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Abstract Most face recognition approaches developed so

far regard the sparse coding as one of the essential means,

while the sparse coding models have been hampered by the

extremely expensive computational cost in the implemen-

tation. In this paper, a novel scheme for the fast face rec-

ognition is presented via extreme learning machine (ELM)

and sparse coding. The common feature hypothesis is first

introduced to extract the basis function from the local

universal images, and then the single hidden layer feed-

forward network (SLFN) is established to simulate the

sparse coding process for the face images by ELM algo-

rithm. Some developments have been done to maintain the

efficient inherent information embedding in the ELM

learning. The resulting local sparse coding coefficient will

then be grouped into the global representation and further

fed into the ELM ensemble which is composed of a number

of SLFNs for face recognition. The simulation results have

shown the good performance in the proposed approach that

could be comparable to the state-of-the-art techniques at a

much higher speed.

Keywords Extreme learning machine � Common feature

hypothesis � Sparse coding � Face recognition

Introduction

Cognitive science is the interdisciplinary study of mind and

intelligence, embracing philosophy, psychology, artificial

intelligence, neuroscience, brain theory, linguistics, and

anthropology [1]. Over the past few decades, there is a

variety of the cognitive-inspired computation for the image

processing and understanding [2–4]. Face recognition

remains among the most challenging research topic in the

cognition computation field. The main reasons include the

highly overlapping intra- and inter-identity distributions

due to the pose, age, expression, occlusion, and the external

imaging factors such as the variations of illumination.

In general, there are two steps in a face recognition

system. The first step is to define an effective representa-

tion of the face images, which contains sufficient infor-

mation for the future classification. The second step is to

classify a new face image with the chosen representation.

The approaches to face recognition can be basically divi-

ded into three categories [5]: global or holistic approach,
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local approach, and hybrid approach. The global approach

utilizes the entire face image information to construct

features for recognition [6]. This approach shows relatively

good performance for face images of the frontal view [6,

7]. However, it can be sensitive to variations that resulted

from the imaging factors. On the other hand, the local

approach does not suffer much from the imaging factors

since such variations affect the face image only partially

[8]. Some local methods also adopt blocks of appearances

such as the regions of the eyes, the mouth, and the nose as

the local features [9, 10]. Although the local approach

works well over the global approach for those face images

with variations [10, 11], most of the local methods are

required to locate the positions of the facial components

and extract them for feature construction [10–12]. The

hybrid approach utilizes both global and local facial

information and can be considered to be similar to that of

human’s recognition process, but it may bring a high

computational cost.

Most of the approaches described above for face rec-

ognition focus on the sparse coding. In the human vision

system, when the light falls on the retina at the back of the

eye, it converts into the electrical pulses immediately. After

various neural layers in the retina, the signals pass to the

lateral geniculate nucleus (LGN). The striate cortex struc-

ture is at the back of the brain, which is the primary visual

cortex, V1. The neurons in V1 take each input from a

number of geniculate neurons, and any individual neuron

can only see a small portion of the image that the eyes are

viewing. This small region is the receptive field and can be

characterized as being localized, oriented, and bandpass

[13]. Olshausen and Field [14, 15] have indicated that the

neural networks in the human vision system could perform

sparse coding of the learned features qualitatively similar

to the receptive fields of simple cells in V1. Sparse coding

provides a class of algorithms for finding the succinct

representations of the stimuli. Given the unlabeled input

data only, it learns the basis functions that capture the

higher-level features. When a sparse coding algorithm is

applied to natural images, the learned bases resemble the

receptive fields of the neurons in the visual cortex [14–16].

Moreover, sparse coding produces the localized bases

when applied to other natural stimuli such as the speech

and the video [17, 18]. Sparse coding can be applied to

learn overcomplete basis sets, and model inhibition

between the bases by sparsifying the activations. Efficient

sparse coding algorithms were also discussed by iteratively

solving the L1-regularized least squares problem and the

L2-constrained least squares problem [16]. For the face

recognition, Wright et al. [19] proposed to apply sparse

coding and achieved an impressive recognition perfor-

mance. Huang et al. [20] proposed a new sparse coding

recovery method that is invariant to image-plane

transformation to deal with the misalignment and pose

variation in face recognition. Wagner et al. [21] presented a

sparse representation-based method that could deal with

face misalignment and illumination variation, and Yang

and Zhang [22] used Gabor features to reduce greatly the

size of occlusion dictionary and got a higher accuracy.

However, most of the approaches to face recognition use

the face data sets to learn the basis function. Shan [23]

developed a hierarchical model, recursive ICA (RICA),

which captures nonlinear statistical structures of the visual

inputs that cannot be captured by a single layer of ICA.

Inspired by that, Shan [24] then carried out different rec-

ognition tasks by sparse coding learned from the natural

images. However, the development of sparse coding

models has been hampered by their expensive computa-

tional cost. In particular, learning large, highly overcom-

plete representations has been extremely expensive.

