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Abstract. The discrimination of cloudy from cloud-free pix- 1 Introduction

elsis required in almost any estimate of a parameter retrieved

from satellite data in the ultraviolet (UV), visible (VIS) or

infrared (IR) parts of the electromagnetic spectrum. In thisThe retrieval of atmospheric constituents, such as aerosols
paper we report on the development of a neural networkor trace gases, land or ocean surface properties from satel-
(NN) algorithm to estimate cloud fractions using radianceslite data requires accurate information on the presence of
measured at the top of the atmosphere with the NASA-Auraclouds. Clouds strongly reflect incoming solar radiation in
Ozone Monitoring Instrument (OMI). We present and dis- the ultraviolet (UV), visible (VIS) and near infrared (NIR)
cuss the results obtained from the application of two differ- Parts of the electromagnetic spectrum and affect the earth-
ent types of neural networks, i.e., extreme learning machin€mitted radiation as detected in the thermal infrared (TIR)
(ELM) and back propagation (BP). The NNs were trained Part of the wavelength spectrum. In the UV/VIS the cloud
with an OMI data sets existing of six orbits, tested with reflectance often overwhelms the contribution of other at-
three other orbits and validated with another two orbits. Themospheric constituents, most land surfaces and the ocean
results were evaluated by comparison with cloud fractionsSurface, to the top-of-atmosphere (TOA) reflectarkme(e-
available from the MODerate Resolution Imaging Spectrom-meijer and Stammesl999. For instance, for the retrieval
eter (MODIS) flying on Aqua in the same constellation as of aerosol properties all identified cloud-contaminated pix-
OMI, i.e., with minimal time difference between the OMI €ls are usually discardedrtins et al, 2009. Cloud de-

and MODIS observations. The results from the ELM and tection is usually performed using several tests, depending
BP NNs are compared. They both deliver cloud fraction es-On information being available, and different algorithms have
timates in a fast and automated way, and they both performgeen developed to extract information on cloud microphys-
generally well in the validation. However, over highly reflec- ical properties Ackerman et al.1998 Kokhanovsky et a.

tive surfaces, such as desert, or in the presence of dust laye911. In this paper we are concerned with cloud detection,
in the atmosphere, the cloud fractions are not well predictecr the determination of cloud fraction, rather than the re-

by the neural network. Over ocean the two NNs work equa||ytrieval of cloud microphysical properties. For cloud detec-
well, but over land ELM performs better. tion, the most consolidated methods are based on threshold-

ing techniques in histograms of the measured radiance, or re-
flectance, at certain wavelengths using empirically estimated
thresholds, or set with additional information coming from,
e.g., radiative transfer model®ybbroe et al. 2005 Loy-

ola, 2006 Wu et al, 2006. For best results, a combination
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of TIR and UV/VIS and NIR wavelength bands is required. 2 Instruments
However, such information is not always available and other
methods need to be applied. OMI is a nadir-viewing near-UV-visible spectrometer on

