
Long-term Time Series Prediction using

OP-ELM

Alexander Grigorievskiy a,∗, Yoan Miche a, Anne-Mari Ventelä b,
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Abstract

In this paper, an Optimally Pruned Extreme Learning Machine (OP-ELM) is ap-
plied to the problem of long-term time series prediction. Three known strategies
for the long-term time series prediction i.e. Recursive, Direct and DirRec are con-
sidered in combination with OP-ELM and compared with a baseline linear least
squares model and Least-Squares Support Vector Machines (LS-SVM). Among these
three strategies DirRec is the most time consuming and its usage with nonlinear
models like LS-SVM, where several hyperparameters need to be adjusted, leads to
relatively heavy computations. It is shown that OP-ELM, being also a nonlinear
model, allows reasonable computational time for the DirRec strategy. In all our
experiments, except one, OP-ELM with DirRec strategy outperforms linear model
with any strategy. In contrast to the proposed algorithm, LS-SVM behaves unstably
without variable selection. It is also shown that there are no superior strategy for
OP-ELM: any of three can be the best. In addition, prediction accuracy of ensemble
of OP-ELM is studied and it is shown that averaging predictions of ensemble can
improve the accuracy (Mean Square Error) dramatically.
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1 Introduction

Time series prediction (TSP) has already been studied for a long time and has
a variety of applications [1]. For instance, it is used for climate forecasting,
prediction of economical characteristics, stock market prediction, electricity
consumption, sales forecasting and many others.

Since time series prediction arises so frequently in applications, large number of
methods has been developed for this task. Relatively recent overview of various
methods and future directions is given in [2]. Historically, statistical linear
methods dominated in TSP. In particular, ARIMA based modeling became
widely adopted after the remarkable book [3]. The complete methodology for
model selection, parameter optimization and prediction was introduced there
and it is still widely used. ARIMA models time series (or it’s differences) as a
linear combination of previous values of time series and previous values of noise
(often called innovations). However, real time series come from many different
sources, and have very different properties. So it is obvious that there is no
single best approach for time series modeling. Not surprisingly, other methods
which may outperform classical methods, have emerged.

Neural network (NN) methods have attracted significant attention for time
series prediction problems [4]. NNs are general nonlinear regression technique
which can be applied to time series. In addition, they are able to relax some
assumptions made by classical methods, e.g. model linearity and Gaussian
distribution of noise. In contrast to ARIMA(p,n,q) model where fine tuning
of model hyperparameters - (p,n,q) is required for obtaining good forecasts,
neural networks allow to avoid this complication. Therefore, the way the fore-
casting process is done may be changed. Instead of many hours of work of a
statistician (quite often with a domain knowledge) trying to select the right
model and adjust hyperparameters, modeler without domain knowledge is able
to apply NN and obtain competitive results. There are situations where inten-
sive human involvement or large computational time is not affordable. Neither
we nor other authors claim that neural networks are generally better method
than classical statistical methods, but definitely they and other computational
intelligence methods have shown its viability [4].

In time series prediction one can distinguish one-step-ahead prediction and
long-term prediction. As it is clear from these names, in one-step-ahead pre-
diction interest constitutes only estimation of the next single value ahead,
while in the long-term prediction estimations of multiple future values are re-
quired. Quite often researchers address these problem separately [5], [6] since
accumulation of errors and increasing uncertainties [7] make long-term pre-
diction inherently more difficult problem. In this paper we consider long-term
time series prediction.
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There exist three universal strategies for long-term time series prediction:
Recursive strategy, Direct and DirRec strategy. Recently, another strategy [8]
was introduced but we do not study it here. A detailed description of prediction
strategies is given in Section 2. Strategies differ in how we estimate future
values using the past values. There is no definite indication of superiority of
one strategy over the others, as has been shown in [6],[7].

Earlier works have shown that variable selection is needed to improve the accu-
racy of long-term predictions. For instance, it has been shown [7] that DirRec
strategy with variable selection and K-Nearest Neighbours (K-NN) model
is beneficial in terms of accuracy. As a variable selection method forward-
backward algorithm is used. Especially, unimportant variables (features) can
deteriorate performance of the models which are very sensitive to those, for
example K-NN [9].Variable selection methods can be very time consuming
especially if we consider wrapper class of methods [7].Thus, the motivation
for our approach is the desire to avoid computationally expensive variable
selection.

