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Abstract. The discrimination of cloudy from cloud-free pix-
els is required in almost any estimate of a parameter retrieved
from satellite data in the ultraviolet (UV), visible (VIS) or
infrared (IR) parts of the electromagnetic spectrum. In this
paper we report on the development of a neural network
(NN) algorithm to estimate cloud fractions using radiances
measured at the top of the atmosphere with the NASA-Aura
Ozone Monitoring Instrument (OMI). We present and dis-
cuss the results obtained from the application of two differ-
ent types of neural networks, i.e., extreme learning machine
(ELM) and back propagation (BP). The NNs were trained
with an OMI data sets existing of six orbits, tested with
three other orbits and validated with another two orbits. The
results were evaluated by comparison with cloud fractions
available from the MODerate Resolution Imaging Spectrom-
eter (MODIS) flying on Aqua in the same constellation as
OMI, i.e., with minimal time difference between the OMI
and MODIS observations. The results from the ELM and
BP NNs are compared. They both deliver cloud fraction es-
timates in a fast and automated way, and they both performs
generally well in the validation. However, over highly reflec-
tive surfaces, such as desert, or in the presence of dust layers
in the atmosphere, the cloud fractions are not well predicted
by the neural network. Over ocean the two NNs work equally
well, but over land ELM performs better.

1 Introduction

The retrieval of atmospheric constituents, such as aerosols
or trace gases, land or ocean surface properties from satel-
lite data requires accurate information on the presence of
clouds. Clouds strongly reflect incoming solar radiation in
the ultraviolet (UV), visible (VIS) and near infrared (NIR)
parts of the electromagnetic spectrum and affect the earth-
emitted radiation as detected in the thermal infrared (TIR)
part of the wavelength spectrum. In the UV/VIS the cloud
reflectance often overwhelms the contribution of other at-
mospheric constituents, most land surfaces and the ocean
surface, to the top-of-atmosphere (TOA) reflectance (Koele-
meijer and Stammes, 1999). For instance, for the retrieval
of aerosol properties all identified cloud-contaminated pix-
els are usually discarded (Martins et al., 2002). Cloud de-
tection is usually performed using several tests, depending
on information being available, and different algorithms have
been developed to extract information on cloud microphys-
ical properties (Ackerman et al., 1998; Kokhanovsky et al.,
2011). In this paper we are concerned with cloud detection,
or the determination of cloud fraction, rather than the re-
trieval of cloud microphysical properties. For cloud detec-
tion, the most consolidated methods are based on threshold-
ing techniques in histograms of the measured radiance, or re-
flectance, at certain wavelengths using empirically estimated
thresholds, or set with additional information coming from,
e.g., radiative transfer models (Dybbroe et al., 2005; Loy-
ola, 2006; Wu et al., 2006). For best results, a combination
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of TIR and UV/VIS and NIR wavelength bands is required.
However, such information is not always available and other
methods need to be applied.

In this paper we focus on cloud detection for the Ozone
Monitoring Instrument (OMI). The challenge is the coarse
spatial resolution and the lack of thermal channels. The cur-
rent method for the determination of the OMI cloud mask
is based on two individual tests (Stammes and Noordhoek,
2002): the first one uses a radiance threshold and the UV
aerosol index, while the second test considers the spatial ho-
mogeneity of the so-called small-pixel data (van den Oord,
2002). Pixels failing either of the two tests are classified as
cloudy (Acarreta and de Haan, 2002). We propose an ap-
proach using neural networks (NN) for the direct determi-
nation of the cloud fraction in each OMI pixel. The approach
is based on the use of the OMI radiance measurements in the
VIS part of the spectrum, together with cloud information
from the Aqua-MODerate Resolution Imaging Spectrometer
(MODIS). OMI and MODIS both fly in the A-train constella-
tion but on different platforms, respectively Aura and Aqua,
with a time lag of about 7 min. The proposed approach is
similar to that described inPreusker et al.(2008), where the
cloud screening problem for the Medium Resolution Imaging
Spectrometer (MERIS), suffering from a similar problem as
OMI in that there are no infrared channels, was solved by ap-
plying an NN trained with a database of simulated cloudy and
cloud-free spectra. In contrast, for the training we use real
data obtained from MODIS, with a spatial resolution which
is much higher than that of OMI, as reference data to deter-
mine the cloud fraction in an OMI pixel.