Recently, extreme learning machine (ELM) has attrac-

ted more and more attention in machine learning by pro-

viding the higher generalization performance at a much

faster speed [25, 26]. ELM was originally developed for

the single hidden layer feedforward networks (SLFN)

instead of the classical gradient-based algorithms [25–27],

then extended to the generalized SLFN that need not be the

neuron alike [28, 29], and can work for the conventional

SVM and its variants. The essence of ELM is that: When

the input weights and the hidden layer biases are randomly

assigned, the output weights can be computed by the

generalized inverse of the hidden layer output matrix [25,

26]. There are a great many ELM variations that have been

proposed, including the random hidden layer feature

mapping-based ELM [30], the Kernel-based ELM [30–32],

the fully complex ELM [33], the incremental ELM (I-

ELM) [27–29], the online sequential ELM (OS-ELM) [34–

36], the pruning ELM (P-ELM, OP-ELM) [37, 38], the

circular-ELM (C-ELM) [39], ELM ensembles [40, 41],

etc., which have led to the state-of-the-art results in many

applications both for the regression and for the pattern

recognition problem [42–46].

In this paper, we come up with a new fast face recog-

nition algorithm via sparse coding and ELM. We firstly set

up the common feature hypothesis to focus on the sparse

coding of the local universal images and then extract the

basis function in common. The image patches and the

corresponding sparse coding coefficients in the last itera-

tive step are then taken into the established SLFN so that

the whole learning process could be simulated by the ELM

algorithm for the face images. With some developments in

the high-dimensional space such as the whitening, the

principal component analysis (PCA), and the nonlinear

transformations, the resulting local sparse coding coeffi-

cients will be organized into a global representation and

further fed into the ELM ensemble for face recognition.
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The rest of the paper is organized as follows. In ‘‘The

Basics of ELM’’ section and ‘‘Sparse Coding’’ section, we

will first introduce the basic theory of ELM and sparse

coding. The ‘‘Fast Face Recognition’’ section will describe

the whole process of our proposed method in detail. Sim-

ulation and result analysis will be shown in the ‘‘Simula-

tions and Result Analysis’’ section. Finally, ‘‘Conclusion’’

section will make a conclusion for the paper.

The Basics of ELM

So far, ELM learning has been developed to work at a much

faster learning speed with the higher generalization perfor-

mance, both in the regression problem and in the pattern

recognition. For the given N learning samples fxi; yigN
i¼1,

where xi ¼ xi1; xi2; . . .; xin½ �
0

and yi ¼ yi1; yi2; . . .; yim½ �
0
, the

standard model of the ELM learning can be written as the

following matrix format:

Hb ¼ Y

HðxÞ ¼ h1 h2 � � � hL½ �

¼

h1ðx1Þ : : : hLðx1Þ
: : :

: : :

: : :

h1ðxNÞ : : : hLðxNÞ

2
6666664

3
7777775

¼

gðx1 � x1 þ b1Þ : : : gðxL � x1 þ bLÞ
: : :

: : :

: : :

gðx1 � xN þ b1Þ : : : gðxL � xN þ bLÞ

2
6666664

3
7777775

N�L

b ¼ b1; b2; . . .; bL½ �
0

m�L; Y ¼ y1; y2; . . .; yN

� �0
m�N

ð1Þ

where xi ¼ xi1;xi2; . . .;xin½ �
0

is the weight vector con-

necting the ith hidden neuron and the input neurons, bi ¼
bi1; bi2; . . .bim½ �

0
denotes the weight vector connecting the

ith hidden neuron and the output neurons, and there are L

hidden neurons with the activation function gðxÞ. All kinds

of the activation functions can be chosen here, such as the

Sigmoid function, the hard-limit function, the Gaussian

function, the multiquadric function, and so on.

If the activation function gðxÞ, x, and b are all set, the

only learning parameter will be b. Different from the tra-

ditional learning algorithm, ELM tends to achieve the least

training error and the least norm of output weight together.

According to Bartlett’s theory [47], when the feedforward

neural networks get smaller training error, the norms of

weights are smaller, and the generalization performance of

the networks is better, b ¼ arg minðjjHb� Yjj2; jjbjjÞ. In

order to solve the formation, both the standard optimization

method and the minimal norm least square method need to

be adopted. The original implementation of ELM will then

be b ¼ HyY, where Hy denotes the Moore–Penrose gen-

eralized inverse of matrix H [25]. The orthogonal projec-

tion method can be used here when HTH is nonsingular

and Hy ¼ ðHT HÞ�1HT , or when HHT is nonsingular and

Hy ¼ HTðHT HÞ�1
. In addition, the resulting solution tends

to be more stable with better generalization performance by

adding a positive value to the diagonal of HHT or HTH.

