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Abstract. This paper describes a method for performing kernel smooth-

ing regression in an incremental, adaptive manner. A simple and fast com-

bination of incremental vector quantization with kernel smoothing regres-

sion using adaptive bandwidth is shown to be effective for online modeling

of environmental datasets. The method is illustrated on openly available

datasets corresponding to the Tropical Atmosphere Ocean array and the

Helsinki Commission hydrographic database for the Baltic Sea.

1 Introduction

We describe a method for performing kernel smoothing regression on an adaptive
manner. The aim of this work to define efficient, incremental and adaptive
regression methods that can be applied sequentially to data streams of incoming
observations. The motivation for this work is the need for simple and efficient
regression methods that can cope with large, diverse and evolving datasets in
applications in Environmental Sciences.

The idea of adaptive regression has been explored in different contexts and
a large number of methods for both linear and nonlinear regression are well
established in different fields of computer science. For example, the multivariate
adaptive regression splines (MARS) method [1, 2] builds models as a summation
of weighted basis functions following a divide and conquer strategy that aims to
adapt locally. However, most research efforts so far have concentrated on offline
regression.

Environmental Sciences have seen a great deal of development and atten-
tion over the last few decades. An impressive improvement in observational
capabilities and measurement procedures has led to large databases and online
monitoring systems. Environmental datasets are normally defined by either reg-
ular or irregular spatial fields that can be 3 dimensional, for which multivariate
observations such as temperature, salinity, nutrients, pollutants or air pressure,
are recorded across time. Environmental processes are usually part of intricate
networks of dynamical processes where their evolution in time is a key aspect.

Evolving, online or adaptive intelligent systems [3] are meant to be applied on
sequential data or streams of data. These systems distinguish themselves from
conventional offline learning methods and previous online methods in that their
structure (in addition to their parameters) evolves in order to account for new
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data. Specially during the last decade many advances have been made within
the area of evolving neuro-fuzzy systems for modeling and control [3, 4, 5]. Two
advantages of these methods are specially relevant for spatio-temporal environ-
mental datasets. On the one hand, they rely on simple and fast algorithms,
usually operating in a one-pass manner. On the other hand, their parameters
but more importantly their structure evolve in order to accommodate for new
data. Thus, large datasets can be efficiently processed online in a fully adaptive
manner.

The paper is organized as follows. Section 2 describes the proposed method.
The method is evaluated and compared in section 3.

2 Proposed Method

Kernel regression, also called kernel smoothing regression in order to avoid con-
fusion with other kernel methods, is a non-parametric approach to estimating
the conditional expectation of a random variable y [2, 6]: E(y|x) = f(x), where
y and x are random variables and f(·) is a non-parametric function. The ker-
nel smoothing regression approach is based on kernel density estimation. It is
assumed that the model estimation has the following form: f̂(x) = y + ε, i.e.,
the random variable modeled can be expressed as a deterministic, functional
component plus a noise component.

One particular case is the Nadaraya-Watson kernel regression method for
function estimation which uses the Gaussian kernel. If n observations of x and y
pairs, (xi, yi) are available, the estimator of f̂(·) for a particular input observation
is defined as follows:

f̂(x0) =

∑n
i=1 Kh(x0, xi)yi

∑n
i=1 Kh(x0, xi)

,

where h is the bandwidth or smoothing parameter, and Kh is the kernel func-
tion [7].

Vector Quantization (VQ) is an unsupervised method with parallelisms with
methods for clustering and learning densities such as k-means and Voronoi di-
agrams [2]. It is a practical and popular approach in signal processing and
machine learning for lossy data compression and correction but also for density
estimation. A key aspect of VQ for the purposes of this work is that it allows to
approximate the probability distribution function of a process by the distribu-
tion of prototypes or codewords. In fact, the area closer to a particular codeword
than to any other is inversely proportional to the density in that region of the
input domain.