In recent years neural networks have been adopted for
a wide range of applications from atmospheric sciences to
electromagnetic modeling. The developed applications in-
clude, e.g., forward and inverse radiative transfer problems
(Krasnopolsky, 2008), the prediction of atmospheric param-
eters (Grivas and Chaloulakou, 2006), the inversion and post
processing of remotely sensed data (Mas and Flores, 2008;
Del Frate and Schiavon, 1998), ozone retrievals (Di Noia
et al., 2012; Sellitto et al., 2011, 2012), cloud classifica-
tion (Christodoulou et al., 2003), land cover classification
(Aitkenhead and Aalders, 2008), and feature extraction (Del
Frate et al., 2005). Below, we describe the design for the
cloud detection algorithm applied to OMI cloud fraction de-
termination.

Two different learning algorithms have been used for train-
ing the neural networks, namely the back propagation (BP)
and extreme learning machine (ELM). Results from the two
methods are reported and their performances over land and
ocean are analysed based on the comparison with an inde-
pendent set of MODIS cloud fraction data. The two neural
networks are trained with a training data set consisting of six
randomly selected orbits. They are subsequently applied to
the test data sets consisting of three other orbits, i.e., different
form the training data set, and validated using the validation
data set consisting of another two independent orbits.

2 Instruments

OMI is a nadir-viewing near-UV-visible spectrometer on
board NASA’s Earth Observing System (EOS) Aura satel-
lite. OMI measures radiances at 751 wavelengths covering
the UV/VIS wavelength range from 349–504 nmand two
UV channels (UV-1: 270–314 nm, UV-2: 306–380 nm). The
nominal ground footprint is 13× 24 km2 at nadir, in the nor-
mal global operation mode. Complete global coverage was
achieved daily (Levelt et al., 2006) between 2002 and 2008,
while after 2008 the global coverage is achieved in two days
due to the row anomaly (Yan et al., 2012) which affects the
quality of OMI level 1b radiance data. Aura flies in the A-
train satellite constellation, in a polar sun-synchronous orbit.
MODIS, on-board Aqua, produces many cloud related prod-
ucts (e.g., cloud fraction, cloud top pressure, cloud optical
thickness) (Hubanks, 2012; King and Bhartia, 1992; King et
al., 1998). In view of the short time separation between Aura
and Aqua of about 7 minutes, the MODIS products can be
used together with OMI products with quite high confidence
(Stammes et al., 2008; Vasilkov, 2008; Sneep et al., 2008).

3 Neural Networks

Neural network algorithms aim at identifying the relationship
between input and output variables by learning either from
real or simulated reference data, rather than directly from
the application of a representative physical model (Haykin,
1999; Karayiannis and Venetsanopoulos, 1993).

Owing to the fact that cloud properties are highly vari-
able and sometimes difficult to measure directly, neural net-
works with their adaptive learning nature offer an attractive
and computationally efficient alternative for cloud screening.
It has been proven that neural networks algorithms are able
to approximate any continuous multivariate non-linear func-
tion, provided that the learning data set is statistically rep-
resentative of the process to be modeled and an appropriate
structure for the network has been selected (Hornik et al.,
1989). Some applications to atmospheric sciences were ref-
erenced in the Introduction.

One important class of neural networks is the multilayer
perceptron (MLP) (Werbos, 1974). Figure1 shows the archi-
tectural graph of a multilayer perceptron with one input layer,
one hidden layer and an output layer. The input signal is fed
into the input layer, flows through the network on a layer-by-
layer basis, and emerges at the output layer of the network as
an output signal, the response of the network to the inputs.

A node receives inputs from neighbors or external sources
and uses them to compute an output signal that is propagated
to other units. Within the neural network there are three types
of nodes: input nodes, which receive data from outside of
the network, output nodes, which send data out of the net-
work, and hidden nodes, whose input and output signals re-
main within the network. The behavior of the output node
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depends on the activity of the hidden nodes and the weights
between the hidden and output nodes. The weights between
the input and the hidden nodes determine when each hid-
den node is active. In the MLP, the activation function of the
nodes is based on a differentiable non-linear activation func-
tion, yielding a value called the unit’s activation. These func-
tions enable the network to learn complex tasks by extract-
ing features from the input signal. Biases are simply weights
from a single node whose location is outside of the main
network and whose activation is always one (Bishop, 2008).
A multilayer perceptron requires to be trained and several
training algorithms have been developed for an MLP struc-
ture for example Levenberg–Marquardt, or Batch which are
discussed inKarayiannis and Venetsanopoulos(1993). More
details on artificial neural networks can be found inBishop
(2008), Ham and Kostanic(2001) andHaykin (1999).