In this paper, we propose to use OP-ELM model which is more robust to
irrelevant or correlated variables due to internal pruning of inessential neu-
rons [10]. Performance of OP-ELM has been shown to be comparable to other
popular nonlinear models like Support Vector Machines (SVM), Multi-Layer
Perceptron (MLP), Gaussian Processes (GP), etc. [10]. Moreover, for other
nonlinear models fine tuning of hyperparameters is necessary, for example,
(C, σ) in Least-Squares Support Vector Machine with Gaussian kernel. This
is often done through cross-validation on a grid in parameters space. So, for
each point on a grid new model must be trained and accuracy needs to be
computed on a validation set, The point in parameters space with the highest
accuracy is selected as a final value for parameters. Therefore, to select good
values of (C and σ) as many LS-SVMs as many points in the grid are, need
to be trained. Furthermore, coming back to time series prediction, this grid
search is necessary for every consecutive future value prediction (for Direct
and DirRec strategies). Thus, this parameters selection procedure dramati-
cally increases computational time and many well known nonlinear machine
learning models may become impractical for long-term time series prediction.

OP-ELM model is described in more details in Section 3. Further more, pre-
dictions made by ensemble of 100 [11] OP-ELMs are analyzed. Here we show
that ensemble averages can significantly improve the prediction accuracy. It
is also empirically established that none of the predictive strategies is always
superior when ensemble method is used.

Application of various types of ELMs to time series prediction or similar prob-
lems has been studied recently as well. Some references are [12], [13], [14].
However, here we address the problem of long-term time series prediction
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with emphasis on computational time and prediction accuracy. Combination
of ELM based model and DirRec prediction strategy has not been investigated
before.

In the next section, three strategies used in time-series prediction are explained
in detail. In the Section 3, concepts of ELM and OP-ELM are presented. After
that, experiment Section 4 follows.

2 Long-term time series prediction

There are three main strategies for long-term time series prediction as men-
tioned earlier. Here an overview of each one of them is presented.

2.1 Recursive strategy

The Recursive strategy for long-term time series prediction is a simple and
intuitive strategy. The goal is to build the model which estimates the next
value by using r previous values. Here r, which is called regressor size, is a
hyperparameteter of a model, and can be determined via cross-validation or
other methods for selection of hyperparameters. Section 4 explains how r is
selected for datasets in this article. Thus, on the first step the model computes
the following estimation:

ŷt+1 = f(yt, yt−1, . . . yt−r+1) (1)

To predict the second value, the first predicted value is introduced into the
model:

ŷt+2 = f(ŷt+1, yt, . . . yt−r+2)
...

ŷt+r+1 = f(ŷt+r, ŷt+r−1, . . . ŷt+1)

(2)

The process can be continued until we predict as many values as needed. It
is clear that prediction of t + r + 1-th value is based only on estimations
ŷt+r, · · · ŷt+1, and does not depend on any original values of time series. Since
each prediction has some error, errors accumulate with the increase of the
prediction horizon.
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2.2 Direct strategy

In the Direct strategy, the regressor size r is also a hyperparameter of the
model. The goal is to directly predict p steps ahead using regressors yt, yt−1, . . . yt−r+1.
Later in this article p is called prediction horizon. Hence, for every next future
value training of a separate model is needed, that is:

ŷt+1 = f1(yt, yt−1, . . . yt−r+1)

ŷt+2 = f2(yt, yt−1, . . . yt−r+1)
...

ŷt+p = fp(yt, yt−1, . . . yt−r+1)

(3)

It is seen, that predictions are always based on true values of time series, but
the time lag between regressors and prediction value is constantly growing.
This often causes a gradual growth of prediction error. In addition, number
of training samples decreases for the next predicted value. However, Direct
strategy is usually more accurate than Recursive [7].

2.3 DirRec strategy

The DirRec strategy has been introduced in [15] and combines both Recursive
and Direct strategies. The number of regressors is not constant anymore. On
the first step, DirRec strategy coincides with the Direct strategy, then all
predicted values serve as new regressors and the order of the model grows. In
mathematical form it is written as:

ŷt+1 = f1(yt, yt−1, . . . yt−r+1)

ŷt+2 = f2(ŷt+1, yt, yt−1, . . . yt−r+1)
...

