS-ELM |[25]), or make it a batch algorithm, improving at each
iteration (EM-ELM [26], EEM-ELM [27]).

3.2 Ly penalty: LASSO

An important part in ELM is to minimize the training error || HG—y || , which
is a ordinary regression problem. One technique to solve this is called Lasso,
for ‘least absolute shrinkage and selection operator’ proposed by Tibshirani
[28].

Lasso solution minimizes the residual sum of squares, subject to the sum of
the absolute value of the coefficients being less than a constant, that’s why it
is also called ‘L; penalty’. The general form which Lasso worked on is

i=1 j=1

min (z@i xw)? AN w) )



Because of the nature of the constant, Lasso tends to produce some coeffi-
cients that are exactly 0 and hence give interpretable models. The shrinkage
is controlled by parameter A. The smaller A is, the more w; coefficients are
zeros and hence less variables are retained in the final model.

Computation of Lasso solution is a quadratic programming problem, and can
be tackled by standard numeral analysis algorithms. However, a more efficient
computation approach is developed by Efron et al. in [29], called Least An-
gle Regression (LARS). LARS is similar to forward stepwise regression, but
instead of including variables at each step, the estimated parameters are in-
creased in a direction equiangular to each one’s correlations with the residual.
Thus, it is computationally just as fast as forward selection. If two variables
are almost equally correlated with the response, then their coefficients should
increase at approximately the same rate. The algorithm thus behaves as intu-
ition would expect, and also is more stable. Moreover, LARS is easily modified
to produce solutions for other estimators, like the Lasso, and it is effective when
the number of dimensions is significantly greater than the number of samples
[29].

The disadvantages of the LARS method is that it has problem with highly
correlated variables, even though this is not unique to LARS. This problem is
discussed in detail by Weisberg in the discussion section of the article [29]. To
overcome this, next paragraph introduces Tikhonov Regularization method.

3.8 Lo penalty: Tikhonov Reqularization

Tikhonov regularization, named for Andrey Tychonoff, is the most commonly
used method of regularization [30]. In statistics, the method is also known as
ridge regression.

The general form of Tikhonov regularization is to minimize:

I&lLH (Z(yz — xjw)? + Agp:lw?) (8)

=1

The idea behind of Tikhonov regularization is at the heart of the “bias-variance
tradeoft” issue, thanks to it, the Tikhonov regularization achieves better per-
formance than the traditional OLS solution. Moreover, it outperforms the
Lasso solution in cases that the variables are correlated. One advantage of the
Tikhonov regularization is that it tends to identify/isolate groups of variables,
enabling further interpretability.

One big disadvantage of the ridge-regression is that it doesn’t have sparseness



in the final solution and hence, it doesn’t give an easily interpretable result.
Therefore, a new idea is created to use a cascade of the two regularization
penalties, which is introduced in the next paragraph.

3.4 TROP-ELM

Miche et al. in [9] proposed a method OP-ELM, which uses LARS to rank the
neurons of the hidden layers in ELM and select the optimal number of neurons
by Leave-One-Out (LOO). One problem with LOO error is that it can be
very time consuming, especially when the data has large number of samples.
Fortunately, the PREdiction Sum of Squares (PRESS) statistics provide a
direct and exact formula for the calculation of the LOO error for linear models
[31,32].

PRESS _ Yi — hib;
‘ 11— hPhT ©)

where P is defined as P = (H? H)™! and H is the hidden layer output matrix.
It can be also expressed as:

(PRESS _ 1 g: (yz - l‘z‘(XTX)_ley>2 (10)
N&=\ L —(XTX) ]

which means that each observation is estimated using the other N — 1 ob-
servations and the residuals are finally squared and summed up. The main
drawback of this approach lies in the use of a pseudo-inverse in the calcula-
tion, which can be lead to numeral instabilities if the data set X is not full
rank. This is happen very often in the real world data. Thus, a Tikhonov-
regularized version of PRESS is created:

¢PRESS()) = 1 iv: (yz — (XX + A[)ISET?JY (11)

NS\ 1 —o(XTX + M)l
This new modified version uses the Singular Value Decomposition (SVD) ap-
proach [33] of X to avoid computational issues, and introduces the Tikhonov
regularization parameter in the calculation of the pseudo-inverse by the SVD.
In practice, the optimization of A\ in this method is performed by a Nelder-
Mead [34] minimization approach, which converges quickly on this problem.

In general, TROP-ELM is an improvement of original ELM. It first constructs
a SLFN like ELM, then ranks the best neurons by LARS (L; regularization),



finally selects the optimal number of neurons by TR-PRESS (L, regulariza-
tion).