In this work, two learning algorithms were applied to train
the MLP neural network, i.e., back propagation (BP) and ex-
treme learning machine (ELM).

3.1 Back propagation

The error back-propagation algorithm (Rumelhart et al.,
1986) is a popular learning algorithm used to train neural
networks by modifying the weights during the training phase
in order to model a particular learning task correctly for the
training examples (Haykin, 1999). The training phase up-
dates the weights iteratively using the negative gradient of a
cost function defined as the square of the norm of the error of
the current training input. Basically, error back-propagation
algorithms perform two passes through each layer of the net-
work: the first pass starts with the application of the input
vector to the input nodes of the network, and its effect is
forwarded trough the layers. This is the forward pass dur-
ing which all weights of the network are fixed. Then, a set
of output data is produced as the response of the network
to the input signal, and is subtracted from a desired (target)
response to produce an error signal. The error signal is propa-
gated backward through the network. This process represents
the backward pass. During the backward pass the weights are
adjusted to move the actual response of the network closer to
the desired one in a statistical sense. The model of each node
is based on a non-linear activation function.

A sigmoid activation function is used for the hidden nodes
and it is presented in the following equation:

g(x) = tanh(ax), (1)

wherea > 0 is a scaling parameter,x is the activation func-
tion input, andg(x) is the activation value. This function is
especially advantageous for use in neural networks trained by
back propagation, because it is easy to differentiate, and thus
can dramatically reduce the computation burden for training.
It applies to applications whose desired output values are be-
tween 0 and 1.

The back-propagation learning does not guarantee that the
final solution is the best one as the convergence of the MSE
is not checked. This should be taken into account when the
solution is analyzed.

3.2 Extreme Learning Machine

The extreme learning machine (Huang et al., 2006) uses a
special MLP network structure with one hidden layer where
the weights between the input layer and the nodes of the hid-
den layer are chosen randomly beforehand, and similarly for
the bias terms of the hidden layer nodes. The output layer is
to be taken linear. The extreme learning machine method for
neural networks consists of the following steps:

– Assume that we have a training setxi, ti, i =

1, 2, . . . ,N , wherexi is thei th input vector of dimen-
sionn, ti is the corresponding target vector of dimension
m, andN is the number of training data pairs.

– Choose the activation functiong(t) and number of
nodesM in the hidden layer. In our case, the selected
activation function isg(x) = tanh(wx + β).

– Assign randomly the hidden layer scaling parameter
vectorswj and biasesβj , j = 1,2, ...,M.

– Calculate theN × M hidden layer output matrixH. Its
elements are

hij = g(wT
j xi + βj ). (2)

– Calculate theM×m weight matrixB of the output layer
from

B = H+T, (3)

whereT = [t1, t2, . . . , tN ]
T is them × N target matrix

andH+ is the pseudo-inverse of the matrixH. The ma-
trix B is

B =


w1,m

w2,m

.

.

.

wM,m

 . (4)

This learning method requires an easy implementation and
it runs extremely fast as compared, for example, to the stan-
dard back-propagation algorithms (seeHuang et al., 2006,
for more detailed information). Since this type of algorithm
does not require tuning and the hidden layer parameters can
be fixed, the optimal solution can be found with a system
of linear equations using the least-squares method (pseudo-
inverse) and avoiding problems related to gradient learning
methods (Bishop, 2008), such as local minima encountered
in the back propagation (Haykin, 1999).
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4 Application of neural networks to cloud detection
using OMI VIS radiance measurements

To investigate the potential and limits of the application of
neural networks for cloud screening, a representative data set
for the observed phenomena is required. The training data set
needs to be as complete as possible and of sufficient quality.
In the NN training phase of the cloud detection method, the
input consists of OMI measurements of TOA radiances in the
VIS part of the electromagnetic spectrum and collocated (in
space) MODIS cloud fraction products as described below.

4.1 The OMI training input

This section describes the OMI products included in the
training data set.