Sparse Coding

Sparse coding was first coined by Olshausen and Field [14,

15], which attempts to find the sparse linear representations

of the certain image with respect to an overcomplete dic-

tionary and provide more efficient sparse coding, similar to

the primary visual cortex in the human visual system. The

basic model of the sparse coding can be denoted as a sparse

linear superposition of the basis functions,

X ¼ DA ð2Þ

where X ¼ ½x1; x2; . . .; xd�
0
2 Rd represents the image patch

in a d-dimensional space, A ¼ ½a1; a2; . . .; at�
0
2 Rt corre-

sponds to the sparse representation coefficients of the ori-

ginal image patch X in a t-dimensional space, and D refers

to a d 9 t matrix of the basis functions. The goal of the

sparse coding is to find the basis function matrix D so that

the dynamic coefficient values A can be as statistically

independent as possible over an ensemble of the images,

and bear the sparse structure, i.e., a specific low entropy

code where the probability distribution of each coeffi-

cient’s activity is unimodal and peaked around zero.

Generally, sparse coding can be formulated as the opti-

mization problem by minimizing the following cost function

E, E ¼ X � DAk k2
2þk Ak k1, where the sparse coding will be

obtained by minjjAjj1; s:t: X � DAk k2
2� e, the L1 norm

jjAjj1 is to enforce sparseness, the L2 norm constraint

X � DAk k2 on the columns of D can remove the scaling

ambiguity, and k is a positive Lagrange multiplier that

determines the importance of the second term relative to the

first one. By imposing L1 norm regularization on represen-

tation coefficients, sparse coding can be solved efficiently

[15]. As sparse coding needs to encode a large set of image

patches, the bottleneck is mainly the computational speed.
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Fast Face Recognition

General Learning Model

The idea of the fast face recognition here is that we try to

apply one common feature hypothesis into the basis func-

tion of the sparse coding in common from the universal

image patches instead of directly from face image patches

by means of ELM learning in SLFN. The flowchart of our

approach is shown in Fig. 1, where the left part represents

the learning process of the important parameters extracted

from the universal images, and the right part is referred as

the test process for face recognition. The key points in our

approach are the sparse coding from the universal image

patches and the ELM learning of the face image patches.

Before formally simulating the basis function D in the

sparse coding of the universal images, some preprocessing

has been first done, such as dividing the images into pat-

ches, whitening, and the dimensionality reduction. A

number of common visual features can then be extracted

from randomly collected universal images after being

adjusted by one nonlinear transformation, and the universal

image patches X0 = X and the underlying sparse repre-

sentation A0 = A will be acquired in the iteration process at

the same time. The embedding basis function D of the

universal images will be simulated by the ELM algorithm

Natural images Face images

Image patch decompositionWhitening

Sparse coding

ELM for Sparse coding
0X 0A

Principal Component 

Common Feature Extraction D

X

A

Nonlinearity

ELM ELMELM

Image sparse representation S

kP
kω

*k

Face recognition

Fig. 1 Flowchart of our approach
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in the learning process so that we can make efforts to

achieve the sparse coding vectors A from the image patches

X for the face images once the SLFN for simulation is

reasonably established. The resulting sparse coding repre-

sentation S of each face image will be further fed into the

next SLFN in the test process for face recognition. The

decision k* will be made in an ensemble, by the output Pk

and the importance weight xkfor the individual SLFN of

the kth person.

Common Feature Hypothesis

Let there be K persons fP1; . . .;Pk; . . .;PKg; each person Pk

corresponds to Q face images fIk
1; . . .; Ik

q; . . .; Ik
Qg, where Ik

q

denotes the qth image of the given person Pk. For the

human visual system, one notable advantage is that human

beings can recognize one person at a simple glance of only

a few or even one of the face images, while most face

recognition approaches developed so far in the computer

vision system depend on a huge number of face images for

learning, which are poorly available when the image col-

lection is generally expensive.

With a deep analysis of the human visual system, it is

found that the low-level visual layers, such as retina, LGN

and V1 (the primary visual cortex), are shared components

that process all the visual information we perceive. These

layers develop and mature gradually since childhood and

provide the basis with common features from the scenes

encountered for all the visual tasks in life.

Therefore, the concept of the common feature hypoth-

esis suggests that all visual stimuli share characteristics in

common such that the knowledge from one set of visual

stimuli can be applied to a completely different one. So,

here, we try to extract those common visual features that

are essential for face recognition from a set of the universal

images, e.g., the nature images, and provide the informa-

tion for the ELM learning in the next step. Suppose that the

number of the natural images is n, fI1; . . .; Ii; . . .; Ing, there

must be some inherent common visual features D that can

be extracted both in the natural images and in the face

images.