ŷt+p = fp(ŷt+p−1, . . . , ŷt+1, yt, yt−1, . . . yt−r+1)

(4)

As in Direct strategy for every future prediction the corresponding model needs
to be trained. So, the complexity of the training is proportional to the number
of values to be predicted p. It has been shown [15] that in general DirRec
strategy with variable selection have superiority over two other strategies when
the model f is nonlinear.

The goal of this article is to show that this statement holds without variable
selection when for the role of a model f OP-ELM is taken. The motivation
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for this is that OP-ELM intrinsically performs a variable selection in a hidden
space.

3 OP-ELM for Time Series Prediction

3.1 Extreme Learning Machine (ELM)

The ELM algorithm was originally proposed by Guang-Bin Huang et al in [16]
and it makes use of the Single Layer Feedforward Neural Network (SLFN).
The main concept behind the ELM lies in the random initialization of the
SLFN weights and biases. Therefore, the input weights and biases do not need
to be adjusted and it is possible to calculate explicitly the hidden layer output
matrix and hence the output weights. The network is obtained with very few
steps and very low computational cost.

Consider a set of M distinct samples (xi,yi) with xi ∈ Rd1 and yi ∈ Rd2 ;
then, a SLFN with N hidden neurons is modeled as the following sum

N∑
i=1

βif(w
T
i xj + bi), 1 ≤ j ≤ M, (5)

with f being the activation function, wi the input weights, bi the biases and
βi the output weights.

ELM is constructed in a way that it perfectly approximates the given output
data:

N∑
i=1

βif(w
T
i xj + bi) = yj, 1 ≤ j ≤ M, (6)

which writes compactly as HB = Y, with

H =


f(w1x1 + b1) · · · f(wNx1 + bN)

...
. . .

...

f(w1xM + b1) · · · f(wNxM + bN)

 , (7)

and B = (βT
1 . . .βT

N)
T and Y = (yT

1 . . .yT
M)T .
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The way to calculate the output weights B from the knowledge of the hidden
layer output matrix H and target values, is proposed with the use of a Moore-
Penrose generalized inverse of the matrix H, denoted as H† [17].

Theoretical proofs and a more thorough presentation of the ELM algorithm
are detailed in the original paper [16], [18].

However, the ELM tends to have problems when irrelevant or correlated vari-
ables [10]. For this reason, it is proposed in the OP-ELM methodology, to
perform a pruning of the irrelevant variables, via pruning of the related neu-
rons of the SLFN built by the ELM.

3.2 Optimally Pruned ELM (OP-ELM)

The Optimally Pruned Extreme Learning Machine (OP-ELM) is made of three
main steps summarized in the following algorithm:

Algorithm 1 OP-ELM

Given a training set (xi,yi),xi ∈ Rd1 ,yi ∈ Rd2 .

1: - Build a regular ELM model with initially large number of neurons
2: - Rank neurons using multiresponse sparse regression (LARS regression if

output is one dimensional)
3: - Use leave-one-out validation to decide how many neurons to prune.

The very first step of the OP-ELM methodology is the actual construction of
the SLFN using the original ELM algorithm with a large number of neurons
(100 in our experiments). Second and third steps are presented in more details
in the next two subsections and are meant for an effective pruning of the
possibly unuseful neurons of the SLFN.

In the original OP-ELM algorithm [10] it was suggested to use a combina-
tion of three different types of kernels, for robustness and more generality,
where the original ELM proposed to use only sigmoid kernels. Three types
are linear, sigmoid and Gaussian kernels. Having the linear kernels included
in the network helps when the problem is linear or nearly linear. Experiments
in this paper are conducted using only linear and sigmoid neurons. Gaussian
neurons are not used because preliminary tests showed that their usage does
not improve the results.

The sigmoid weights are drawn randomly from a uniform distribution in the
interval [−5, 5]. This allows neurons to operate in the right regime when input
data is normalized with zero mean and unit variance.
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3.2.1 Multiresponse Sparse Regression: MRSR

In order to get rid of the useless neurons of the hidden layer, the Multiresponse
Sparse Regression, proposed by Timo Similä and Jarkko Tikka in [19], is used.