The approach proposed here is to perform kernel regression on an incremental
estimation of the (potentially evolving) probability distribution of the incoming
data stream rather than the full sequence of observations. This is done in two
stages. First, VQ is incrementally performed on the incoming stream. Second,
kernel smoothing regression for each incoming observation is computed using
the codebook resulting from the first stage as an estimation of the probability
distribution of the incoming data. In addition, the kernel bandwidth is adapted
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Fig. 1: Global scheme of the KSR-VQ method

online. All the steps required are incremental and the method is thus suitable
for online learning. The method is simple, adapts locally to fit evolving streams
of data, and is fast, with run-time and memory complexity proportional to the
number of observations and their dimensionality. An scheme of this method
(KSR-VQ) is shown in figure 1. The two stages of KSR-VQ are detailed in what
follows.

2.1 Adaptive Vector Quantization

The first stage of KSR-VQ is performed adaptively and in an incremental man-
ner. Observations are processed one at a time. Let m be the current number of
prototypes in the codebook, initialized to 0, and M a maximum number of pro-
totypes. In algorithm 1 we show a simple version of vector quantization which is
used in this paper. It should be noted that no sensitivity parameters are used.

Algorithm 1 Simple Vector Quantization

· Initialize an empty codebook.
· For each new observation xi, i = 1, . . ., of dimension d received,
with current codebook length m:
IF m < M

Add xi to the codebook as a new prototype.
ELSE
Find in the codebook the nearest prototype, pj , to xi

Update the codebook with learning rate α, move pj towards xi:
pj ← (1− α)pj + αxi, α ∈ [0, 1]

As it will be shown in section 3, relatively small codebooks of a few hundred
prototypes can achieve satisfactory performance in a rather general setup.

2.2 Adaptive Kernel Smoothing Regression

It is generally accepted that local adaptation of the kernel bandwidth parameter
is of major importance for obtaining accurate models [6, 7]. However, finding
optimal or good values for the bandwidth parameter and furthermore adapting
it locally is not a trivial task.
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It is possible to define an estimator for the bandwidth or smoothing param-
eters optimal for normal distributions [6] in the sense that the mean integrated
square error is minimized. For the multivariate case it is as follows:

hopt,j = σj

(

4

n(d + 2)

)(1/(d+4))

, j = 1, . . . , d,

where d is the input dimension, n is the number of observations, and σj is the
standard deviation in the jth dimension. Nonetheless, as an enhanced standard
deviation estimator, the median absolute deviation estimator can be used to
approximate σj in a robust manner, as described for global bandwidth estimation
in [6]. This way, even though the parameter estimators, hopt,j , are defined as
optimal for normal distributions they still perform well in more general cases.

In KSR-VQ the variance term, σj , for each input dimension j is estimated
using the median absolute deviation and a scaling factor for normal distributions:

σj = median{|xij −median{xij}|}/0.6745,

and the median is calculated online for observations i = 1, . . . , using an incre-
mental statistics method by Manku et al. [8], with approximation guarantees that
apply for arbitrary value distributions and arrival distributions of the dataset.
This defines a clear criterion for the selection of the bandwidth, i.e., for model
selection, without the need for validation procedures. For simplicity, in this pa-
per we restrict our analysis to zero-order or Nadaraya-Watson kernel smoothing
regression. That is, KSR-VQ builds nonlinear locally constant models.

3 Experiments and Discussion

Two environmental databases are considered in order to illustrate the suitabil-
ity of the proposed method for environmental applications, and specially for
environmental data streams: UCI El Nino, and the Helsinki Commission (HEL-
COM) hydrographic database for the Baltic Sea. Figures 2(a) and 2(b) show
the location of the observations, respectively. As of October 2010 the HELCOM
database consists of 623181 multivariate observations of up to 62 variables, from
1900 up to present time, with implications for multiple fields such as Physical
Oceanography, Marine Biology and Climatology [9]. It is available from the
oceanographic database of the International Council for the Exploration of the
Seas. The UCI El Nino dataset [10] was collected by the Tropical Atmosphere
Ocean (TAO) array during the period 1980–1998. The TAO array provides
real-time oceanographic and surface meteorological data to scientists, climate
researchers and weather prediction centers around the world. This particular
dataset corresponds to nearly 70 moored buoys spanning the equatorial Pacific.

