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This paper proposes a method which is the advanced modification of the original extreme learning
machine with a new tool for solving the missing data problem. It uses a cascade of L, penalty (LARS)

ELM and L, penalty (Tikhonov regularization) on ELM (TROP-ELM) to regularize the matrix computations

Ridge regression
Tikhonov regularization

and hence makes the MSE computation more reliable, and on the other hand, it estimates the expected
pairwise distances between samples directly on incomplete data so that it offers the ELM a solution to

LARS solve the missing data issues. According to the experiments on five data sets, the method shows its

Missing data
Pairwise distance estimation

significant advantages: fast computational speed, no parameter need to be tuned and it appears more
stable and reliable generalization performance by the two penalties. Moreover, it completes ELM with a

new tool to solve missing data problem even when half of the training data are missing as the

extreme case.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Missing data problem [1,2] is very common to confront for
many different research fields, for example, data from surveys,
experiments, observational studies, etc., typically contain missing
values. Because most analysis procedures were not designed to
handle incomplete data, and researchers often resort to editing
procedures (deleting incomplete cases, replacing the missing
values' with sample means, etc.) to lend an appearance of
completeness. A method for inference from incomplete data was
only developed in 1976. Immediately afterwards, Dempster et al.
invented the expectation maximization (EM) algorithm that
resulted in the use of the maximum likelihood (ML) methods
for missing data estimation [3]. Barely a decade later, Lit et al. did
acknowledge the limitations of case deletion and single imputa-
tions and then introduced multiple imputations [4]. Multiple
imputations would not have been achievable without parallel
progress in computational power because generally they are
computationally expensive [5-8].

On the other hand, data sets in many research fields become
larger and larger, which are very time consuming when using
some classic methods to deal with, like support vector machine,
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! Missing data, or missing values, occur when no data value is stored for the
variable in the current observation. If input data has N observations (samples)
with d dimensions (variables), then, when we refer to a missing data in these data,
it implies one missing point among the original (N x d) points.
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multi-layer neural network, etc. In this sense, extreme learning
machine (ELM) is a competitively good solution for such tasks.
ELM as presented by Huang et al. in [9,10] is fast enough to
accommodate relatively large data sets, where other traditional
machine learning techniques have very large computational
times. The main idea lying in ELM is the random weights of a
single hidden layer feedfoward neural network (SLFN). The
essence of ELM is that the hidden layer of SLFNs need not be
tuned. Compared with those traditional computational intelli-
gence techniques, ELM provides better generalization perfor-
mance at a much faster learning speed and with least human
intervention [11-14].

Since learning in the presence of missing data is pervasive
problems in machine learning and statistical data analysis, we
propose to extend ELM, particular TROP-ELM [15] in order to
handle missing data. The goal of using TROP-ELM is to take all the
advantages of ELM like speed, and at the same time, the method
needs to be robust and more reliable. That is why we need the
double regularization. Indeed, it is shown in [16] that using TROP-
ELM, the generalization performances of the ELM models are
improved, the complexity of ELM model is decreased. The double
regularization included in the TROP-ELM is suboptimal because
they are done sequentially and not simultaneously but it has the
advantage to keep the computational time comparable to the
computational time of the original ELM or the single-regularized
OP-ELM [15]. As to the missing data part, our method only has to
calculate the distances between samples, instead of the tradi-
tional imputation methods which normally increase a lot the
complexity.
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In a word, this paper proposes a method which uses the
advanced modification of the original extreme learning machine
with a new tool to solve the missing data problem. In Section 2,
the tool used to solve MD problem is introduced as well as some
general discussion on missing data. Section 3 shows the details of
the double-regularized ELM using LARS and Tikhonov regulariza-
tion. The entire method is summarized in Section 4 with several
major steps, and followed by experiments in Section 5 and a short
conclusion in Section 6.

2. Pairwise distance estimation with missing data (MD)

Missing data (MD) are a part of almost all research, and
researchers have to decide how to deal with it from time to time.
There are a number of alternative ways of dealing with missing
data, and in this section, a pairwise distance estimation is high-
lighted and introduced to solve the MD problem.