The main idea of the algorithm is the following: Denote by X = [x1 . . .xm]
the n×m regressor matrix. MRSR adds each column of the regressor matrix
one by one to the model Ŷk = XWk, where Ŷk = [ŷk

1 . . . ŷ
k
p ] is the target

approximation of the model. The Wk weight matrix has k nonzero rows at
kth step of the MRSR. With each new step a new nonzero row, and a new
column of the regressor matrix is added to the model. More specific details of
the MRSR algorithm can be found from the original paper [19].

It can be noted that the MRSR is mainly an extension of the Least Angle
Regression (LARS) algorithm [20] for the multi-output case. Because of the
ranking provided by the MRSR, it is used to rank the neurons of the model.
The target is the actual output yi, while the ”variables” considered by the
MRSR are the outputs of the kernels hi = Ker(xT

i ), the columns of H.

There has been the decent amount of work dedicated to other methods of neu-
ron selection, namely forward selection (FS) [21] and [22]. However, forward
selection is known to be unstable procedure in a sense that small variation
in the data can cause a large variation in model parameters [23]. This was
one of the reasons for developing the original Lasso and LARS algorithms.
The comparison research [24] shows that neither LARS (or Lasso) nor FS is
generally better than the other method. Therefore, both deserve an attention.

3.2.2 Leave-One-Out (LOO)

Since the MRSR only provides a ranking of the neurons, the decision over the
actual best number of neurons for the model is taken using a Leave-One-Out
(LOO) validation method.

In general, computing of LOO error can be very time consuming because
we need to take apart each sample, train the model ignoring it, and then
compute an error on this sample. Thus, training the model as many times as
many samples we have is required. Fortunately, for linear systems there exists
a closed formula which provides an exact LOO error without retraining the
model for each sample. This is called PRESS (PREdiction Sum of Squares)
statistic, see [25] and [26] for details of this formula and its implementation.

The PRESS formula, which exactly calculates LOO error is:

εPRESS = ‖D (y −H(HTH)−1HTy )‖22, (8)
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where D is a diagonal matrix with elements Dii =
1

1− (H(HTH)−1HT)ii
.

Extension of this formula to multiple output case is straightforward.

Calculation of εPRESS takes O(N3) + O(MN2) operations. It is M (number
of samples) times smaller than the naive implementation of LOO error. The
leading contribution to the complexity is the inverse (HTH)−1. This time can
be further reduced by sequentially updating the inverse (HTH)−1 from the
previous step.

(HTH)−1 = B11 −
B12B21

B22

(9)

where B11 is the submatrix of (HTH)−1 from the previous step, where last
column and last row are excluded. B22 is the bottom-right element of the
(HTH)−1, and B12 and B21 are the last row and last column respectively,
excluding the bottom-right element. The Equation (9) can easily be derived
from inverse of block matrix formula. The complexity of this update is only
N2 operations, hence the complexity of overall εPRESS calculation becomes
O(N2) +O(MN).

An alternative strategy to speed up LOO computation is to do pruning in
batches of neurons (for instance in five neurons). This strategy has been used
in our experiments.

At first the LOO decreases because insignificant neurons tend to overfit the
model. After pruning of several batches, LOO increases. At this point pruning
is stopped and OP-ELM is considered to be trained. In the end, a SLFN using
a mix of linear and sigmoid kernels is obtained, with a highly reduced number
of neurons, all within a small computational time. Comparison of running
times for OP-ELM and linear model is given in the Subsection 4.2.

4 Experimental results

The method is applied to three different time series: Sea-water tempera-
ture [27], Sun Spots [28] and Santa Fe A [29]. The first one is a weekly
measurements of sea water temperature during several years, there are 875
measurements in total. The second is one of the oldest time series in history;
it provides monthly averages of a number of dark spots on the sun from year
1749 until 2012, there are 3161 measurements in total. Santa Fe A is a dataset
recorded from a far-infrared-laser in a chaotic state and it is explicitly divided
into training set (1000 points) and test set (9093 points). We would like to
emphasize that these time series are taken from completely different domains,
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so our method is applied to time series with completely different properties
and behavior.

Usually, in time series prediction the number of regressors to use is unknown
and it has to be estimated. Here, a priori information is used to select appro-
priate regressor sizes. For the Sea-water temperature dataset regressors of sizes
15 and 50 were analyzed [30]. For the Sun Spots dataset number of regressors
equals 28 and is estimated by the following procedure. Linear model is trained
for various number of regressors and the number with minimal leave-one-out
validation error is taken. For the Santa Fe A dataset number of regressors
equals 12 [31] and is known to be enough to predict this time series reason-
ably well.