In the “UCI El Nino-SST” problem defined from this dataset, the sea surface
temperature (SST) has to be modeled as a function of 6 inputs: time, latitude,
longitude, zonal and meridional winds, and air temperature. For the HELCOM
Baltic database two regression problems are defined corresponding to the dis-
solved oxygen concentration and salinity of the surface layer (0–25 m).
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(a) Buoys of the TAO array.
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(b) HELCOM cruises.

Fig. 2: Coordinates of measurements, UCI EL Nino and HELCOM Baltic
datasets.

Two well known offline methods for regression are included in this study for
the purposes of comparison: Multivariate adaptive regression splines (MARS) [1,
2] and multivariate kernel smoothing regression (KSR) [6, 7]. KSR-VQ is also
compared against two well known evolving neuro-fuzzy methods: Evolving Takagi-
Sugeno (eTS) [3] and DENFIS [5]. First-order Takagi-Sugeno systems are built.

For offline approaches, fitting errors are shown in table 1. The superiority
of MARS in terms of accuracy is clear. It comes however at the expense of a
longer run-time which can be an order of magnitude higher than that of KSR.
Errors are given as normalized root mean square error (NRMSE), i.e., the RMSE
divided by the standard deviation of the target sequence, and symmetric mean
absolute percentage error (SMAPE). Standard deviations of the absolute errors
are indicated as well.

Online regression methods are compared in table 2. Among the conclusions
about KSR-VQ that can be drawn from the table are: a) it achieves satisfactory
accuracy in general and b) it is consistently the fastest method. The implication
of these results is that KSR-VQ would be preferable to standard KSR for offline
modeling. In fact, KSR-VQ is competitive against the highly accurate MARS
models, but for a lower computational cost in general. Also, it should be noted
that the adaptive selection of the kernel parameter or bandwidth in multivariate
kernel smoothing regression can be seen as an indirect way of variable scaling.

Table 1: Comparison of offline regression methods.
Dataset Method NRMSE std AE SMAPE Run-time (s)

UCI El Nino-SST
MARS linear 4.934e-01 3.387e-01 8.19 3.34e+03

KSR 5.872e-01 3.981e-01 9.71 1.26e+03

Baltic Dissolved O2

MARS linear 5.169e-01 3.589e-01 7.79 3.14e+03

KSR 5.664e-01 4.003e-01 8.38 2.13e+02

Baltic Salinity
MARS linear 2.419e-01 1.887e-01 10.8 3.00e+03

KSR 4.045e-01 3.023e-01 16.8 1.80e+02
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Table 2: Comparison of adaptive regression methods.
Dataset Method NRMSE std AE SMAPE Run-time (s)

UCI El Nino-SST

DENFIS 2.388e-01 1.832e-01 3.50 1.42e+03

eTS 6.287e-01 4.309e-01 10.2 5.54e+03

KSR-VQ 3.107e-01 9.653e-02 4.21 1.59e+02

Baltic Dissolved O2

DENFIS 4.349e-01 3.364e-01 5.94 3.95e+02

eTS 6.470e-01 4.400e-01 9.85 8.72e+02

KSR-VQ 3.832e-01 2.816e-01 5.40 2.58e+01

Baltic Salinity

DENFIS 2.915e-01 2.335e-01 11.3 5.65e+02

eTS 4.300e-01 2.928e-01 24.7 8.86e+02

KSR-VQ 2.802e-01 2.441e-01 8.46 2.48e+01

4 Conclusion

The adaptiveness of KSR-VQ is twofold. First, the smoothing regression is
performed on an incrementally updated, evolving estimation of the probabil-
ity distribution of the incoming data stream. Second, the kernel bandwidth is
adapted online using a criterion based on the median absolute deviation estima-
tor which can be computed efficiently online. The advantages of KSR-VQ against
offline KSR as well as its competitiveness with established adaptive and evolving
methods have been illustrated for two environmental datasets. KSR-VQ shows
good generalization capabilities in spite of its simplicity and low computational
requirements.
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