In this paper we focus on cloud detection for the Ozoneboard NASAs Earth Observing System (EOS) Aura satel-
Monitoring Instrument (OMI). The challenge is the coarse lite. OMI measures radiances at 751 wavelengths covering
spatial resolution and the lack of thermal channels. The curthe UV/VIS wavelength range from 349-504 nmand two
rent method for the determination of the OMI cloud mask UV channels (UV-1: 270-314 nm, UV-2: 306—-380 nm). The
is based on two individual testSfammes and Noordhogk nominal ground footprintis 13 24 kn? at nadir, in the nor-
2002: the first one uses a radiance threshold and the Uvmal global operation mode. Complete global coverage was
aerosol index, while the second test considers the spatial hcachieved daily [(evelt et al, 200§ between 2002 and 2008,
mogeneity of the so-called small-pixel dataf den Oord  while after 2008 the global coverage is achieved in two days
2002. Pixels failing either of the two tests are classified asdue to the row anomalyyén et al, 2012 which affects the
cloudy (Acarreta and de Haar2002. We propose an ap- quality of OMI level 1b radiance data. Aura flies in the A-
proach using neural networks (NN) for the direct determi- train satellite constellation, in a polar sun-synchronous orbit.
nation of the cloud fraction in each OMI pixel. The approach MODIS, on-board Aqua, produces many cloud related prod-
is based on the use of the OMI radiance measurements in thects (e.g., cloud fraction, cloud top pressure, cloud optical
VIS part of the spectrum, together with cloud information thickness) KHubanks 2012 King and Bhartia1992 King et
from the Aqua-MODerate Resolution Imaging Spectrometeral., 1998. In view of the short time separation between Aura
(MODIS). OMI and MODIS both fly in the A-train constella- and Aqua of about 7 minutes, the MODIS products can be
tion but on different platforms, respectively Aura and Aqua, used together with OMI products with quite high confidence
with a time lag of about 7 min. The proposed approach is(Stammes et 312008 Vasilkov, 2008 Sneep et a|2008.
similar to that described iRreusker et al2008, where the
cloud screening problem for the Medium Resolution Imaging
Spectrometer (MERIS), suffering from a similar problem as3 Neural Networks
OMI in that there are no infrared channels, was solved by ap-
plying an NN trained with a database of simulated cloudy andNeural network algorithms aim at identifying the relationship
cloud-free spectra. In contrast, for the training we use reabetween input and output variables by learning either from
data obtained from MODIS, with a spatial resolution which real or simulated reference data, rather than directly from
is much higher than that of OMI, as reference data to deterthe application of a representative physical modtykin,
mine the cloud fraction in an OMI pixel. 1999 Karayiannis and Venetsanopould993.

In recent years neural networks have been adopted for Owing to the fact that cloud properties are highly vari-
a wide range of applications from atmospheric sciences table and sometimes difficult to measure directly, neural net-
electromagnetic modeling. The developed applications in-works with their adaptive learning nature offer an attractive
clude, e.g., forward and inverse radiative transfer problemsand computationally efficient alternative for cloud screening.
(Krasnopolsky 2008, the prediction of atmospheric param- It has been proven that neural networks algorithms are able
eters Grivas and Chaloulakq2006), the inversion and post  to approximate any continuous multivariate non-linear func-
processing of remotely sensed dataé and Flores2008 tion, provided that the learning data set is statistically rep-
Del Frate and Schiavorl999, ozone retrievalsOfi Noia resentative of the process to be modeled and an appropriate
et al, 2012 Sellitto et al, 2011 2012, cloud classifica- structure for the network has been selectedrfik et al,
tion (Christodoulou et al., 2003), land cover classification 1989. Some applications to atmospheric sciences were ref-
(Aitkenhead and Aalder2008, and feature extractiorbel erenced in the Introduction.
Frate et al. 2009. Below, we describe the design for the  One important class of neural networks is the multilayer
cloud detection algorithm applied to OMI cloud fraction de- perceptron (MLP)\Werbos 1974. Figurel shows the archi-
termination. tectural graph of a multilayer perceptron with one input layer,

Two different learning algorithms have been used for train-one hidden layer and an output layer. The input signal is fed
ing the neural networks, namely the back propagation (BP)nto the input layer, flows through the network on a layer-by-
and extreme learning machine (ELM). Results from the twolayer basis, and emerges at the output layer of the network as
methods are reported and their performances over land andn output signal, the response of the network to the inputs.
ocean are analysed based on the comparison with an inde- A node receives inputs from neighbors or external sources
pendent set of MODIS cloud fraction data. The two neuraland uses them to compute an output signal that is propagated
networks are trained with a training data set consisting of sixto other units. Within the neural network there are three types
randomly selected orbits. They are subsequently applied t@f nodes: input nodes, which receive data from outside of
the test data sets consisting of three other orbits, i.e., differenthe network, output nodes, which send data out of the net-
form the training data set, and validated using the validationwork, and hidden nodes, whose input and output signals re-
data set consisting of another two independent orbits. main within the network. The behavior of the output node
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depends on the activity of the hidden nodes and the weights The back-propagation learning does not guarantee that the
between the hidden and output nodes. The weights betweefinal solution is the best one as the convergence of the MSE
the input and the hidden nodes determine when each hidis not checked. This should be taken into account when the
den node is active. In the MLP, the activation function of the solution is analyzed.