OMI measures radiances at a large number of wavelengths
in the VIS band, but only part of these are used as described
in the next section. Radiances are converted to reflectances
and scaled so that the input information for the neural net-
works has values between 0 and 1. The conversion was done
using equation:

ρ(λ) =
I (λ)π

cos(θz)L(λ)
, (5)

whereρ is the calculated reflectance,I is the OMI measured
radiance at wavelengths between 349 nm and 504 nm,θz is
the solar zenith angle, andL is the solar irradiance at wave-
lengthλ.

OMI provides, at one wavelength (388 nm in the VIS), a
five times higher spatial sampling in the flight direction than
normal which is called small-pixel data. This capability can
be used to provide information about spatial inhomogeneity
in a pixel caused by, e.g., clouds and is therefore used as one
of the cloud detection criteria as mentioned in the Introduc-
tion. The small pixel radiances are included in the level-1B
data set (van den Oord, 2002) and, after conversion to small-
pixel reflectances using Eq. (5), were used to calculate the
variance of the reflectance in each OMI pixel. This value was
added to the training data set.

The solar zenith angle (SZA), providing information about
the measurement geometry, and the OMI Surface Reflectance
Climatology Data Product (OMLER) were also included to
the training data set. OMLER is an OMI product describ-
ing the monthly climatology of the earth’s surface Lamber-
tian equivalent reflectance (LER). LER is defined as the re-
flectance of an isotropic surface which matches the observed
top of the atmosphere (TOA) reflectance in a purely Rayleigh
scattering atmosphere, i.e., in cloud- and aerosol-free condi-
tions. The product has a spatial resolution of 0.5× 0.5 de-
grees and has been built by using five years of OMI data, ob-
tained between January 2005 and December 2009 (Kleipool,
2010).

4.2 Singular value decomposition for the OMI
reflectance

During the training phase, the outputs of a NN come to ap-
proximate the target values given the inputs in the training
set. This ability may be useful in itself, but the purpose of us-
ing a NN is to have the outputs approximating target values
given inputs that are not in the training set (generalization).
Selection of an appropriate number of input variables is an
important issue in building a neural network with satisfactory
generalization capabilities. The purpose of input variable se-
lection is to find the smallest set of features that can avoid
overfitting the NN and produce a smaller number of local
minima. The OMI reflectance data consists of 751 measure-
ments for each pixel and a dimensionality reduction is desir-
able to save on computation time. Dimensionality reduction
is the transformation of high-dimensional data into a repre-
sentation of lower dimensionality without losing valuable in-
formation. To achieve this, we have used singular value de-
composition (SVD), which is a method that converts a ma-
trix to its diagonal form (Golub and Van Loan, 1996). In the
present study the SVD procedure was implemented as fol-
lows.

Consider anN × M matrix X whereN ≥ M. It is possi-
ble to represent this matrix in ther-dimensional subspace
wherer ≤ M. Let U = XXT andV = XTX be non-negative
symmetric matrices with the same eigenvaluesλ1,λ2, ...,λr ,
which are ordered such thatλ1 ≥ λ2 ≥ λ3 ≥ . . .λr . The
square roots of these eigenvalues are called the singular val-
ues ofX. If we form matrices9 and8 from the correspond-
ing eigenvectors ofU andV, thenX can be diagonalized as

X = 938T, (6)

where 3 is the diagonal matrix of the eigenvalues, i.e.,
diag(3) = [

√
λ1,

√
λ2, . . . ,

√
λr]. Basically, each singular

value represents the information content of the matrixX, pro-
jected into each subspace.

The reduction of the reflectance data set is achieved by
using only that part of the diagonalized system where the
eigenvalues are significant.

4.3 MODIS cloud fraction training data

MODIS cloud fraction is used as reference data for training
the neural networks. The spatial matching between OMI and
MODIS pixels was performed using the method described
by Stammes et al.(2008). In this procedure OMI ground
pixel latitude-longitude corner (OMPIXCOR) data are used
to construct boxes representing the pixel area. OMPIXCOR
is a separate product which was used because the OMI Level
1B data product provides geodetic latitude and longitude
only for the center of each ground pixel. The MODIS geo-
located data is then searched for measurements falling within
each box and a MODIS pixel is considered to fall within a

Atmos. Meas. Tech., 6, 2301–2309, 2013 www.atmos-meas-tech.net/6/2301/2013/
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Fig. 1.Neural-network feedforward structure.xi represents thenth input unit, andy represents the output unit.

particular OMI box if the center lies inside the OMI pixel
boundary. The co-locations allow the use of MODIS data
to determine the cloud fraction within an OMI pixel as the
number of cloudy pixels divided by the total number of
MODIS pixels falling within the considered OMI pixel. The
re-gridded data is then included in the training input as the
reference data.