2.1. Nature of missing data

When confronting the missing data, the common question you
may ask is why and how they are distributed. Well, the nature of
missing data can be categorized into three main types [17]:

e Missing completely at random (MCAR) [18]: When we say that
data are missing completely at random, we mean that the
probability that an observation (X;) is missing is unrelated to
the value of X; or to the value of any other variables. Thus, a
nice feature of data which are MCAR is the analysis remains
unbiased. We may lose power for our design, but the esti-
mated parameters are not biased by the absence of data.

e Missing at random (MAR): Often data are not missing comple-
tely at random, but they may be classifiable as missing at
random if the missingness does not depend on the value of X;
after controlling for another variable. The phraseology MAR is
a bit awkward because we tend to think of randomness as not
producing bias, and thus might well think that missing at
random is not a problem. Unfortunately it is a problem,
although we have ways of dealing with the issue so as to
produce meaningful and relatively unbiased estimates [19].

e Missing not at random (MNAR): If data are not missing at
random or completely at random then they are classed as
missing not at random (MNAR). When we have data that are
MNAR we have a problem. The only way to obtain an unbiased
estimate of parameters is to model missingness. In other
words we would need to write a model that accounts for the
missing data. Therefore, MNAR is not covered in this paper.
This paper focuses on developing the method to solve the MD
problem using extreme learning machine, rather than to
analyze the data of any specific field or MD for any specific
reasons.

2.2. Existing approaches for MD problem

By far the most common approach is to simply omit those
observations with missing data and to run the analysis on what
remains. This is so-called listwise deletion. Although listwise
deletion often results in a substantial decrease in the sample size
available for the analysis, it does have important advantages. In
particular, under the assumption that data are missing completely
at random, it leads to unbiased parameter estimates.

Another branch of approach is imputation, meaning to sub-
stitute the missing data point with a estimated value. A once
common method of imputation was Hot-deck imputation where a

missing value was imputed from a randomly selected similar
record [20]. Besides, mean substitution method uses the idea of
substituting a mean for the missing data [21], etc.

There are also some advanced methods such as maximum
likelihood and multiple imputation [22,23]. There are a number of
ways to obtain maximum likelihood estimators, and one of the
most common is called the expectation-maximization algorithm
(EM). This idea is further extended in expectation conditional
maximization (ECM) algorithm [24]. ECM replaces each M-step
with a sequence of conditional maximization (CM) steps in which
each parameter 0; is maximized individually, conditionally on the
other parameters remaining fixed. In the following paragraph, a
distance estimation method is presented based on ECM.

2.3. Pairwise distance estimation

Pairwise distance estimation efficiently estimates the expecta-
tion of the squared Euclidean distance between observations in
data sets with missing data [25]. Therefore, in general, it can be
embedded into any distance-based method, like k nearest neigh-
bors, support vector machine (SVM), multidimensional scaling
(MDS), etc., to solve missing data problem.

Given two samples x and y with missing values, in a d-
dimensional space. Denote by My,M, =[d]=1,...,d the indexes
of the missing components in the two samples. Here we assume
the data are MCAR or MAR, that is, the missing value can be
modeled as random variables, X;,i e My and Y;,i € My. Thus

X — E[X,“ngs] if iEMx, (1)
7 x otherwise,
;o E[Yi ‘yobs] ifie My' (2)
=y otherwise.

Where x' and y’ is the imputed version of x and y which the
missing value has been replaced by its conditional mean. The
corresponding conditional variance becomes

Var[X;|Xops] if i€ My,
2 i|Xobs
Oxi = { 0 otherwise, &)
Var[Y;|yopsl if ie My,
2 _ i|Yobs y
Oyi= { 0 otherwise, “

Then, the expectation of the squared distance can be expressed
as

E[lx—yI?1=> (X—yp* +02,+02), (5)

or, equivalently,

E[lx—ylI?] = IIX' —y'II> + .E o+ > oy (6)

ie My ieM,

According to Eirola [25], covariance matrix can be achieved
through the ECM (expectation conditional maximization) method
provided in the MATLAB Financial Toolbox [26], implementing
the method of [24] with some improvements by [27], which
makes the calculation of conditional means and variances of the
missing elements possible. Therefore, each pairwise squared
distance can be calculated with the missing values replaced by
their respective conditional means and by adding the sum of the
conditional variances of the missing values, respectively.