4.1 Estimation of generalization accuracies of OP-ELMs trained by different
strategies

To estimate accuracies of different models, generalization errors need to be
calculated. For this, datasets are divided into two parts i.e. training part and
test part. Training part is used to train the model, while test part - to compute
predictions and compare them with original values. Mean square error (MSE)
criteria serves to compare true and predicted values. For Santa Fe dataset
separation into training and test sets is done by the providers of this time
series. Two other datasets are divided approximately into equal parts one
for training and one for test. For the Sea-water temperature data training
and test parts are swapped and results are averaged. Note, that leave-one-out
validation which is build-in into OP-ELM is done during training phase, so it
uses only the training set.

Predictions are calculated for each subsequence of a test set which length
equals regressor size. In other words, if a regressor size is r, for each r consec-
utive values of a test set predictions up to prediction horizon are calculated.
For a certain number of steps ahead prediction, Mean Square Errors (MSE)
are averaged over all subsequences of size r, and finally obtained MSEs are
averaged over all number of steps ahead up to prediction horizon. Therefore,
for an experiment with a single OP-ELM (or linear model) one number is
obtained - twice averaged MSE which characterizes the prediction accuracy.

Least-Squares Support Vector Machine (LS-SVM) is a competitive technique
which has been intensively used for nonlinear modeling [32]. Experiments have
been performed by a famous LS-SVM Matlab Toolbox [33]. LS-SVM has an
advantage that training converges to solving a linear system in dual space. So,
it is especially interesting to compare it against our method. However for a
good model, hyperparameters need to be adjusted. There are two hyperparam-

10



Sea-water temperature time series

Linear Model LS-SVM

Mean and std
of 100

independent
OP-ELMs
(ensemble)

Ensemble
of

OP-ELMs
(Average)

Regressor size = 15, prediction horizon = 15

Recursive 2.440 2.654
2.639±0.178 2.331± 0.346 2.156

Direct 2.887 2.618
2.612±0.062 2.664± 0.123 2.460

DirRec 2.873 2.628
2.637±0.092 2.410± 0.118 2.324

Regressor size = 50, prediction horizon = 50

Recursive 2.848 6.515
not computed 3.072± 1.181 2.364

Direct 3.308 5.134
not computed 3.5260± 0.200 3.030

DirRec 3.264 6.611
not computed 2.860± 0.133 2.698

Regressor size = 15, prediction horizon = 50

Recursive 3.938 6.752
4.952±1.061 3.732± 0.628 3.202

Direct 3.686 3.212
3.162±0.064 3.480± 0.102 3.136

DirRec 3.702 3.986
4.091±0.093 3.241± 0.094 3.069

Table 1
Mean Square Errors(MSE) for Sea-water temperature dataset. Different regressor sizes and

prediction horizons are considered. Results of different models are given in column-wise. In

bold font best MSEs for each column (and each regressor size and prediction horizon) are

presented. In small font bagging results for LS-SVM are presented.

eters C - regularization hyperparameter and σ - Gaussian kernel parameter.
They have been adjusted by 10 fold cross validation and a grid search as im-
plemented in the toolbox. In addition, bagging [34] with 50 bootstrap samples
is applied to LS-SVM and results are listed in the same column in the smaller
font. Bagging for linear model has been tried but the performance is very close
to the complete data performance as mentioned in the original bagging paper,
therefore they are not shown here.

Results of experiments are given in Tables 1,2,3. Because of a randomness
involved in the OP-ELM definition, many instances of OP-ELMs need to be
studied in order to estimate its performance. For every set of parameters
100 [11] OP-ELMs are build, for each of those MSE described in previous
paragraph is computed. Averages and standard deviations of these MSEs are
presented in the third columns of the tables. In addition, arithmetic mean
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Sun spots time series

Linear Model LS-SVM

Mean and std of 100
independent
OP-ELMs
(ensemble)

Ensemble
of

OP-ELMs
(Average)