4.4 Data set composition for training and NN structure

The data set used in this study consists of the reflectance ob-
tained from 11 randomly chosen OMI orbits. These orbits are
divided in three subsets as follows: six orbits are used for the
training data set, three orbits for the test data sets and the last
two are used for independent validation.

The input data set for the NN consists of the OMI SVD-
reduced reflectance values, the OMLER climatological data,
the solar zenith angles and the small pixel variances. The
reference data set consists of the corresponding MODIS ge-
ometrical cloud fraction. The different components of the
training data set which represents the input to the neural net-
work are shown in the block diagram in Fig.2. The neu-
ral network processes this information and provides the pre-
dicted cloud fraction.

Because of the large differences between ocean and land
measurements, different models for each situation are used
for each of the two neural networks used in this study (BP
and ELM). To avoid overfitting of the NNs, optimization
of the number of eigenvalues needed for the SVD and the

number of hidden neurons was necessary. We trained several
NNs with BP and ELM and monitored the MSE and RMSE,
for BP and ELM, respectively, as a function of the number
of eigenvalues and hidden nodes. The combination of these
parameters leading to the best performance on the test data
set was used in the optimized NN. Each neural network was
trained with a separate model for land and ocean. Then BP
and ELM were compared as regards their performance when
applied to the third, independent, validation subset.

5 Results

The back-propagation and extreme learning machine algo-
rithms were trained with the training data set and the final
weights were applied to each single orbit of the test and vali-
dation data sets. The accuracy of the cloud fraction estimates
was determined. The performance of the learning algorithms
in predicting cloud fraction was assessed in terms of the per-
centages of the pixels resulting from the test and validation
data sets which were estimated to be cloudy or clear by the
NN, in comparison with the same percentages as given by
the MODIS re-gridded cloud fraction.

In these evaluations, two cloud thresholds were consid-
ered, i.e., 60 % and 30 %. A thresholdthr = 60 % implies
that 60 % of an OMI pixel contains clouds. Larger values of
thr imply that the pixel is cloudy while pixels with values
below the thresholds indicate they are cloud-free (clear). The
OMI and MODIS results are compared in Fig.3.

www.atmos-meas-tech.net/6/2301/2013/ Atmos. Meas. Tech., 6, 2301–2309, 2013
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Fig. 2. Block diagram of the proposed approach for training the
neural network. The training data set is composed of the target data
represented by the MODIS cloud fraction re-gridded onto the OMI
orbit, the compressed OMI reflectance vector data, and additional
data such as climatological data (OMLER), the solar zenith angle
and the computed small-pixel variance. These data form the input
vector which is fed to the neural network. The neural network re-
sponse is a predicted cloud fraction for the given orbit.

Fig. 3. Performance of backpropagation and extreme learning ma-
chine in predicting cloud fraction for divided land and ocean pixels.

The histograms in Fig.3 represent the percentages of cor-
rectly detected cloudy and cloud-free pixels for land and
ocean pixels in the validation subset for the two different
thresholds and for cloudy and clear situations. The data in
Fig. 3 show that both learning algorithms, BP and ELM, lead
to correct estimates of cloudy pixels for both threshold values
over both ocean and land in most situations. The NNs present
inaccuracy when it comes to estimate small cloud fractions
and on this problem the BP performs the worst.

The cloud fractions estimated from OMI data using the
neural network trained by ELM or BP are compared with
the MODIS re-gridded cloud fractions for each orbit of the
validation data set over ocean Fig.4 and over land Fig.5.
The color scales provide a measure for the density number of
points. The images are organized in a matrix where the two
rows represent the two NNs and the two columns divide the
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Fig. 4. Density plots showing the correlation between the cloud
fraction estimated by the neural networks used in this study and
MODIS data over ocean. Correlation coefficients (R) are shown in
each plot.
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Fig. 5. Density plots showing the correlation between the cloud
fraction estimated by the neural networks used in this study and
MODIS data over land. Correlation coefficients (R) are shown in
each plot.

orbits of the validation subset. Good correlations withR val-
ues of 0.85 and 0.88 are observed over ocean, for ELM and
BP, respectively. The ocean provides a homogeneous dark
surface in the UV / VIS and a good contrast between cloudy
and clear pixels is expected. Over land the high reflectance
measurements from bright surface represent a challenge for
the NNs, although the ELM seems to be less effected than
BP resulting in aR of 0.83 and 0.56, respectively, for ELM
and BP.

