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Abstract. We consider the Extreme Learning Machine model for ac-
curate regression estimation and the related problem of selecting the
appropriate number of neurons for the model. Selection strategies that
choose “the best” model from a set of candidate network structures ne-
glect the issues of model selection uncertainty. To alleviate the problem,
we propose to remove this selection phase with a combination layer that
takes into account all considered models. The proposed method in this
paper is the Extreme Learning Machine(Jackknife Model Averaging),
where Jackknife Model Averaging is a combination method based on
leave-one-out residuals of linear models. The combination approach is
shown to have better predictive performance on several real-world data
sets.

1 Introduction

Accurate predictions of future instances are becoming a recurring problem in sci-
entific research. The problem is addressed by forming a model and then making
all subsequent inferences on that constructed model. Prediction of continuous
values, such as daily temperature or stock market prices, is considered a regres-
sion problem or estimation of a regression function.

In the paper, we are concerned with regression problems of the form

yi = f(xi) + ϵi (1)

where {(xi, yi) | 1 ≤ i ≤ N} are data samples with xi consisting of several ex-
planatory features or variables and yi the target variable, while ϵi is the noise
term. Usually, the noise is assumed to be homoskedastic with a Gaussian distri-
bution N (0, σ2) with known variance. The problem is finding a model f̂ that can
best approximate the target function f . This is a general setting, and many such
models exist, including, but not limited to, linear regression, neural networks,
support vector regression, kernel regression, nearest neighbour estimators and
fuzzy regression. Each model class is characterized by the approximation capa-
bilities and the training algorithms with different computational complexities.

This paper focuses on a specific type of neural network that is gaining pop-
ularity in recent years, namely the Extreme Learning Machine (ELM). It is
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shown in [1] that a single feedforward hidden layer with input weights randomly
assigned has universal approximation capability for any target function, that is,
the estimation can be made as small as possible considering standard squared
error loss function. The advantage of ELM is its very fast training time, since the
output weights are found in a simple linear setting between the hidden feature
space and the target variable.

One drawback concerning the ELM model is the selection of the starting
number of neurons to adequately capture the overall variations in data. To solve
this issue, two approaches have been proposed: 1) selection methods [2–6] focus
on choosing a single model from a candidate set by optimizing some criterion;
2) ensemble of many ELMs [7], i.e., the candidate models all contribute to
the weighted average as the final model. The second strategy tries to avoid
the problem by considering much larger candidate set, and focusing on finding
appropriate model weights, aiming to assign zero weights for poor models and
non-zero weights for better models.

We propose a mixture between the two mentioned strategies. That is, when
constructing a single ELM that considers several competing models, instead of
picking only one model, use all models and find appropriate weights to separate
the models based on their generalization ability. Two reasons for such an ap-
proach are: 1) empirical success of combination methods over the selection ones
when it comes to prediction accuracy [8]; 2) philosophical issue of ignoring model
selection uncertainty by making inference solely on a single model once it is iden-
tified [9]. Combination methods have been proposed both in Bayesian statistics,
where Bayesian Model Averaging [10] is considered a natural approach to model
selection uncertainty by considering models as another nuisance parameter, and
in a frequentist spirit with weights computed based on bootstrapping or pertur-
bation of data [11]. The proposed idea is to remove the procedure “selection of
the best model” and consider the ELM as a set of models altogether.

The paper is organized as follows. Section 2 describes the proposed method
alongside its main parts: Extreme Learning Machine, Jackknife Model Averaging
and Leave-one-out Cross-validation. Section 3 shows one variant of the ELM
which can be extended to include the proposed strategy. In Section 4, we show
results on several UCI Machine Learning Repository data sets. Conclusions are
summarized in Section 5.

2 Combining Extreme Learning Machine(s)

Two approaches have been adopted for selection strategy: pruning − starting
from a large number of neurons and then removing unnecessary ones [5, 6] and
constructive − building up from smaller pool of neurons until some condition
(usually error) does not improve with the additional complexity [2–4]. Both
approaches consider several alternative network structures and finally output
“the best” model. The idea is to consider them all together and form a weighted
average.
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The proposed method Extreme Learning Machine-combination, denoted by
ELM(c), is an ELM model where the selection phase is replaced with a com-
bination layer, i.e., additional layer of hierarchy. The parentheses denote that
combination is taking place, while c denotes the method used to produce model
weights. The following subsections present the building blocks which constitute
the ELM(Jackknife Model Averaging), or ELM(JMA) for short.

2.1 Extreme Learning Machine Overview

Extreme Learning Machine (ELM) network presents a new way of building a
neural structure. The idea is in random initialization of input weights and biases
for a single hidden layer, which leads to removal of any kind of iterative training
algorithm. As shown in [1], with this randomization and under certain constraints
on transfer functions, the output weights of a hidden layer can be computed with
simple linear regression and the model has universal approximation capabilities.