Regressor size = 28, prediction horizon = 12

Recursive 496.811 1661.7
1705.574±23.090 491.047± 11.2947 471.874

Direct 493.389 1413.4
1464.967±29.881 487.127± 5.908 456.372

DirRec 493.485 1764.5
1804.640±20.696 482.166± 4.494 467.993

Regressor size = 28, prediction horizon = 24

Recursive 785.610 2063.3
2053.930±30.014 748.210± 30.327 716.536

Direct 772.982 1527.3
1570.166±23.591 739.334± 8.893 692.122

DirRec 773.778 2068.1
2086.731±16.874 734.116±−8.245 713.702

Regressor size = 28, prediction horizon = 28

Recursive 891.363 2206
2170.886±45.850 832.184± 39.071 791.281

Direct 874.878 1554
1595.346±29.829 825.926± 11.614 773.803

DirRec 876.144 2149.8
2165.569±15.847 824.160± 10.671 801.817

Table 2
Mean Square Errors(MSE) for Sun spots dataset. Different regressor sizes and prediction

horizons are considered. Results of different models are given in column-wise. In bold font

best MSEs for each column (and each regressor size and prediction horizon) are presented.

In small font bagging results for LS-SVM are presented.

between forecasts of 100 OP-ELMs and its MSE are calculated and depicted
in the fourth columns. This is called ensemble method [35].

For each time series three sets of parameters (r, p) were investigated. For each
set of parameters best MSE of each column is marked in a boldface. There are
several findings one can notice in the results tables:

• Average MSE of DirRec strategy (second column) is better than the best
MSE among all strategies for linear ordinary least squares model.

This statement holds for all time series under investigation and all sets of
parameters, except for one experiment: Sea-water temperature time series,
second set of parameters. In this case linear model provides slightly better
MSE: 2.848 vs. 2.860, see Table 1.
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Santa Fe time series

Linear Model LS-SVM

Mean and std of 100
independent
OP-ELMs
(ensemble)

Ensemble
of

OP-ELMs
(Average)

Regressor size = 12, prediction horizon = 12

Recursive 817.498 259.42
285.526±24.602 682.553± 138.229 310.729

Direct 764.451 191.92
212.660±11.364 396.736± 12.111 284.997

DirRec 764.561 263.54
301.216±18.933 468.217± 20.519 259.616

Regressor size = 12, prediction horizon = 24

Recursive 1207.5 452.76
465.961±27.125 1410.1± 491.463 596.997

Direct 1114.6 277.6
296.090±7.940 595.015± 18.903 429.574

DirRec 1115.0 402.79
448.428±18.928 706.750± 30.060 403.014

Regressor size = 12, prediction horizon = 100

Recursive 2049.6 1659.2
1491.386±85.0916

1.2086e+ 10±
1.2005e+ 11

1.2811e+08

Direct 1896.7 952.86
964.091±9.565 1494.0± 26.024 1262.8

DirRec 1898.0 1347.9
1377.740±14.135 1816.5± 54.2133 1289.8

Table 3
Mean Square Errors(MSE) for Santa Fe dataset. Different regressor sizes and prediction

horizons are considered. Results of different models are given in column-wise. In bold font

best MSEs for each column (and each regressor size and prediction horizon) are presented.

In small font bagging results for LS-SVM are presented.

Except for the Santa Fe time series, where Direct strategy significantly out-
performs other strategies, standard deviation of DirRec strategy is less than
standard deviations of other strategies. This indicates that in a single run
OP-ELM with DirRec strategy tends to be the most accurate.

• For other strategies there are no such straightforward results as in the pre-
vious item.

For instance, if we again perform comparison with the best linear model:
OP-ELM with Recursive strategy can be better than the best linear model
(Sea-water time series, parameters set 1) or worse (Sea-water time series,
parameters set 3). The same is true for Direct strategy, it is superior to
the best linear model (Sun spots time series, parameters set 1) or inferior
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Figure 1. Visualization of predictions from ensemble of OP-ELMs. Ten steps ahead
predictions as well as fifty steps ahead predictions are plotted for each time series.
Regions for predictions are taken from the end of each time series and consist of
aroud 700 points. (a) regressor size - 15, (b) regressor size - 28, (c) regressor size -
12

(Sea-water time series, parameters set 1).

Comparing only OP-ELM with three strategies, it is seen that there exist
cases where each one of them is the best. Thus, DirRec is not generally the
best strategy, but is it almost always better that the best linear model.

• LS-SVM outperforms OP-ELM only for Santa Fe time series.

