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Environmental modeling and prediction have been within the scope of human
interests since ancient times. Contemporary agriculture and food production
despite of all technological advances depend largely on favorable ecological con-
ditions. However, climate change and consequences of human activity may de-
teriorate biological systems we used to utilize and enjoy. One example is lake
Pyhäjärvi. It is a large lake on the south-west of Finland which plays an impor-
tant role in local agriculture and fishing industry. The lake suffers from eutroph-
ication. It is a process of abundant growth of lake plants and death of animals
due to the lack of oxygen. The cause is redundant load of nutrients, especially
phosphorus, into the lake from nearby agricultural fields. Due to support of local
people and businesses, Pyhäjärvi Institute which develops measures to preserve
lake’s ecology has been established. This thesis is written in collaboration with
researchers from Pyhäjärvi Institute and it is devoted to modeling of phosphorus
concentration in the springs of Pyhäjärvi. Phosphorus modeling and prediction
help to plan preservation measures and better understand ecology of the lake.

The thesis consists of two parts. In the first part, time series prediction problem
is addressed. It is natural to model phosphorus concentration as a time series.
However, the problem is studied generally and results can be applied to time
series from any domain. It is shown that combination of Optimally-Pruned Ex-
treme Learning Machine and DirRec prediction strategy outperforms widely used
in practice linear model. Ensemble methods can further improve the accuracy,
sometimes significantly.

In the second part, practical work with Pyhäjärvi dataset is conducted. It is
impossible to directly apply methods of time series prediction, because the data
contains many missing values. Therefore, in the beginning it is required to fill
them. Several methods to estimate missing values of phosphorus are studied in
this part. Regression approach, missing values approach and their combination
are evaluated. The best model combinations as well as best variables are selected
and imputation is done for three locations.

Keywords: Pyhäjärvi, long-term, time series, prediction, missing val-
ues, imputation, regression, LS-SVM, SVM, Direct, DirRec,
Recursive,OP-ELM, ELM, EOF, SOM, SVT
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Abbreviations and Acronyms

TSP Time Series Prediction
SLFN Single Layer Feedforward Neural Network
ELM Extreme Learning Machine
OP-ELM Optimally-Pruned Extreme Learning Machine
LOO Leave-One-Out
LARS Least Angle Regression
MRSR Multi-Response Sparse Regression
SVD Singular Value Decomposition
SVM Support Vector Machines
SVR Support Vector Regression
EOF Empirical Orthogonal Functions
SVT Singular Value Thresholding
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5.1 Pyhäjärvi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Correlation analysis of different locations . . . . . . . . 35
5.2.2 Correlation analysis of integrated flow . . . . . . . . . 38
5.2.3 Smoothing of flow . . . . . . . . . . . . . . . . . . . . . 40
5.2.4 Averaging over five day intervals . . . . . . . . . . . . . 40

5.3 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . 42
5.4 Regression and missing values datasets . . . . . . . . . . . . . 43

5.4.1 Missing values dataset . . . . . . . . . . . . . . . . . . 43
5.4.2 Regression dataset . . . . . . . . . . . . . . . . . . . . 45

6 Estimation of phosphorus concentration 47
6.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Variable selection . . . . . . . . . . . . . . . . . . . . . 48
6.1.1.1 Delta test . . . . . . . . . . . . . . . . . . . . 49

6.1.2 Ridge regression . . . . . . . . . . . . . . . . . . . . . . 52
6.1.3 Support vector machines . . . . . . . . . . . . . . . . . 52
6.1.4 Hyper-parameters selection for SVR . . . . . . . . . . . 54
6.1.5 Least-Squares support vector machines . . . . . . . . . 55
6.1.6 Regression Results . . . . . . . . . . . . . . . . . . . . 55

6.2 Missing values imputation . . . . . . . . . . . . . . . . . . . 57
6.2.1 Mixture of Gaussians . . . . . . . . . . . . . . . . . . 58
6.2.2 Empirical Orthogonal Functions . . . . . . . . . . . . 58
6.2.3 Singular Values Thresholding . . . . . . . . . . . . . 59

6.3 Combining different models . . . . . . . . . . . . . . . . . . . 60
6.4 Model selection results . . . . . . . . . . . . . . . . . . . . . . 62

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . 62
6.4.2 Usefulness of other locations in missing values datasets 62
6.4.3 Model selection for missing values imputation . . . . 64

6.5 Final estimation of phosphorus concentration . . . . . . . . . 67

7 Conclusions 71

6



Chapter 1

Introduction

Climate forecasting and environmental prediction have always captured
thoughts of humanity. This is not surprising because quite often in the past
survival of population depended on favorable climate and weather. In the
present nothing has changed since the ancient times. Although new technolo-
gies have been developed and many processes have been automated, we still
depend largely on nature and favorable climate. Moreover, new challenges
started to appear. These are pollution, global warming and abundant use of
natural resources. Thus, modeling and prediction of environmental behavior
are very important for us as well as for future generations.