Fnature � f I1; . . .; Ii; . . .; Inð Þ;
Fface � f Ik

1; . . .; Ik
q; . . .; Ik

Q

� �
; D 2 Fnature \ Ffacef g

ð3Þ

where f denotes the attribution extraction function, Fnature

and Fface are, respectively, the typical features obtained

from the output of the function f by the natural images and

face images, and D represents those knowledge that are

shared by the different sources of the visual stimuli. One

example of the common feature hypothesis is shown in

Fig. 2, where the left column are, respectively, one natural

image and one face image, and Fig. 2b, d are the corre-

sponding top eigenvectors when sampling image patches

and applying PCA to the images. Although the natural

image and the face image display different visual contents,

they share very similar local statistical structure here.

Sparse Coding with ELM

Whitening

Suppose the size of each natural image is M 9 M, the

natural images are first transformed by a whitening filter

and then normalized to follow a Gaussian function with the

zero-mean vector and the unit variance. It is believed that a

surprising fact in the human visual system is that there does

exist the marginal distribution regularization process and

the sensory inputs are whitened in the retina and the LGN

before the transmission to V1. Besides the functional role

of removing the second-order pairwise redundancy as the

natural images obey the 1/f power law in the frequency

domain, whitening might also serve as formatting the

sensory input for the cortex so that the basis function could

cover a broad range of spatial frequencies. The steps of the

whitening process are as follows. To avoid the boundary

effects, before dividing the natural images into all the

possible image patches, we will first cut a number of pixels

m off the boundary to change each image into a (M -

2 m) 9 (M - 2 m) size. Afterward, we make a subtraction

Fig. 2 Common feature hypothesis. a Natural image. b Top eigen-

vectors. c Face image. d Top eigenvectors
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of each image patch in a range of p 9 p size by the local

mean, and the PCA projection matrix PJ will be further

calculated. In this way, each image patch can be repre-

sented as a (p2 - 1)-dimensional vector x and then be

scaled to the unit variance. Figure 3 shows one example of

the whitening process, which regulates the marginal dis-

tribution of the original image to follow a generalized-

Gaussian-like distribution.

Sparse Coding

The basis function D will be initialized with the Gaussian

random variables, and then, on each iteration, we randomly

pick N image patches to form X ¼ ðx1; x2; . . .;N Þ after PCA

projecting. Assuming the sparse coding coefficients, A ¼
ða1; a2; . . .; aNÞ follow a marginal prior as follows:

PðajÞ / exp �cUðajÞ
� �

ð4Þ

where aj refers to the jth dimension for each coefficient, c
is a scaling constant, and U refers to the sparsity function

that can be taken as UðajÞ ¼ aj

�� ��
1

by imposing L1 norm.

The above nonlinear function will assess the sparseness of

the code for the given natural image by assigning a cost

depending on how activity is distributed among the

coefficients. The cost function we construct for the sparse

coding takes the sum of each coefficient’s activity to meet

the criterion and the choice of the nonlinear function will

favor among activity states with the fewest number of

nonzero coefficients. The new basis function D will then

come into being from the corresponding sparse

representation A for the next iteration,

D ¼ Dþ g
N

XN

i

xi � Daið Þa0i ð5Þ

where g denotes the learning rate, and ai is the most

probable underlying signal given the image patch obser-

vation xi and the current basis function D. After each

update, the columns of A are normalized to unit length to

speedup the learning process.

When the number of the iteration steps approaches what

we allocate in advance, the final basis function D, the

image patches X0, and the corresponding sparse represen-

tation A0 will be obtained from the natural images in the

end, where X0 = X is a collection of the N natural image

patches and A0 = A is the underlying sparse representation

of all the extracted image patches in the last iteration step.

-3 -2 -1 0 1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

12000

(a) (b) 

-6 -4 -2 0 2 4 6

2000

4000

6000

8000

10000

12000

(c) (d)

Fig. 3 Distribution of the pixel

values in the whitening process.

a Original image. b Distribution

of the original image. c Image

by the whitening transform.

d Distribution in the whitened

image
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In this way, X0 takes on a N � ðp2 � 1Þ matrix and A0 a

N 9 p2 matrix, respectively.

Nonlinearity

A further development to convert the highly sparse distri-

bution of the output A into a Gaussian distribution will be

introduced here with the utility of the component-wise

nonlinear function. For each dimension aj of A, the

empirical cumulative distribution function (CDF) of the

absolute value aj

		 		 will be first estimated by calculating the

histogram of aj

		 		 in the range of the bins between bmin and

bmax, and the size of each bmin is b. After this, the CDF

function will then be fitted as follows:

Fj jajj
� �

¼ C ðjajj=sÞh; 1=h
� �

ð6Þ

where C denotes the incomplete Gamma function,

Cðx; yÞ ¼
Rþ1

y
tx�1e�tdt, h[ 0 is a shape parameter, and

s[ 0 is a scale parameter. The function F can further

modify the sparse coding coefficients to help distinguishing

by the coordinate-wise activation function GðajÞ ¼
gðFðjajjÞÞ, where g denotes the inverse CDF function of a

standard normal distribution. In this way, the activation

function discards the signs of the outputs and converts the

marginal distributions to the Gaussian distributions, so that

the common feature extracted from the natural images can

further be embedded into the ELM learning.