Since this algorithm is suitable for methods which rely only on
the distance between samples, in this paper, we use this estima-
tion algorithm embedded extreme learning machine to solve
missing data problem.
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3. Double-regularized ELM: TROP-ELM

Miche et al. in [16] proposed a double regularized ELM
algorithm, which uses a cascade of two regularization penalties:
first a L, penalty to rank the neurons of the hidden layer, followed
by a L, penalty on the regression weights (regression between
hidden layer and output layer). This section introduces this
algorithm briefly.

3.1. Extreme learning machine (ELM)

The extreme learning machine algorithm is proposed by
Huang et al. in [9] as an original way of building a single hidden
layer feedforward neural network (SLFN). The essence of ELM is
that its the hidden layer of needs not to be iteratively tuned
[14,9], and moreover, the training error IHS—y!l and the norm of
the weights ISl are minimized.

Given a set of N observations (x;y;), i<N. with x; e R and
y eR. A SLFN with m hidden neurons in the middle layer can be
expressed by the following sum:

m

> Bf(wixi+b), 1<j<N, )
i=1
where f; is the output weights, f be an activation function, w; is
the input weights and b; is the biases. Suppose the model
perfectly describe the data, the relation can be written in matrix
form as Hf =y, with

f(w1x1+b1) f(OmX1+bm)
H= : . : , 8
f(w1xa+by) f(@mXn+bm)

B=1, ... andy =(y;,...,y,)". The ELM approach is thus to
initialize randomly the w; and b; and compute the output weights
B =H'y by a Moore-Penrose pseudo-inverse [28].

The significant advantages of ELM are its extreme fast learning
speed, relative better generalization performance while being a
simple method [9]. There has been recent advances based on the
ELM algorithm, to improve its robustness (OPELM [15], CS-ELM
[29]), or make it a batch algorithm, improving at each iteration
(EM-ELM [30], EEM-ELM [31]).

3.2. L; penalty: LASSO

An important part in ELM is to minimize the training error
IIHB—yIl, which is an ordinary regression problem. One technique
to solve this is called Lasso, for ‘least absolute shrinkage and
selection operator’ proposed by Tibshirani [32].

Lasso solution minimizes the residual sum of squares, subject
to the sum of the absolute value of the coefficients being less than
a constant, that's why it is also called ‘L; penalty’. The general
form which Lasso works on is

N r
min (Z(yi—xiw)2+iz wj|) )
A0\ j=1

Because of the nature of the constant, Lasso tends to produce
some coefficients that are exactly 0 and hence give interpretable
models. The shrinkage is controlled by parameter A. The smaller 4
is, the more w; coefficients are zeros and hence less variables are
retained in the final model.

Computation of Lasso solution is a quadratic programming
problem, and can be tackled by standard numeral analysis
algorithms. However, a more efficient computation approach is
developed by Efron et al. in [33], called least angle regression
(LARS). LARS is similar to forward stepwise regression, but instead

of including variables at each step, the estimated parameters are
increased in a direction equiangular to each one’s correlations
with the residual. Thus, it is computationally just as fast as
forward selection. If two variables are almost equally correlated
with the response, then their coefficients should increase at
approximately the same rate. The algorithm thus behaves as
intuition would expect, and also is more stable. Moreover, LARS
is easily modified to produce solutions for other estimators, like
the Lasso, and it is effective when the number of dimensions is
significantly greater than the number of samples [33].

The disadvantages of the LARS method are that it has problem
with highly correlated variables, even though this is not unique to
LARS. This problem is discussed in detail by Weisberg in the
Discussion section of the paper [33]. To overcome this, next
paragraph introduces Tikhonov Regularization method.

3.3. L, penalty: Tikhonov regularization

Tikhonov regularization, named for Andrey Tychonoff, is the
most commonly used method of regularization [34]. In statistics,
the method is also known as ridge regression.

The general form of Tikhonov regularization is to minimize

N p
rEZUn (izl(yi—xiw)z +2y wjz) . (10)

i=

The idea behind of Tikhonov regularization is at the heart of
the “bias-variance tradeoff” issue, thanks to it, the Tikhonov
regularization achieves better performance than the traditional
OLS solution. Moreover, it outperforms the Lasso solution in cases
that the variables are correlated. One advantage of the Tikhonov
regularization is that it tends to identify/isolate groups of vari-
ables, enabling further interpretability.