nodes is based on a differentiable non-linear activation func-

tion, yielding a value called the unit's activation. These func- 3.2 Extreme Learning Machine

tions enable the network to learn complex tasks by extract-

ing features from the input signal. Biases are simply weights! '€ €xtreme learning machinéiang et al. 200 uses a

from a single node whose location is outside of the mamspecial MLP network structure with one hidden layer where
network and whose activation is always oRéshop 2008. the weights between the input layer and the nodes of the hid-
A multilayer perceptron requires to be trained and severafien layer are chosen randomly beforehand, and similarly for

training algorithms have been developed for an MLP struc-the bias terms of the hidden layer nodes. The output layer is

ture for example Levenberg—Marquardt, or Batch which aret0 be taken linear. The extreme learning machine method for
i neural networks consists of the following steps:

discussed ifKarayiannis and Venetsanopould®93. More

details on artificial neural networks can be foundBishop — Assume that we have a training set,,i=
(2008, Ham and Kostani¢2007) andHaykin (1999. _ 1,2,..., N, wherex; is thei th input vector of dimen-

In this work, two learning algorithms were applied to train sionn, #; is the corresponding target vector of dimension
the MLP neural network, i.e., back propagation (BP) andex-  m anda is the number of training data pairs.

treme learning machine (ELM).
— Choose the activation functiog(r) and number of
3.1 Back propagation nodesM in the hidden layer. In our case, the selected
activation function i (x) = tanhlwx + ).
The error back-propagation algorithnRymelhart et al.
1986 is a popular learning algorithm used to train neural
networks by modifying the weights during the training phase

in order to model a particular learning task correctly for the  _ cajculate thev x M hidden layer output matriki. Its

— Assign randomly the hidden layer scaling parameter
vectorsw; and biaseg;, j =1,2,..., M.

training examplesHaykin, 1999. The training phase up- elements are
dates the weights iteratively using the negative gradient of a
cost function defined as the square of the norm of the error of ~ 7;; = g(w]T-x,- +B;). 2

the current training input. Basically, error back-propagation
algorithms perform two passes through each layer of the net- — Calculate the/f x m weight matrixB of the output layer
work: the first pass starts with the application of the input from

vector to the input nodes of the network, and its effect is .

forwarded trough the layers. This is the forward pass dur- B=H"T, ®)
ing which all weights of the network are fixed. Then, a set
of output data is produced as the response of the network
to the input signal, and is subtracted from a desired (target)

whereT = [11,12,...,ty]7 is them x N target matrix
andHT is the pseudo-inverse of the matk The ma-

: : . trix B is
response to produce an error signal. The error signal is propa-
gated backward through the network. This process represents Wi,m
the backward pass. During the backward pass the weights are w2 m

adjusted to move the actual response of the network closer to
the desired one in a statistical sense. The model of each node
is based on a non-linear activation function. .
A sigmoid activation function is used for the hidden nodes WM, m

and it is presented in the following equation:

This learning method requires an easy implementation and
g(x) = tanhax), (1) it runs extremely fast as compared, for example, to the stan-

dard back-propagation algorithms (sdeang et al. 2006

wherea > 0 is a scaling parametex, is the activation func- ~ for more detailed information). Since this type of algorithm
tion input, andg(x) is the activation value. This function is does not require tuning and the hidden layer parameters can
especially advantageous for use in neural networks trained bpe fixed, the optimal solution can be found with a system
back propagation, because it is easy to differentiate, and thugf linear equations using the least-squares method (pseudo-
can dramatically reduce the computation burden for training inverse) and avoiding problems related to gradient learning
It applies to applications whose desired output values are beMethods Bishop 2008, such as local minima encountered
tween 0 and 1. in the back propagatiorHaykin, 1999.
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4 Application of neural networks to cloud detection 4.2 Singular value decomposition for the OMI
using OMI VIS radiance measurements reflectance

To investigate the potential and limits of the application of During the training phase, the outputs of a NN come to ap-
neural networks for cloud screening, a representative data sg@rroximate the target values given the inputs in the training
for the observed phenomena is required. The training data seset. This ability may be useful in itself, but the purpose of us-
needs to be as complete as possible and of sufficient qualityng a NN is to have the outputs approximating target values
In the NN training phase of the cloud detection method, thegiven inputs that are not in the training set (generalization).
input consists of OMI measurements of TOA radiances in theSelection of an appropriate number of input variables is an
VIS part of the electromagnetic spectrum and collocated (inimportantissue in building a neural network with satisfactory
space) MODIS cloud fraction products as described below. generalization capabilities. The purpose of input variable se-
lection is to find the smallest set of features that can avoid