The cloud fraction obtained with the NN using BP or ELM
is compared with the MODIS geometrical CF for two valida-
tion orbits in Fig.6 and Fig.7. In these figures, (a) shows
the MODIS geometrical cloud fraction and the grey scale
indicates the cloud fraction between 0 (cloud-free) and 100
(100 % cloud-covered). (b, c) show the estimated cloud frac-
tion from BP and ELM neural networks. (d, e) show the
difference between MODIS geometrical cloud fraction and
the NNs estimates: the value 0 of the color scale represents
a perfect agreement between the cloud fraction of the two
data sets, while a value of 100 indicates a total mismatch.
The results in Fig.6 and Fig.7 show that the cloud features
are well detected, except over bright land surfaces (deserts).
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Fig. 6. Cloud fractions estimated by the BP and ELM-trained NN
and comparison with MODIS CF data for the validation orbit
2005m0828t1257.(a) Computed MODIS geometrical cloud frac-
tion re-located onto the OMI grid.(b) BP predicted cloud frac-
tion. (c) ELM predicted cloud fraction The grey-code in figures a-c
ranges from 0 (cloud free) to 100 (totally cloud covered).(d) Ab-
solute difference between MODIS geometrical cloud fraction and
BP-predicted cloud fraction. The color-code ranges from 0 (per-
fect match) to 100 (complete mismatch).(e)Absolute difference be-
tween MODIS geometrical cloud fraction and ELM-predicted cloud
fraction. The color-code in panels(d) and(e) range from 0 (perfect
match) to 100 (complete mismatch)

The contribution of high ground reflectance to TOA misleads
the NNs to interpret the satellite radiance measurements as if
they were back reflected by clouds.

6 Conclusions

A neural networks-based solution has been explored as a
contribution to detect the cloud fraction in OMI pixels us-
ing TOA radiation detected in the OMI VIS channels. This
study serves as a proof of concept rather than a full study
with extensive training and validation. Therefore only a lim-
ited number of OMI orbits have been used in this study, i.e., a
data set of 11 OMI orbits was split in three independent data
sets for training, testing and validation. In view of the vast
amount of data in the VIS channels from OMI, an SVD pro-
cedure was applied to reduce the 751 channels without loss
of information. This information, together with relevant aux-
iliary information, was used as input to two neural network
learning algorithms, back propagation and ELM, and the re-
sults were compared with MODIS geometrical cloud frac-
tion data. To this end, the selected models of the NN provide
good performances during validation. The correlation coeffi-
cients between the reference MODIS cloud fraction and the
estimated cloud fraction from NNs are found to be approx-
imately 0.85 over ocean. Worst performances are observed

Fig. 7. Cloud fractions estimated by the BP and ELM-trained
NN and comparison with MODIS CF data for the validation orbit
2006m0912t0828.(a) Computed MODIS geometrical cloud frac-
tion re-located onto the OMI grid.(b) BP predicted cloud fraction.
(c) ELM predicted cloud fraction The grey-code in(a–c) ranges
from 0 (cloud free) to 100 (totally cloud covered).(d) Absolute
difference between MODIS geometrical cloud fraction and BP-
predicted cloud fraction. The color-code ranges from 0 (perfect
match) to 100 (complete mismatch).(e) Absolute difference be-
tween MODIS geometrical cloud fraction and ELM-predicted cloud
fraction. The color-code in panels(d) and(e) range from 0 (perfect
match) to 100 (complete mismatch)

over land where the ground reflectance from bright surfaces,
such as deserts, misleads the NNs to interpret the high mea-
sured reflectance as if it was reflected by clouds. The spectral
features alone can discriminate cloudy from clear pixels with
a reasonable accuracy when proper optimization of the NNs
has been performed.

Neural networks are attractive for cloud screening because
of their capability of high computational speed for large data
sets. Moreover, they rely on auxiliary data only during the
training and they are independent from the instrument plat-
form which makes the approach portable to other combina-
tions of instruments such as the combination of the TRO-
POspheric Monitoring Instrument (TROPOMI) (Veefkind et
al., 2012) and the Visible Infrared Imaging Radiometer Suite
(VIIRS).
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