4 The Entire Methodology

In this section, the general methodology is presented as well as the details of
the implementation steps.

Initial Imputation

Y

Randomly selected
samples as the
center of Gaussians

Y

ELM Construction using| Ranking the neurons Selecting the neurons
Gaussian Kernels ““lusing LARS > using TR-PRESS —> Model

X

Data—

Pairwise squared
distance Estimation

Figure 1. The framework of the proposed method

Fig 1 illustrates the main components of the whole algorithm, and how they
connected. Therefore, when confronting a regression problem with incomplete
data, there are several steps to follow in order to implement this method:

e First of all, it is necessary to replace the missing values with their respective
conditional means mentioned in Section 2.3. This is a so called ‘imputation’
step. The reason of this move is because we want to make the whole method
more robust.

Thus, the accuracy of the distances calculated afterwards are not really
based on these imputed values. The main purpose here is to make it possible
to use Gaussians as the active function in ELM. Next step explains more
about why the imputation is done at the beginning.

e Secondly, we decide to use Gaussian as the active function of the hidden
node to build the Single layer feedforward network. Then, m samples are
randomly selected from original N samples (m < N) as the center of Gaus-
sians, that’s why the imputation is done in the first step. Choosing the
randomly selected samples as the center could anyway guarantee the neural
network built here adjoin the data. Therefore, when calculating the output
of each neuron, the squared distance between each sample and the selected



ones are needed, which are exactly the same thing the Pairwise squared dis-
tance estimation method achieved. The hidden node parameters (o2, j1) are
randomly generated, which remains the advantage of ELM that the param-
eters in hidden layer need not to be tuned. More specifically, parameter o2
is choosen from a interval (20% to 80%) of the original random generations,
to further make sure that the model surrounds the data.

e When the distance matrix is ready (by Pairwise distance estimation), with
the random generated parameter (o2, i), it is easy to compute the outputs
of all the neurons in the hidden layer. The next step would be to figure out
the weights () between hidden layer and the output of the data (V).

e The assumption to use LARS is that the problem to be solved should be
linear. In fact, this is exactly the case when the neural network built in
previous step, the relationship between the hidden layer and the output in
ELM is linear. Therefore, LARS is used to rank neurons according to the
output.

e Finally, as mentioned in previous Section 3.4, TR-PRESS is used to select
the optimal number of neurons, mean square error is minimized though the
optimization of parameter \ in Eq 11.

The entire algorithm inherits most of the advantage of original ELM, fast
computational speed, no parameter need to be tuned, comparatively high
generalization performance, etc. Moreover, it perfects ELM with a new tool to
solve missing data problem and offers more stable and accurate results with
double regularization method.

5 Experiments

In order to test the proposed method for regression problem, 9 datasets are
chosen in this paper to evaluate the method. These data sets can be found
from UCI Machine Learning Repository for free.

Table 1 shows the information of the 10 selected data sets. Many articles use
the same data sets, for example, Miche et.al in [9], etc., they could be found
to compare the results with ours.

On the other hand, how to get a more general performance of the model
remains to be a problematic issue. A common solution is to split the whole
dataset into training, validating and testing sets, which is a good practice. In
this paper, we only need to separate training and testing set because Leave-
One-Out validation is used with the training set, i.e. the error we get from the
training set is actually the validation error. Furthermore, Monte-Carlo method
is performed to split the data in order to reduce the effect of limited data size.
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Datasets # Attributes | # Training data | # Testing data

Ailerons 5 4752 2377
Elevators 6 6344 3173
Computer 12 5461 2731
Auto Price 15 106 53
Machine CPU 6 139 70
Breast Cancer 32 129 65
Bank 8 2999 1500
Stocks 9 633 317
Boston Housing 13 337 169

Table 1
Specification of the tested regression data sets

5.1 Monte-Carlo split for preprocessing

Monte-Carlo methods refer to various techniques. In this paper, Monte-Carlo
methods are used to preprocessing the data, aiming to two tasks. Firstly,
training set are drawn randomly about two thirds of the whole data sets, the
rest one third leaves for test set. Secondly, this Monte-Carlo preprocessing are
repeated many times for each dataset independently. Therefore, after these
rounds of training and testing, an average test error is computed to represent
the more general performance of the method.