4.1 The OMI training input overfitting the NN and produce a smaller number of local
. ) ) ) . minima. The OMI reflectance data consists of 751 measure-
This section describes the OMI products included in themens for each pixel and a dimensionality reduction is desir-

training data set. able to save on computation time. Dimensionality reduction
OMI measures radiances at a large number of wavelength 1he transformation of high-dimensional data into a repre-

in the VIS band, but only part of these are used as describedeniation of lower dimensionality without losing valuable in-

in the next section. Radiances are converted to reflectancq%rmation To achieve this, we have used singular value de-

and scaled so that the input information for the neural ”et'composition (SVD), which is a method that converts a ma-

works has values between 0 and 1. The conversion was donlﬁx to its diagonal form Golub and Van Loan1998. In the

using equation: present study the SVD procedure was implemented as fol-
107 lows. | o
(5) Consider anV x M matrix X whereN > M. It is possi-
ble to represent this matrix in thedimensional subspace
wherep is the calculated reflectancejs the OMI measured Wherer < M. LetU = XXT andV = XX be non-negative
radiance at wavelengths between 349 nm and 504pns,  Symmetric matrices with the same eigenvalugsio, ..., A,
the solar zenith angle, andis the solar irradiance at wave- Which are ordered such that; > A2 >3 >...4,. The
lengtha. square roots of these eigenvalues are called the singular val-
OMI provides, at one wavelength (388 nm in the VIS), a ues ofX. If we form matricest and® from the correspond-
five times higher spatial sampling in the flight direction than ing eigenvectors ot andV, thenX can be diagonalized as
normal which is called small-pixel data. This capability can
be used to provide information about spatial inhomogeneity
in a pixel caused by, e.g., clouds and is therefore used as orfe
of the cloud detection criteria as mentioned in the Introduc-, hara A is the diagonal matrix of the eigenvalues, i.e.,

tion. The small pixel radiances are included in the Ievel-leiag(A) = [V V2 V] Basically, each singular
dgtal setl\(an den 00rq2003 and, after cogversmln t? smarlll— value represents the information content of the mafrigro-
pixel reflectances using Egb)( were used to calculate the jected into each subspace.

variance of the rgf_lectance in each OMI pixel. This value was The reduction of the reflectance data set is achieved by
added to the training data set. o _ using only that part of the diagonalized system where the
The solar zenith angle (SZA), providing information about eigenvalues are significant.

the measurement geometry, and the OMI Surface Reflectance

Climatology Data Product (OMLER) were also included to 4.3 MODIS cloud fraction training data

the training data set. OMLER is an OMI product describ-

ing the monthly climatology of the earth’'s surface Lamber- MODIS cloud fraction is used as reference data for training

tian equivalent reflectance (LER). LER is defined as the re-the neural networks. The spatial matching between OMI and

flectance of an isotropic surface which matches the observeMODIS pixels was performed using the method described

top of the atmosphere (TOA) reflectance in a purely Rayleighby Stammes et al(2008. In this procedure OMI ground

scattering atmosphere, i.e., in cloud- and aerosol-free condipixel latitude-longitude corner (OMPIXCOR) data are used

tions. The product has a spatial resolution of 88.5 de-  to construct boxes representing the pixel area. OMPIXCOR

grees and has been built by using five years of OMI data, obis a separate product which was used because the OMI Level

tained between January 2005 and December 2R&Spo0l, 1B data product provides geodetic latitude and longitude

2010. only for the center of each ground pixel. The MODIS geo-
located data is then searched for measurements falling within
each box and a MODIS pixel is considered to fall within a

P CosaL ('

—WADT, (6)
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Fig. 1. Neural-network feedforward structurg. represents theth input unit, andy represents the output unit.