Consider a data set {(xi, yi) | 1 ≤ i ≤ N} with xi ∈ IRd and yi ∈ IR. The
ELM network with M neurons is constructed by first computing the hidden
matrix H

H =

 g1(w
i
1x1 + b1) · · · gM (wi

Mx1 + bM )
...

. . .
...

g1(w
i
1xN + b1) · · · gM (wi

MxN + bM )


with j-th neuron having activation function gj , input weights wi

j , bias bj and

bothwi
j and bj are randomly generated. Hidden layer output weights β are found

by solving the linear systemHβ = y, with the Moore-Penrose generalized inverse
of the matrix H and the target values − β = (HTH)−1HTy. The matrix H is
sometimes called feature mapping or feature space of the ELM. Any function
that is a bounded non-constant piecewise continuous function can be taken as
activation function in the ELM.

2.2 Leave-one-out Cross-validation

Cross-validation (CV) is one of the most used strategies for evaluating regression
models, and provides immediate comparison between a wide range of different
model classes. k-fold CV splits the data set into k parts, and each part plays
the validation role once the model is trained on the remaining k − 1 parts. The
average error of all k parts is taken as a measure of generalization ability of the
model. For selection strategy, the model with the smallest average validation
error is assumed to be the most suitable for the given data set.

The extreme case is k = N or leave-one-out (LOO) CV, where each data
sample is taken to be a sole sample in the validation set. In the case of least
squares linear regression, the LOO error can be computed with a single fit of the
model using the PRESS statistic [12], which removes the computational burden
of training N separate models. If we denote with P = H(HTH)−1HT, then the
leave-one-out residuals for all samples are computed with the PRESS formula
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ẽLOO =
y −Py

1− diag(P)
. (2)

where diag(P) denotes the main diagonal of P, 1 a vector of ones and division
is performed element by element.

2.3 Jackknife Model Averaging

Jackknife model averaging (JMA) is a model combining method minimizing the
LOO-CV error which has recently been proposed in [13]. The authors show that
considering the LOO residuals of all models, the combination asymptotically
achieves the lowest possible expected squared error out of any model considered.
That is, the combination is conditioned on the candidate set, and can only be
better than those in the set itself. The theory in [13] is restricted to linear models
and random samples, but it allows heteroskedastic noise term ϵi in Eq. (1) and
unbounded number of models to be present in the candidate set.

JMA is a linear combination of leave-one-out residuals off all models, and
for the purpose of presentation we use similar notation as in [13]. Denote with
ẽm = [ẽm1 , . . . , ẽmN ]T the leave-one-out residual vector of the m-th model in the
candidate set. Then, the jackknife averaging residual vector is

ẽ(w) =
M∑

m=1

wmẽm = ẽw

where ẽ = [ẽ1, . . . , ẽM ] and jackknife estimate of the generalization error is given
by

CV(w) =
1

N
ẽ(w)Tẽ(w) = wTSw (3)

where S = ẽTẽ/N is anM×M matrix. The choice ofw is the one that minimizes
the cross-validation criterion defined in Eq. (3) with the weights constrained on

a unit simplex H = {w ∈ IRM |wm ≥ 0,
∑M

m=1 w
m = 1}. This is a quadratic

programming problem with respect to w and can easily be solved with publicly
available software packages. All that is needed to solve the minimization problem
are the LOO residuals of every model in the set.

2.4 ELM(JMA)

The ELM(JMA) model is constructed as follows. Start with a fixed number
of neurons, say M , and compute the matrix H. Then, train M models, where
the output weights for each model are computed with βm = (HT

mHm)−1HT
my,

1 ≤ m ≤ M , and Hm consists of the first m columns of H. That is, keep
increasing the number of neurons/columns by 1 (starting from 1 until M) and
compute the new model. During this training phase, gather LOO residual vectors
ẽm for each model using Eq. (2). The final step is JMA combining of all M
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models using ẽ in the minimization problem defined by Eq. (3) which gives
model weights w = [w1, . . . , wM ]T. The function estimate of the target variable

y is then
∑M

m=1 w
m Hmβm. Prediction for a fresh sample xn is straightforward:

compute the output f̂ il(xn) for those models whose weights are greater than zero
M = {wm > 0|1 ≤ m ≤ M} = {i1, . . . , iL} and output the weighted average of

those models f̂(xn) =
∑L

l=1 w
il f̂ il(xn).

Reason for considering only M models is that there is an exponential number
of possible models, i.e., all subsets selection problem with M variables. The
other issue is the ordering of neurons with different activation functions. In our
approach, we randomly permute the order to prevent only one type of function
from dominating the network structure and to allow more variability.