One big disadvantage of the ridge-regression is that it does not
have sparseness in the final solution and hence, it does not give an
easily interpretable result. Therefore, a new idea is created to use
a cascade of the two regularization penalties, which is introduced
in the next paragraph.

3.4. TROP-ELM

Miche et al. in [15] proposed a method OP-ELM, which uses
LARS to rank the neurons of the hidden layers in ELM and select
the optimal number of neurons by leave-one-out (LOO). One
problem with LOO error is that it can be very time consuming,
especially when the data has large number of samples. Fortu-
nately, the PREdiction Sum of Squares (PRESS) statistics provide a
direct and exact formula for the calculation of the LOO error for
linear models [35]

(PRESS _ Yi—hibi an

"~ 1—hPh!’

where P is defined as P = (H"H)~! and H is the hidden layer output
matrix. It can be also expressed as

2
¢PRESS — 1 i JM (12)
N\ 1)K )

which means that each observation is estimated using the other
N—1 observations and the residuals are finally squared and summed
up. The main drawback of this approach lies in the use of a pseudo-
inverse in the calculation, which can be lead to numeral instabilities
if the data set X is not full rank. This is happen very often in the real
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world data. Thus, a Tikhonov-regularized version of PRESS is created

2
1N (y—xX" X+ D)y
6PRESS = — i i ) 13

@ N;(l—xi(XTX+)J)1xiT 13

This new modified version uses the singular value decomposi-
tion (SVD) approach [36] of X to avoid computational issues, and
introduces the Tikhonov regularization parameter in the calcula-
tion of the pseudo-inverse by the SVD. In practice, the optimiza-
tion of A in this method is performed by a Nelder-Mead [37]
minimization approach, which converges quickly on this problem.

In general, TROP-ELM is an improvement of original ELM. It
first constructs a SLFN like ELM, then ranks the best neurons by
LARS (L, regularization), finally selects the optimal number of
neurons by TR-PRESS (L, regularization).

4. The entire methodology

In this section, the general methodology is presented as well as
the details of the implementation steps.

Fig. 1 illustrates the main components of the whole algorithm,
and how they connected. Therefore, when confronting a regres-
sion problem with incomplete data, there are several steps to
follow in order to implement this method:

e First of all, it is necessary to replace the missing values with
their respective conditional means mentioned in Section 2.3.
This is a so-called ‘imputation’ step. The reason of this move is
because we want to make the whole method more robust.
Thus, the accuracy of the distances calculated afterwards is not
really based on these imputed values. The main purpose here
is to make it possible to use Gaussians as the active function in
ELM. Next step explains more about why the imputation is
done at the beginning.

e Second, we decide to use Gaussian as the active function of the
hidden node to build the single layer feedforward network.
Then, m samples are randomly selected from original N
samples (m < N) as the center of Gaussians, that is why the
imputation is done in the first step. Choosing the randomly
selected samples as the center could anyway guarantee the
neural network built here adjoin the data. Therefore, when
calculating the output of each neuron, the squared distance
between each sample and the selected ones is needed, which is
exactly the same thing the pairwise squared distance estima-
tion method achieved. The hidden node parameters (o2,u) are
randomly generated, which remain the advantage of ELM that
the parameters in hidden layer need not to be tuned. More
specifically, parameter ¢2 is chosen from a interval (20-80%) of

’ Initial Imputation ‘

Y

Randomly selected
samples as the
center of Gaussians

Y

the original random generations, to further make sure that the
model surrounds the data.

e When the distance matrix is ready (by pairwise distance
estimation), with the random generated parameter (o2,u), it
is easy to compute the outputs of all the neurons in the hidden
layer. The next step would be to figure out the weights (f)
between hidden layer and the output of the data (Y).

e The assumption to use LARS is that the problem to be solved
should be linear. In fact, this is exactly the case when the neural
network built in previous step, the relationship between the
hidden layer and the output in ELM is linear. Therefore, LARS is
used to rank neurons according to the output.

e Finally, as mentioned in Section 3.4, TR-PRESS is used to select
the optimal number of neurons, mean square error is mini-
mized though the optimization of parameter 4 in Eq. (13).