particular OMI box if the center lies inside the OMI pixel number of hidden neurons was necessary. We trained several
boundary. The co-locations allow the use of MODIS dataNNs with BP and ELM and monitored the MSE and RMSE,
to determine the cloud fraction within an OMI pixel as the for BP and ELM, respectively, as a function of the number
number of cloudy pixels divided by the total number of of eigenvalues and hidden nodes. The combination of these
MODIS pixels falling within the considered OMI pixel. The parameters leading to the best performance on the test data
re-gridded data is then included in the training input as theset was used in the optimized NN. Each neural network was
reference data. trained with a separate model for land and ocean. Then BP
and ELM were compared as regards their performance when

4.4 Data set composition for training and NN structure  applied to the third, independent, validation subset.

The data set used in this study consists of the reflectance ob5 Results
tained from 11 randomly chosen OMI orbits. These orbits are

divided in three subsets as follows: six orbits are used for the'rhe back_propagation and extreme |earning machine a|go_
training data set, three orbits for the test data sets and the lagkhms were trained with the training data set and the final
two are used for independent validation. weights were applied to each single orbit of the test and vali-
The input data set for the NN consists of the OMI SVD- dation data sets. The accuracy of the cloud fraction estimates
reduced reflectance values, the OMLER climatological datayas determined. The performance of the learning algorithms
the solar zenith angles and the small pixel variances. Then predicting cloud fraction was assessed in terms of the per-
reference data set consists of the corresponding MODIS gecentages of the pixels resulting from the test and validation
ometrical cloud fraction. The different components of the gata sets which were estimated to be cloudy or clear by the
training data set which represents the input to the neural netyN;, in comparison with the same percentages as given by
work are shown in the block diagram in Fig. The neu-  the MODIS re-gridded cloud fraction.
ral network processes this information and provides the pre- |n these evaluations, two cloud thresholds were consid-
dicted cloud fraction. ered, i.e., 60% and 30%. A threshallr = 60 % implies
Because of the large differences between ocean and langhat 60 % of an OMI pixel contains clouds. Larger values of
measurements, different models for each situation are usef; imply that the pixel is cloudy while pixels with values
for each of the two neural networks used in this study (BPpelow the thresholds indicate they are cloud-free (clear). The

and ELM) To avoid OVerﬁtting of the NNS, Optimization OMI and MODIS results are Compared in F@
of the number of eigenvalues needed for the SVD and the

www.atmos-meas-tech.net/6/2301/2013/ Atmos. Meas. Tech., 6, 2&BD9 2013
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ues of 0.85 and 0.88 are observed over ocean, for ELM and
Fig. 3. Performance of backpropagation and extreme learning maBP, respectively. The ocean provides a homogeneous dark
chine in predicting cloud fraction for divided land and ocean pixels. syrface in the UV/VIS and a good contrast between cloudy

and clear pixels is expected. Over land the high reflectance

measurements from bright surface represent a challenge for

The histograms in Fig3 represent the percentages of cor- the NNs, although the ELM seems to be less effected than
rectly detected cloudy and cloud-free pixels for land andBP resulting in aR of 0.83 and 0.56, respectively, for ELM
ocean pixels in the validation subset for the two differentand BP.
thresholds and for cloudy and clear situations. The data in The cloud fraction obtained with the NN using BP or ELM
Fig. 3 show that both learning algorithms, BP and ELM, lead is compared with the MODIS geometrical CF for two valida-
to correct estimates of cloudy pixels for both threshold valuestion orbits in Fig.6 and Fig.7. In these figures, (a) shows
over both ocean and land in most situations. The NNs preserthe MODIS geometrical cloud fraction and the grey scale
inaccuracy when it comes to estimate small cloud fractionsindicates the cloud fraction between 0 (cloud-free) and 100
and on this problem the BP performs the worst. (100 % cloud-covered). (b, ¢) show the estimated cloud frac-
The cloud fractions estimated from OMI data using the tion from BP and ELM neural networks. (d, €) show the

neural network trained by ELM or BP are compared with difference between MODIS geometrical cloud fraction and
the MODIS re-gridded cloud fractions for each orbit of the the NNs estimates: the value 0 of the color scale represents
validation data set over ocean Fiyand over land Fig5. a perfect agreement between the cloud fraction of the two
The color scales provide a measure for the density number oflata sets, while a value of 100 indicates a total mismatch.
points. The images are organized in a matrix where the twdrl' he results in Figé and Fig.7 show that the cloud features
rows represent the two NNs and the two columns divide theare well detected, except over bright land surfaces (deserts).