ELM Learning

During the above learning process, in addition to that, the

basis function D will be derived from the natural images

for the common feature extraction. Simultaneously, after

taking a series of the iterative steps, the latest image pat-

ches X0 and the corresponding sparse coding representa-

tions A0 will also be obtained, which can be denoted as the

image package P0 ¼ fX0;A0g for an easy expression.

Similarly, all the face images will also be firstly prepro-

cessed and whitened as the natural images, and after PCA

projecting, all the N0 possible image patches will be col-

lected to constitute X ¼ ðx1; x2; . . .; xN
0 Þ from the face

images. Suppose that there are N arbitrary distinct training

samples P0 ¼ fx0;i; a0;igN
i¼1, with the input x0;i ¼

½yi;1; yi;2; . . .; yi;p�p�1�
0
2 Rp�p�1 and the expected output

a0;i ¼ ½zi;1; zi;2; . . .; zi;p�p�0 2 Rp�p. We take the natural

image patches X0 as the inputs for SLFN to predict the

sparse coding coefficients of the face image patches with

the underlying common feature strategy conducted by

ELM:

Hb ¼ A0

H x1; . . .;xL; b1; . . .; bL; x0;1; . . .; x0;N

� �

¼

gðx1 � x0;1 þ b1Þ � � � gðxL � x0;1 þ bLÞ
..
.

gðxi � x0;j þ biÞ ..
.

gðx1 � x0;N þ b1Þ � � � gðxL � x0;N þ bLÞ

2
664

3
775

N�L

b ¼ b1;b2; . . .;bL½ �
0

p2�L; A0 ¼ a0;1; . . .; a0;N

� �0
p2�N

ð7Þ

where every input x0;j is composed of the natural image

patch and each expected output is the sparse coding

representation a0;j. The SLFN is established and initialized

to learn the sparse coding process from the natural images.

When we feed the SLFN with the face image patches X, the

actual output will be considered as the estimation of the

corresponding sparse coding coefficients:

aj ¼
XL

i¼1

big xi � xj þ bi

� �
; j ¼ 1; . . .;N

0 ð8Þ

For the face recognition problem, theoretically, the

model selection of the ELM architecture could be

evaluated by the generalization error as follows:

E ¼ lim
N 0!1

XN 0

j¼1

FðxjÞ � aj

� �2
=N

0
; j ¼ 1; . . .;N

0 ð9Þ

where F is the input–output function of the ELM learning,

xj is the face image patch, FðxjÞ ¼ âj is the real output of

the SLFN corresponding to input, and aj is the expected

output. In practice, the leave-one-out (LOO) cross-

validation could be a good choice for the model selection

in SLFN, which is basically a special case of k fold cross-

validation in the case where k = N0. All the face image

patches are divided into N0 parts for the training sets; in

each one, there is exactly one sample that has been left out

for testing, and then the estimation of the generalization

error becomes

E ¼
XN0

j¼1

Fðxj;�jÞ � aj

� �2
=N

0
; j ¼ 1; . . .;N

0 ð10Þ

where Fðxj;�jÞ denotes the output of the jth training sets

without the jth sample. The parameters H such as the size

of the image patch p 9 p and the number of the hidden

neurons L will be chosen by the minimum generalization

error H ¼ arg minH E.

Face Recognition with ELM

For the face recognition, suppose that the number of all the

face images is Q
0 ¼ K � Q, the size of each face image is

M0 9 M0, the training set is composed of the Q
0
1 labeled

images from the known persons, and the rest Q
0
2 face
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images unlabeled constitute the test set, Q
0
1 þ Q

0
2 ¼ Q

0
. The

total amount of the sparse coding representations A ¼
ða1; a2; . . .; aN

0 Þ is N
0 ¼ Q

0 �M
0 �M

0
=p� p. During the

test process, on the basis of the prior knowledge getting

from the ELM learning by the decomposition of the face

images, we further feed the next SLFN to perform face

recognition by ELM algorithm:

Hb ¼ P

H x1; . . .;xL; b1; . . .; bL; S1; . . .; SQ
0
1

� �

¼

gðx1 � S1 þ b1Þ � � � gðxL � S1 þ bLÞ
..
.

gðxi � Sj þ biÞ ..
.

gðx1 � SQ
0
1
þ b1Þ � � � gðxL � SQ

0
1
þ bLÞ

2
664

3
775

Q
0
1
�L

b ¼ b1; b2; . . .; bL

� �0
K�L

; P ¼ P1; . . .;Pk; . . .;PK½ �
0

K�Q
0
1

ð11Þ

where Sj denotes the sparse coding representation which is

made up of the coefficients fa1; a2; . . .; a
N
0=Q

0 g for the

image patches derived from the given jth face image Ij in

the training set. The recognition process is to specify the

membership of the face image to be recognized by the

mapping with respect to the ELM learning:

Pj ¼
XL

i¼1

bigðxi � Sj þ biÞ; j ¼ 1; . . .;Q
0

2 ð12Þ

where Sj corresponds to the sparse coding representation of the

face image Ij in the test set, and Pj ¼ Pj1; . . .;Pjk; . . .;PjK

� �0
is

the output of the SLFN from the input Sj.