It should be noted that a linear combination of linear models can be seen
as one linear model by summation of appropriate weight vectors. The proposed
method then returns a single model, but the model where selection uncertainty
has been accounted for. In this view, ELM(c) introduces another form of regu-
larization on the weights β.

3 TROP-ELM

Tikhonov Regularized Optimally Pruned Extreme Learning Machine (TROP-
ELM) [6] brings two adjustments to the original ELM. First phase is ranking of
neurons by LARS and selecting the appropriate number of neurons by minimiz-
ing the LOO error (OP part). The other improvement is L2 regularization on
the weights β, by introducing a slight bias which is reflected on the LOO resid-
uals (TR part). The adjusted LOO residuals are computed with a new formula
where matrix P is replaced by P(λ) = H(HTH+λI)−1HT, where I denotes the
identity matrix. The parameter λ is locally optimized, providing the solution in
a few iterations, with slight increase in computational time.

Inclusion of the TROP-ELM in experiments is two-fold. First, to demonstrate
that the model combination can easily be applied to other variants of the ELM
model. Second, the TROP-ELM uses a ranking algorithm to produce a different
ordering than our suggested random permutation, and as such can give insight
whether a heuristic approach to ordering is better than a random one.

4 Experiments

This section shows the comparison between the two groups of ELM models: one
group employs the selection strategy (ELM∗ and TROP-ELM) while the other
consists of our proposed method with the added combination layer (ELM(JMA)
and TROP-ELM(JMA)). The comparison is done via squared error risk which
is estimated as an average of 10 Monte-Carlo runs on a test set. The test set
consists of one third of the data set in consideration, while the other two thirds
constitute the training set. The training set is standardized to zero mean and
unit variance, and the same parameters (mean and variance) are used to scale
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Table 1. Data sets used in the experiments. N indicates the total number of samples
in the data set without division into the training and test parts and d denotes the
number of features.

Name N d Name N d

Abalone 4177 8 Computer activity 8192 12
Bank 8FM 4500 8 Delta ailerons 7129 5
Boston housing 506 13 Servo 167 4
Breast cancer 194 32 Stocks 950 9

the test set. For each run, a total of 1000 models are trained to account for
randomness of the ELM algorithm and the average of 1000 test errors is taken
to be the estimated error for that run.

Experiments are performed on eight data sets from two repositories: the UCI
machine learning repository [14] and the LIACC regression repository [15]. The
data sets are listed in Table 1.

Three types of activation functions g are used: sigmoid, Gaussian and linear.
For Gaussian functions, the centres of kernels are taken randomly from data
points xi, while linear activations functions are simply identity functions for
each feature, i.e., gjk(xi) = xk

i , k ∈ {1, . . . , d}, the k-th feature of sample i. A
total of 50 sigmoid and 50 Gaussian kernels are used, which gives M = 100 + d
neurons, and the same number of models to train.

4.1 Performance Comparison

Tables 2 and 3 show the estimated squared error risk for the ELM and TROP-
ELM variants respectively, and the improvement obtained when the combination
is taken into account. The ELM∗ method selects the model that has the small-
est LOO error in the candidate set (the best model) and is used instead of the
full model with M neurons in order to provide a fair comparison between two
strategies. The proposed combination approach always produces an improve-
ment compared to a single model for both ELM variants. The reduced risk can
range from small values of 1−2% to much larger improvement of around 25%
(Abalone). Smaller achievements are expected in data sets with a high number
of samples as a single ELM is able to capture all complexity present in the data.
Larger jumps are seen for data with moderate sample sizes, where more vari-
ability in the training phase is expected, and the combination alleviates that
increased variability. The only exception is ELM∗/ELM(JMA) for Breast cancer
data. In this case, the increased risk estimate comes from LOO computation of
larger models where the number of samples for training (2/3 · 194 ≈ 129) and
models considered M = 132 pose problems for accurate estimation, and may
lead to overfitting. Such extreme cases are potential pitfalls for JMA, since the
models with overconfident LOO estimates are selected during the combination
phase. This is where TROP-ELM plays an important role and provides the JMA
with more stable results.
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Table 2. Estimated risk (average test mean-squared error) for ELM∗ and ELM(JMA)
models and the improvement (in percent) of the combination approach over the selec-
tion strategy.

Data set ELM∗ ELM(JMA) (%)

Abalone 12.1 9.14 24.77

Bank 8FM 1.085e−3 1.044e−3 3.79

Boston housing 18.0 15.2 15.92

Breast cancer 1.19e+3 1.43e+3 −20.59

Computer activity 35.8 31.1 12.97

Delta ailerons 2.81e−8 2.74e−8 2.57

Servo 0.729 0.614 15.76

Stocks 0.831 0.716 13.85

Table 3. Estimated risk (average test mean-squared error) for TROP-ELM and TROP-
ELM(JMA) models and the improvement (in percent) of the combination approach
over the selection strategy.