The entire algorithm inherits most of the advantage of original
ELM, fast computational speed, no parameter need to be tuned,
comparatively high generalization performance, etc. Moreover, it
perfects ELM with a new tool to solve missing data problem and
offers more stable and accurate results with double regularization
method.

5. Experiments

In order to test the proposed method for regression problem,
five data sets are chosen in this paper to evaluate the method.
These data sets can be found from UCI machine learning reposi-
tory for free [38].

Table 1 shows the specification of the five selected data sets.

On the other hand, how to get a more general performance of
the model remains to be a problematic issue. A common solution
is to split the whole data set into training, validating and testing
sets, which is a good practice. In this paper, we only need to
separate training and testing set because leave-one-out validation
is used with the training set, i.e. the error we get from the training

Table 1
Specification of the five tested regression data sets.

ELM Construction using

Data Gaussian Kernels

Ranking the neurons
3 using LARS

Data sets # Attributes # Training data # Testing data
Ailerons 5 4752 2377
Elevators 6 6344 3173
Bank 8 2999 1500
Stocks 9 633 317
Boston Housing 13 337 169
Selecting the neurons
using TR-PRESS —> Model

X

Pairwise squared
distance Estimation

Fig. 1. The framework of the proposed method.
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set is actually the validation error. Furthermore, Monte-Carlo
method is performed to split the data in order to reduce the effect
of limited data size.

5.1. Generating the missing data

There is no missing value originally in these five data sets.
Therefore, missing data are artificially created in each data set, in
order to test the performance on incomplete data with the
method. More precisely, the missing data are created (same as
deleting the existing data) at randomly position once 1/200 of the
total points till only half data points left. For example, if we have
training set with N observations and d features (N x d data point
totally), missing data are created (N x d)/200 at a time, and
continue 100 times till there is only half data points left
((N x d)%100/200). Thus, the model is trained and tested 100
times which is so-called one round of the experiments.

5.2. Monte-Carlo split for preprocessing

Monte-Carlo methods [39] refer to various techniques. In this
paper, Monte-Carlo methods are used to preprocess the data,
aiming to two tasks. First, training sets are drawn randomly about
two-thirds of the whole data sets, the rest one-third leaves for
test set. Second, this Monte-Carlo preprocessing is repeated many
times for each data set independently. Therefore, after these
rounds of training and testing, an average test error is computed
to represent the more general performance of the method.

5.3. Other methods used in this paper

For comparison, mean imputation and 1-nearest neighbor (1-
NN) imputation [40,41] combined with TROP-ELM are tested in
this paper. Specifically, in the mean imputation method, the mean
of corresponding variable is calculated based on the existed
samples to replace the missing data; in the 1-NN imputation
method, the missing data are replaced by the corresponding
variable of its first nearest neighbor whose value is the not
missing. Therefore, pairwise distance estimation (PDE), mean
imputation (mean) and 1-nearest neighbor imputation (1-NN)
are used as three different tools here for TROP-ELM to solve the
MD problem.

Moreover, this paper also tests all the incomplete data sets
using TROP-ELM without any MD tools, that means, those
samples which contain missing variables are removed (deleted)
in order to perform normal TROP-ELM. The main drawback of this
method is the huge loss of the training samples. Since the data are
missing at random, so when the number of missing points is
larger than the sample size, the worst case may happen that no
samples left for training. Especially when the percentage of the
missing data in the training sets continues to increase, this may
happen more and more often. This kind of phenomenon can be
seen in the following experiments results.

5.4. Experiments results

For each data set, the same experiment procedure is done to
evaluate the method. First, Monte-Carlo split is performed for
hundreds of rounds, then for each Monte-Carlo split, missing
values are added to training part set by set for 100 times till half
of the training values are missing. Once the new missing values
are added, the model is trained and tested respectively. Thus, LOO
and test results are calculated 100 times with different amount of
missing value. In other words, for each different amount of
missing value, the mean LOO errors and test errors are recorded

Data—--Bank
0.9 T T T T T T T T T
LOO with PDE
08 LOO with Mean A
0.7 LOO with 1-NN
' Vv LOO without MD tool
5 06} Test error with PDE ]
uL] Test error with Mean
© 05} * - Test error with 1-NN i
% +  Test error without MD tool
D 04} -
e
[
9]
= 03f J
0 “””””'” 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50
the percentage of the Missing Data in the training set (%)

Fig. 2. Normalized MSE for the data set.

for hundreds of rounds from those Monte-Carlo splits. All the
results shown here are the normalized results.