ELM ensemble can be further set up here to improve

generalization performance, with every person an individual

SLFN. Hansen and Salamon [48] showed that the perfor-

mance of a single neural network can be expected to improve

by the ensemble with a plurality consensus scheme. The

underlying is to generate multiple versions of recognition

process for the same task which when combined will improve

the interpretation and provide more stable predictions about

the faces. The learning process in the ELM ensemble is to take

a linear fusion strategy of the individual outputs. The decision

will be made by k� ¼ arg maxK
k¼1 xkPk, where K is number of

the persons, Pk is the output of kth SLFN, and xk corresponds

to the importance weight, 0�xk� 1. In this case, the output

of each individual can be pruned to Pk 2 R for simplification,

and the combination weights could all set to be equal when

face images from every person make the same contribution to

the optimal cognition course.

Fast Face Recognition Algorithms

The efficient sparse coding is introduced here to apply on

the natural image patch vectors [16]. When the standard

generative model assumes that X - DA is distributed as a

zero mean Gaussian distribution, the algorithm is as

follows:

Algorithm 1 Basic sparse coding

1. Input all the image patches and set the parameter k.

2. Initialize the basis function matrix D, the sparse coding matrix

A with a Gaussian random matrix

3. For t = 1: T

Random select N image patches X ¼ ðx1; x2; . . .; xNÞ from

all image patches

For t = 1: N

Apply the feature-sign search algorithm

Compute the sparse coding coefficient

ai ¼ arg min xi � Daik k2
2þk aik k1 for each image patch xi

End

Update the basis function matrix DT ¼ ðaia
T
i þ KÞ�1

ðxia
T
i Þ

T
where

K ¼ diagðkÞ
Get the sparse coding matrix A ¼ ða1; a2; . . .; aNÞ

End

4. Set X0 = X, A0 = A, D as the outputs

The feature-sign search algorithm maintains an active

set of the potentially nonzero coefficients and their corre-

sponding signs and systematically searches and converges

to the optimal solution [16].

Algorithm 2 Feature-sign search

1. Initialize the sparse coding coefficient a ¼ 0
!

, the feature-sign

vector v ¼ 0
!

, and the active set U ¼ fg, where vi 2 f�1; 0; 1g
denotes the sign of aj

2. From the zero coefficients of a, select j ¼ arg maxj
o x�Dak k2

oaj

			
			 and

activate aj only if it locally improves the objective

If
o x�Dak k2

oaj
[ k; set vj ¼ �1; U ¼ fjg [ U

If
o x�Dak k2

oaj
\� k; set vj ¼ �1; U ¼ fjg [ U

3. Set bD as a submatrix of D that contains only the columns

corresponding to U

Set ba and bv as the subvectors of a and v corresponding to U

Compute the analytical solution to the resulting unconstrained

quadratic optimization problem (QP),

banew ¼ ðbDT bDÞ�1ðbDT x� kbv=2Þ
Perform a discrete line search on the closed line segment from

ba to banew

Check the objective value at banew and all the points where any

coefficient changes sign

Update ba and the corresponding entries in x to the point with

the lowest objective value
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The sparse coding with ELM is performed on the basis

of the OP-ELM algorithm, which starts with a large SLFN

by the original ELM algorithm and then ranks and elimi-

nates the hidden nodes by the multi-response sparse

regression algorithm (MRSR) and the LOO validation [38].

Simulations and Result Analysis

Basis Function

In our simulation, the common feature was first extracted

from the natural images by the efficient sparse coding

algorithm. Figure 4 shows the original natural images.

Multiple sets of common features with different dimen-

sionality were taken here to evaluate the effect of over-

completeness for the recognition performance, i.e., the

ratio between the dimensionality of the sparse coding

confident a0;i and the image patch x0;i. Figure 5a, b is the

basis functions learned when M = 512, N = 100, and

p = 4, p = 8, respectively, and Fig. 5c displays the 128

basis functions learned on natural image patches when

p = 8.