Atmos. Meas. Tech., 6, 23012309 2013 www.atmos-meas-tech.net/6/2301/2013/
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Fig. 6. Cloud fractions estimated by the BP and ELM-trained NN Fig. 7. Cloud fractions estimated by the BP and ELM-trained
and comparison with MODIS CF data for the validation orbit NN and comparison with MODIS CF data for the validation orbit
2005m0828t1257(a) Computed MODIS geometrical cloud frac- 2006m0912t0828(a) Computed MODIS geometrical cloud frac-
tion re-located onto the OMI gridb) BP predicted cloud frac- tion re-located onto the OMI gridb) BP predicted cloud fraction.
tion. (c) ELM predicted cloud fraction The grey-code in figures a-c (¢) ELM predicted cloud fraction The grey-code {a—c) ranges
ranges from 0 (cloud free) to 100 (totally cloud coverdd). Ab-  from O (cloud free) to 100 (totally cloud coveredyl) Absolute
solute difference between MODIS geometrical cloud fraction anddifference between MODIS geometrical cloud fraction and BP-
BP-predicted cloud fraction. The color-code ranges from 0 (per-Predicted cloud fraction. The color-code ranges from 0 (perfect
fect match) to 100 (complete mismatcfg) Absolute difference be- ~ match) to 100 (complete mismatct() Absolute difference be-
tween MODIS geometrical cloud fraction and ELM-predicted cloud tween MODIS geometrical cloud fraction and ELM-predicted cloud
fraction. The color-code in pane{d) and(e) range from 0 (perfect ~ fraction. The color-code in pane{d) and(e) range from O (perfect
match) to 100 (complete mismatch) match) to 100 (complete mismatch)

The contribution of high ground reflectance to TOA misleads©Ve" land where the ground reflectance from bright surfaces,

the NNs to interpret the satellite radiance measurements as fCh @s deserts, misleads the NNs to interpret the high mea-
they were back reflected by clouds. sured reflectance as if it was reflected by clouds. The spectral

features alone can discriminate cloudy from clear pixels with
a reasonable accuracy when proper optimization of the NNs
has been performed.

Neural networks are attractive for cloud screening because

A neural networks-based solution has been explored as Qf their capability of high computgt!onal speed for 'afge data
contribution to detect the cloud fraction in OMI pixels us- SetS- Moreover, they rely on auxiliary data only during the

ing TOA radiation detected in the OMI VIS channels. This training and they are independent from the instrument plat-

study serves as a proof of concept rather than a full studyfo'™ Which makes the approach portable to other combina-
with extensive training and validation. Therefore only a lim- tions of instruments such as the combination of the TRO-

ited number of OMI orbits have been used in this study, i.e., aPOspheric Monitoring Instrument (TROPOMNgefkind et

data set of 11 OMI orbits was split in three independent dataal" 2012 and the Visible Infrared Imaging Radiometer Suite

sets for training, testing and validation. In view of the vast (VIIRS).

amount of data in the VIS channels from OMI, an SVD pro- _

cedure was applied to reduce the 751 channels without IoséCK,’l‘Ot‘)"l"edgegnemSA” R%Bd Nl')OD': granules arel p“bgdy

of information. This information, together with relevant aux- 2valable and are provided by the NASA Levell and At-

iliary information, was used as input to two neural network moshere Archive and Distribution System (LAADS) website:
. o . http://ladsweb.nascom.nasa.gov/data/search.htrithe  authors

learning algorithms, back propagation and ELM, and the re-,
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sults were compared with MODIS geometrical cloud frac- «\mi-omi team. Funding for this work was provided by the

tion data. To this end, the selected models of the NN providepp-TROPOMI project and Tekes (the Finnish funding Agency
good performances during validation. The correlation coeffi-for Technology and Innovation and Ministry of Transport and
cients between the reference MODIS cloud fraction and theCommunications).

estimated cloud fraction from NNs are found to be approx-

imately 0.85 over ocean. Worst performances are observegdited by: A. Kokhanovsky
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