Data set TROP-ELM TROP-ELM(JMA) (%)

Abalone 6.39 5.95 6.97

Bank 8FM 1.081e−3 1.057e−3 2.23

Boston housing 18.7 15.9 15.20

Breast cancer 1.31e+3 1.19e+3 8.82

Computer activity 33.6 30.5 9.07

Delta ailerons 2.75e−8 2.71e−8 1.46

Servo 0.748 0.652 12.90

Stocks 0.926 0.781 15.68

The issue of ordering of neurons is less obvious. The ELM∗/ELM(JMA) pair
outperforms the TROP versions in some data sets (Boston housing, partially
Breast cancer, Servo and Stocks), while it is inferior for the other data sets. The
only noticeable difference is for Abalone, where ordering improves performance
dramatically, while for the other data sets the increase (Bank and Delta ailerons)
is quite small. This suggest that the ordering of neurons might not be so critical
for accurate prediction.

4.2 Run Times

A great advantage of ELM is its low computational cost. The question is whether
proposed combination procedure takes too much time compared to the original
ELM. Table 4 summarizes the execution time for the ELM∗ and ELM(JMA)
models. The execution time for the ELM∗ is computed as the amount of time
required to train all M linear systems. The computational increase mostly de-
pends on the sample size of the data set, and for larger ones the increase is quite
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Table 4. Run times in seconds for ELM∗ and ELM(JMA) models and the increase
in computation time (in percent) for the combination strategy with respect to the
selection strategy.

Data set ELM∗ ELM(JMA) (%)

Abalone 0.85 0.89 4.48

Bank 8FM 0.98 1.00 1.82

Boston housing 0.13 0.15 22.42

Breast cancer 0.08 0.12 42.17

Computer activity 1.98 2.02 2.05

Delta ailerons 1.39 1.41 1.25

Servo 0.05 0.07 37.82

Stocks 0.21 0.23 13.34

small, while for data sets with a couple of hundred samples there is substantial
extra cost (around 40%), but such cost is still affordable and on a scale of less
than one second.

Run times are computed in the Matlab environment and carried out on an
Intel Xeon processor (E3-1200 family; 3.20GHz) using a single core. Each model
is trained independently of the other models, and quadratic programming for
JMA is solved with the quadprog function from the Optimization Toolbox.

It should be stressed that quadratic programming is only dependent on the
number of models considered M , i.e., independent of the sample size N . This
means that the combination phase takes almost the same amount of time for all
data sets in our case. The extra cost is even more negligible for the TROP-ELM
since there is additional optimization for the λ parameter. Solving quadratic
problems for even larger cases when M ≈ 1000 is still fast, but the actual
bottleneck becomes the training phase for all 1000 models.

5 Conclusions

This paper addresses the issue of selection strategy for the Extreme Learning Ma-
chine and its variants. As explicated, this approach neglects the issue of model
selection uncertainty which leads to degraded prediction accuracy. Instead, a
combination procedure taking into account all available models must be consid-
ered to combat the problem. The proposed approach ELM(JMA) with Jackknife
Model Averaging as the combination method of the LOO residuals shows better
results than a single “best” model based on the same LOO errors. Extension to
TROP-ELM(JMA) shows that the method can be easily adapted to the other
ELM variants that are based on the selection strategy. The extra computational
cost is quite low and only depends on the number of models considered.

Notation ELM(c) signifies that other criteria and combination methods can
be paired instead of the leave-one-out residuals and Jackknife Model Averaging,
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such as the Bayesian Information Criterion (BIC) where the model weights can
easily be derived from the BIC scores.

In the experiments, we have used fixed starting number of neurons, but the
question remains whether that number can automatically be selected based on
the combination weights. One approach would be to start with some small num-
ber, say Mb = 10, train models and perform the combination, and check if the
full model (or the most complex from this set) is included in the combination,
i.e., wMb > 0. If it is, then add new batch of neurons and repeat the procedure
until the most complex model is not present in the combination or if all newly
added models are excluded.

Another question worth examining is the pruning/screening step or removal
of poor models from the candidate set prior to combination. From a theoretical
perspective this issue is addressed via weight assignment, but in practice due
to finite sample size of the data there are difficulties in stable estimation of the
parameters of larger models which is a potential pitfall for model combining.

Nevertheless, the success of the proposed combination strategy suggests that
the practice of selecting one model from a candidate set leads to less accurate
inference, and that some form of weighted average is required even in the case
when building a single ELM network.
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