Sparse Coding

Some classical face images were then taken to perform face

recognition by means of the sparse coding with ELM, such

as the ORL and PIE database. Here, we took the contri-

butions in Shan and Cottrell [24] as the reference for our

direct sparse coding. Figure 6 shows the difference of the

square error in the sparse coding representation between

the direct method and the proposed ELM method. As is

shown, the difference of the two methods is quite small and

it is possible to neglect the error and take the sparse coding

extracted by ELM instead.

Algorithm 2 continued

Remove the zero coefficients of the ba from U and update

v ¼ signðaÞ
4. If the optimality conditions for nonzero coefficients is satisfied,

o x�Dak k2

oaj
þ ksignðajÞ ¼ 0; 8aj 6¼ 0

If the optimality conditions for zero coefficients is satisfied,
o x�Dak k2

oaj

			
			� k; 8aj ¼ 0

Set a as the optimal solution

Else

Go to step 2

Else

Go to step 3

End

Algorithm 3 OP-ELM

1. Input the latest image patches X0 and the corresponding sparse

coding matrix A0 from the natural images, the face image

patches X, the activation function g and the maximum number of

the hidden nodes Lmax, i.e., a large enough number denoting the

number of kernels

2. Initialize the input weight W, the biases b with the random

matrix

Set the number of the hidden nodes as Lmax

Calculate the hidden neuron output matrix H ¼ gðW � X0 þ bÞ
and set the ith column of the hidden node matrix H as hi

3. Rank the output of the hidden neuron hi by their performance

Calculate the output weight b ¼ HyA0 by the Moore–Penrose

pseudo-inverse

4. For i ¼ 1 : Lmax

Get a submatrix of H that contains the columns from h1 to hi

Create a N-dimensional unit vector IN�1 ¼ ½ 1 1 � � � 1 �
0

Construct the new matrix Hi ¼ h1; � � � ; hi; IN�1½ �N�ðiþ1Þ

Introduce and compute the output weight matrix Ci that

satisfies Ci ¼ H
y
i A0

Calculate the error vector ei ¼ A0�HiCi

1�HiðHHT Þ�1
Hi

for each pixel in

the image patch

End

Construct the generalization error matrix e ¼ ðe01; e
0

2; . . .; e
0

Lmax
Þ
0

Set the number of hidden nodes as

LðjÞ ¼ arg miniðeði; jÞÞ; j ¼ 1; . . .; p2

For j ¼ 1 : p2

Get a submatrix of H that contains the columns from h1 to hLðjÞ

Algorithm 3 continued

Create a N-dimensional unit vector IN�1 ¼ ½ 1 1 � � � 1 �
0

Construct the new matrix HLðjÞ ¼ h1; . . .; hLðjÞ; IN�1

� �
N�ðLðjÞþ1Þ

Calculate the output weight matrix RLðjÞ ¼ ðr1; r2; . . .; rp2 Þ by

the Moore–Penrose pseudo-inverse, RLðjÞ ¼ H
y
LðjÞA0

End

5. Calculate again the hidden neuron output matrix

H ¼ gðW � X þ bÞ
6. For j ¼ 1 : p2

Get a submatrix of H that contains the columns from h1 to hLðjÞ

Create a N0-dimensional unit vector IN 0�1 ¼ ½ 1 1 � � � 1 �
0

Construct the new matrix HLðjÞ ¼ h1; . . .; hLðjÞ; IN 0�1

� �
N 0�ðLðjÞþ1Þ

Input the output weight matrix RLðjÞ ¼ ðr1; r2; . . .; rp2 Þ
Calculate the jth row of the sparse coding coefficient Aj ¼
HLðjÞrj for face images

End

Set the sparse coding representation A ¼ A1;A2; . . .;Ap2

� �
N
0 �p2 as

the output
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The recovery strategy was adopted to further evaluate

the performance of the two methods, by calculating

X = DA. Figure 7 shows the example images recovered by

the two methods, respectively. The peak signal-to-noise

ratio (PSNR) as well as the running time of the sparse

coding representation for one single image was taken here

as some criterion for the performance evaluation of the two

methods, and Table 1 lists the results for the face images

Fig. 4 Original natural images

Fig. 5 Basis functions. a Basis function when p = 4. b Basis

function when p = 8. c 128 basis functions learned on image patches

with p = 8

0 10 20 30 40 50 60 70
0

0.01
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0.06

0.07

dimensionality
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Fig. 6 Difference of the sparse coding representation
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shown in Fig. 7. Form the above evaluation, it was found

that the ELM algorithm could recover the face images very

well and sometimes tend to get a higher PSNR and less

distortion than the direct sparse coding method. In addition,

the running time of the ELM method was less than what the

classical sparse coding cost, which guaranteed that the

approach we proposed could outperform many recent

techniques for face recognition at a much faster speed.