Take the bank data for instance. There are 4499 samples and
eight variables originally in these data, and one output. For each
Monte-Carlo split, 2999 samples are randomly selected for train-
ing, and the rest for testing. As to the training set, (2999 x 8)/
200~ 120 data points are added continuously for 100 times,
meaning models are trained and tested for 100 times. Fig. 2
illustrates the Boston Housing data results. x-axis represents the
percentage of the missing data from 0% to 50%, while the y-axis
represents the mean error of the 500 rounds of Monte-Carlo split.
More specifically, the results are compared with mean imputa-
tion, 1-NN imputation and without any MD tool which are shown
in the same figure.

From bank figure, we can see that it is risky not to use any MD
tool. If the amount of missing data is very small, removing
samples may work in some case even it scorifies many informa-
tion. But when the amount of missing data increases, there is no
reason to take this risk. Like the bank data, there are not enough
samples left to run TROP-ELM when the percentage of MD
reaches around 32%. In Fig. 2, it also illustrates that PDE tool
generally performs better than both mean imputation and 1-NN
imputation. Moreover, we can see the LOO error and test error
(with PDE) start from a very low value 0.03, then arise smoothly
with the increasing number of missing data. When the amount of
missing data reaches as high as half of the whole training set, LOO
error is just 0.19 which is still acceptable. As to the test error
(with PDE), it performs smaller than LOO error since the begin-
ning. After adding 50% of the missing data, test error remains on a
stable level, around 0.03, which is a significant result we are
looking forward to. The results demonstrate the efficiency and
stability of the model. On the other hand, test error line vibrates a
lot due to the randomness of MD emergences. Nevertheless, the
tendency of both LOO and test error keeps the same, and more
smoothness can be expected from more rounds of Monte-
Carlo test.

Figs. 3-6 show the results for the other four data sets. The
results are quite similar with the bank data. From both of these
four data results, PDE tools performs better than mean imputa-
tion and 1-NN imputation, test errors are less than LOO error from
the beginning, and much less vibration. These proves that models
are more stable and reliable.
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Data—-Stocks

LOO with PDE
LOO with Mean
LOO with 1-NN i
vV LOO without MD tool
Test error with PDE 1
Test error with Mean
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Test error without MD tool
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Fig. 3. Normalized MSE for the data set.

0.9

Data—--Boston Housing
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LOO with 1-NN
Vv LOO without MD tool
Test error with PDE i
Test error with Mean
* - Test error with 1-NN E

+  Test error without MD tool

5 10 15 20 25 30 35 40 45 50

the percentage of the Missing Data in the training set (%)

Fig. 4. Normalized MSE for the data set.
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Fig. 5. Normalized MSE for the data set.
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Fig. 6. Normalized MSE for the data set.
6. Conclusions

This paper proposed a method which is the advanced mod-
ification of the original extreme learning machine with a new tool
to solve the missing data problem.

Briefly speaking, this method uses a cascade of L; penalty
(LARS) and L, penalty (Tikhonov regularization) on ELM to
regularize the matrix computations and hence make the MSE
computation more reliable, and on the other hand, it estimates
the expected pairwise distances directly on incomplete data so
that it offers the ELM a solution to solve the missing data issues.

According to the experiments of the five data sets with
hundreds of times Monte-Carlo tests, the method shows its
significant advantages: it inherits most of the features of original
ELM, fast computational speed, no parameter need to be tuned,
etc., and it appears more stable and reliable generalization
performance by the two penalties. Moreover, according to the
results from our proposed methods which perform much better
than TROP-ELM without any missing tool, our method completes
ELM with a new tool to solve missing data problem even though
the half of the training data are missing as the extreme case.

Future work on this method will enrich it to classification
tasks, and further improve its performance.
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