This is a highly nonlinear time series which can be seen form Figure 1. For
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other two time series performance of LS-SVM is significantly worse even
than linear model. Therefore, in contrast to OP-ELM, LS-SVM in general
is not able to perform well without variable selection procedure and is a
bad model for unfavorable time series. In any case, in the next subsection it
is shown that computational time for LS-SVM is several times longer than
OP-ELM.

• Using an ensemble method can improve the results dramatically.

For example, for Santa Fe dataset (parameter set 1) MSE of ensemble of
OP-ELMs is 259.6164 while for the best linear model it is 764.4508. So, the
accuracy is improved by 66%. However, again, any of three strategies can
be superior for the ensemble method. Standard bagging ensemble method
for LS-SVM has not provided accuracy improvement.

On the Figure 1 predictions of all three time series are presented for various
prediction horizons. For instance, each point on a curve for 10 steps ahead
predictions, is calculated from regressors which are ten points behind the given
point. For Sea-water and Sun Spots time series we see that even 50 steps ahead
predictions repeat basic pattern of time series. For Santa Fe dataset 50 steps
ahead predictions are quite far away from the original values, however 10 steps
ahead predictions match reasonably well.

4.2 Running Times

This subsection is given to provide estimates of how fast our method is in com-
parison with linear model and LS-SVM. Linear ordinary least squares is one of
the fastest and widely used in practice method for regression and/or time se-
ries prediction problems. Hence, it is given as a baseline method against which
OP-ELM is compared. Characteristics and parameters of time series predic-
tion which influence a running time are: length of time series, regressor size r
and prediction horizon p. Length of time series and regressor size determine
sizes of matrices which are intrinsically involved in computations. Prediction
horizon is the number of future values to be predicted and, therefore, defines
number of steps in prediction loop. Table 4 shows running times comparison
for one experiment.

One of our most computationally heavy experiment is described in Table 4.
It is Sea-water temperature time series with regressor size - 50 and predic-
tion horizon - 50. Accuracy estimation for this experiment is summarized in
Table 1, and the length of the training part of this time series equals 320
values.
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Running times (seconds)

Linear OP-ELM LS-SVM

Recursive 0.03 0.57 4

Direct 0.14 21 172

DirRec 0.28 29 181

Table 4
Running times for Sea-water time series, regressor size - 50, prediction horizon - 50

From this table one can conclude that OP-ELM approximately 100-200 times
slower than linear least squares model. Thus, if the standard trade-off between
an accuracy and computational cost can afford such increase, nonlinear OP-
ELM model can be exploited for time series prediction. LS-SVM is 5-7 times
slower than OP-ELM.

5 Conclusions

In this paper, OP-ELM model is applied for long-term time series predic-
tion problem. Three different strategies i.e. Recursive, Direct and DirRec are
studied and compared. It is shown that OP-ELM, being a nonlinear model,
needs roughly a hundred times more computing time than linear ordinary
least squares model. Unlike LS-SVM, OP-ELM is shown to be robust against
irrelevant or correlated variables. Hence it can be used without computation-
ally heavy variable selection techniques and, unlike other nonlinear methods,
there are no hyperparameters to adjust. This makes OP-ELM appealing to
the problems where such increase in computations is affordable.

To analyze accuracy of predictions three time series were taken from com-
pletely different domains. For all our experiments except one OP-ELM with
DirRec strategy outperforms linear model with the best of three strategies.
In the exceptional experiment the difference is very small. Therefore, using
OP-ELM with a DirRec strategy as a black box method may be considered
preferable than using linear model. For highly nonlinear time series, OP-ELM
may not perform very well. Considering only results for OP-ELM, experiments
show that there are no superior strategy i.e. any strategy can be the best for
a given time series.

Another way to improve accuracy of predictions is to run several OP-ELMs
(possibly in parallel) and average their predictions (ensemble method). Which
prediction strategy to use in this case is unclear - each one can be the best,
however increase in accuracy can be very substantial.

Utilizing Recursive, Direct and DirRec strategies in one ensemble of OP-ELMs
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seems feasible direction for future work. This ensemble could obtain the global
optimum in terms of MSE without the need of multiple trials for each predic-
tion strategy. Different ensemble methods such as weighted ensemble of models
and comparison with other methods for long-term time series prediction can
be investigated in the future.
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