Face Recognition

ORL Database

ORL database is composed of 400 face images of 40 per-

sons taken at different time, under different lighting con-

ditions and with different facial expressions, with each

person 10 images. Figure 8 shows the example images

from ORL. The original face images were first scaled into

32 9 32. Taking p = 8 as an example, each face image

was decomposed into all the 625 9 8 9 8 image patches

and represented by a 625 9 63 matrix after the PCA pro-

jection. The output of the first ELM learning algorithm was

a 625 9 64 matrix for the sparse coding, which could be

represented as a 40,000 dimensional vector for each image

and feed the input of the next SLFN for face recognition.

During the recognition stage, we randomly selected

Q
0

1 ¼ 2; . . .; 8 images from each person as the training set,

Fig. 7 Sparse coding recovery.

a Original images. b Images by

whitening transform. c Images

recovered by sparse coding.

d Images recovered by ELM

Table 1 Performance evaluation

Methods Performance evaluation

PSNR (db) Running time (s)

Image 1 Image 2 Image 1 Image 2

Sparse coding 52.7 54.7 2.02 2.11

ELM 53.34 55.8 0.57 0.75

Fig. 8 ORL face images
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and the rest constitutes the test set. For each Q
0
1, 50 random

splits were taken for the recognition performance. The

principal components were extracted to make sure 95 % of

the variance was captured, and with the increase of Q
0
1, the

number of the principal comments ranged from 27 to 105.

Tables 2 and 3 list the average recognition rates in per-

centage on ORL when p = 4 and p = 8. Here, the average

recognition rates by the direct sparse coding in Table 2 are

almost the same as the ones reported in Shan and Cottrell

[24], and the performance of the proposed method was

close to the direct sparse coding, but at a faster speed.

In order to evaluate the performance of the classifier, we

also chose three different classifiers: one layer network

with the softmax activation function, multi-linear SVM

classifier, and multi-class ELM learning with sigmoid

activation function adopted. When p = 8, the performance

comparison is listed in Table 4. Table 5 also makes the

comparison in the time duration for a single training and

test when Q
0
1 ¼ 2. The ELM algorithm has an extraordi-

nary advantage over the other classifiers in the execution

speed.

PIE Database

In the PIE database, there are 41,368 face images from 68

individuals all together, and the images of each person

were taken in 13 poses, under 43 illumination conditions

and with 4 facial expressions. Figure 9 shows the example

images from PIE.

We took those at 5 near frontal poses C05, C07, C09,

C27, and C29 for our simulation, so 170 face images were

selected for each individual. Every face image was first

resized to 32 9 32. When randomly selecting Q
0
1 = 5, 10,

20, 30, 50, 70, 90, 110 images for training and the rest for

testing per person, the average recognition rates in per-

centage are listed in Table 6 with a comparison in the

direct sparse coding, which shows that our method pro-

posed had a better recognition performance at a higher

speed, especially when the number of the face images

increases greatly in practice.

Table 2 Recognition rates on ORL database when p = 8

Methods The size of the training set

2 3 4 5 6 7 8

Sparse

coding

0.84 0.913 0.949 0.97 0.978 0.986 0.989

ELM 0.828 0.901 0.942 0.967 0.978 0.986 0.989

Table 3 Recognition rates on ORL database when p = 4

Methods The size of the training set

2 3 4 5 6 7 8

Sparse

coding

0.843 0.913 0.948 0.973 0.982 0.989 0.993

ELM 0.829 0.901 0.939 0.962 0.974 0.982 0.986

Table 4 Performance comparison of the classifiers in the recognition

rates

Methods The size of the training set

2 3 4 5 6 7 8

Softmax 0.83 0.903 0.942 0.968 0.975 0.986 0.990

M-SVM 0.831 0.903 0.943 0.968 0.978 0.986 0.990

ELM 0.828 0.901 0.942 0.967 0.978 0.986 0.989

Table 5 Performance comparison of the classifiers in the recognition

speed

Method Softmax M-SVM ELM

Time (s) 0.51 4.43 0.13

Fig. 9 PIE face images
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Conclusion

In this paper, we have put forward a novel approach for

face recognition, which have connected the ELM and

sparse coding together for a faster solution. The idea of the

fast face recognition is to learn the common feature

hypothesis from the randomly collected universal images

instead of directly from face images by means of ELM

learning in SLFN, in case that the size of the face images is

less than an optimum. The embedding basis function has

been simulated with ELM to achieve the corresponding

sparse coding representations from the face images at a

higher speed. Some attempts have been made to develop

the relevant mathematical criterion to capture the inherent

distribution, dependence structure, and model selection in

the ELM learning. The resulting sparse coding vectors of

all the face images have further fed into the next SLFN for

face recognition by ELM. The simulation results have

shown the good performance comparable to the classical

sparse coding on the ORL face data set, the PIE data set.

Here, we have only taken face recognition as an example to

evaluate the performance of our approach, and the pro-

posed schemes could in fact also help other general

applications in object recognition for the speed and per-

formance improvements.
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