5.2 Generating the missing data

There is no missing value originally in these 9 datasets. Therefore, missing
data is artificially added in each datasets, in order to test the performance
on incomplete data of the method. More precisely, the missing data is added
at randomly position once 1/200 of the total points till only half data points
left. For example, if we have training set with N observations and d features
(N x d data point totally), missing data is added (N x d)/200 at a time, and
continue 100 times till there is only half data points left ((IV x d) % 100/200).
Thus, the model is trained and tested 100 times for each dataset.

5.8 Ezxperiments results

For each dataset, the same experiment procedure is done to evaluate the
method. Firstly, Monte-Carlo split is performed for 100 times (Data Machine
CPU, for 1000 times as an exception), then for each Monte-Carlo split, missing
values are added to training part set by set for 100 times till half of the train-
ing values are missing. Once the new missing values are added, the model is
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trained and tested respectively. Thus, LOO and test results are calculated 100
times with different amount of missing value. In other words, for each different
amount of missing value, the mean LOO error and test error are recorded for
100 times from those Monte-Carlo splits. All the results shown here are the
normalized results.

Take the Boston housing data for instance. There are 506 samples and 13
variables originally in this data, and one output. For each Monte-Carlo split,
337 samples are randomly selected for training, and the rest for testing. As
to the training set, (337 x 13)/200 ~ 22 data points are added continuously
for 100 times, meaning models are trained and tested for 100 times. Fig 2
illustrates the Boston Housing data results. x axis represents the percentage
of the missing data from 0% to 50%, while the y axis represents the mean
error of the 100 Monte-Carlo split. More specifically, the dash line refers to
the mean LOO error, and solid line is the mean test error.

Data-—Boston Housing
0.4 T T T

Test error 4

0.35F — — — Leave-One-Out error s B

Normalized Mean squared error

1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
percentage of the Missing Data in the training set (%)

Figure 2. Boston Housing data results

From Fig 2, we can see the LOO error starts from a very low value 0.09,
then ascends smoothly with the increasing number of missing data. When the
amount of missing data reaches as high as half of the whole training set, LOO
error is just 0.38 which is still acceptable. As to the test error, it starts from
value 0.22, which is very common case that test error performs worse than
validation error. However, after adding around 20% MD, test errors appears
lower than LOO error which is a significant result we are looking forward to.
Even though this is not always the case, it implies the model built not at
all ‘overfits’ the data, and moreover, shows the efficiency and stability of the
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model. On the other hand, test error line (solid one) vibrates a lot due to the
randomness of MD emergences. Nevertheless, the tendency of both LOO and
test error keep the same, and more smooothness can be expected from more
rounds of Monte-Carlo test.

Fig 3 shows the results for another two data sets. The results are quite similar
with the Boston Data. From both of these two Data results, test error are less
than LOO error from the beginning, and much less vibration. These proves
that models are more stable and reliable.

Data--Elevators Data—-Stocks

— — — Leave-One-Out error

Test error

5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
percentage of the Missing data in training set (%) percentage of the Missing data in training set (%)

Figure 3. Normalized MSE for the datasets: Leave-One-Out results (dashed line)
and test results (solid line)

For the rest of the Data sets, the test error and LOO error are not easy to
present in the same figure, so that separate figures are used for them. Fig 4
and Fig 5 includes the rest 7 Data results. As to some data sets, like Breast
Cancer, Elevators, Auto Price, they are born to be very difficult to regress.
Thus, the test errors contain more vibrations and the performs less stable.
The relative analysis and results about these data sets can be easily searched
from other research articles as references.

6 Conclusions

This paper proposed a method which is the advanced modification of the
original Extreme Learning Machine with a new tool to solve the missing data
problem.

Briefly speaking, this method uses a cascade of L; penalty (LARS) and Lo
penalty (Tikhonov regularization) on ELM to regularize the matrix computa-
tions and hence make the MSE computation more reliable, and on the other
hand, it estimates the expected Pairwise distances directly on incomplete data
so that it offers the ELM a solution to solve the missing data issues.

According to the experiments of 9 data sets with 100 times Monte-Carlo tests,
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Figure 4. Normalized MSE for the datasets: Leave-One-Out results (left column)
and test results (right column)

the method shows its significant advantages: it inherits most of the features of
original ELM, fast computational speed, no parameter need to be tuned, etc.,
and it appears more stable and reliable generalization performance by the two
penalties, Moreover, it completes ELM with a new tool to solve missing data
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Figure 5. Normalized MSE for the datasets: Leave-One-Out results (left column)
and test results (right column)

problem even though the half of the training data are missing as the extreme
case.

Future work on this method will enrich it to classification tasks, and further
improve its performance.
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