Nowadays climate is being intensively studied by scientific community
and governmental organizations. For example, world’s largest supercomput-
ers are often engaged into environmental calculations. Types of environmen-
tal models vary a lot: starting from mass transfer models originated from
geophysics and climatology to purely statistical models. Every model can be
the best for some specific task. Statistical models have an advantage that
they are universal and can be applied to almost any problem. Since the di-
versity of environmental systems is huge it would be too costly to develop a
physical model in every case, so statistical modeling is often a natural choice.
Moreover, accuracy and interpretability may be comparable.

This thesis is devoted to modeling of phosphorus concentration in the
springs of lake Pyhäjärvi. It has been done in collaboration with researchers
from Pyhäjärvi Institute. The institute has been organized by municipality
and local businesses to preserve the ecology of the lake in the changing cli-
mate conditions. Pyhäjärvi is the largest lake on the south-west of Finland.
It plays a central role in the local agricultural and fishing industries. Notably,
the annual harvest of fish per hectare is the biggest among all lakes in Fin-
land. However, in the beginning of 1990-s Pyhäjärvi faced a serious threat
called eutrophication. It is a process when lake plants grow redundantly and
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CHAPTER 1. INTRODUCTION 8

animals die because of lack of oxygen. The cause of that is excessive nutrient
load into the lake - mostly runoffs from the neighboring agricultural fields.
The main nutrient is phosphorus. Therefore, modeling of phosphorus con-
centration is crucial for making intelligent decisions about lake conservation
and for better understanding of the lake’s ecology.

Forecasting of phosphorus concentration is natural to model as a time
series prediction problem. The future values are predicted from patterns
observed in the past. In this thesis, we are interested in a long-term time
series prediction because overview of trends and changes is what is important
in continuous lake management. Novel approach to long-term time series
prediction is proposed and described in the Part 1 of the thesis. It exploits
DirRec prediction strategy in combination with Optimally-Pruned Extreme
Learning Machine which allows robust and fast time series forecasting. This
part of the thesis may be viewed as an independent result and can be applied
to other domains where time series prediction is required. One scientific paper
[1] has been written and accepted on the basis of Part 1 results.

In ecological and environmental fields data samples are often measured
manually. More and more automatic sensors are introduced but this pro-
cess is not very fast. Since manual samples are costly and human factor
is involved, data is often sparse and nonuniform. For example, phosphorus
concentration in one ditch (spring) is measured once a month or even more
rarely. Therefore, direct application of time series prediction techniques be-
comes impossible due to the lack of regular and uniform data. Missing values
approach is needed to deal with such irregular data. The idea is to fill values
for days (or weeks) when they were not measured, and then use obtained
uniform data for time series prediction. Several methods and their combina-
tions are studied in the Part 2 of this thesis. They are practically applied for
imputation of missing values of phosphorus concentration for three locations.
Data preprocessing, variable selection, non uniformity of the data - all these
issues have been solved for Pyhäjärvi dataset. Results of the second part of
the thesis are going to be published in the near future.

Thus, the scope of this thesis is twofold. At first, long-term time series
prediction is studied in idealized settings. Then, practical work with real
environmental dataset is elaborated. We do not claim that methods used in
the second part are state-of-the-art, because the global comparison has not
been performed. However, they allowed us to tackle efficiently the practical
problem and satisfy time constraints of the master thesis.
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1.1 Publications

[1] Alexander Grigorievskiy, Yoan Miche, Eric Severin, Anne-Mari Ven-
telä and Amaury Lendasse. Long-Term Time Series Prediction using OP-
ELM. Accepted to Cognitive Computation.



Part I

Long-Term Time Series
Prediction
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Chapter 2

Introduction to long-term time
series prediction

2.1 Time series prediction

Time series prediction has already been studied for a long time and has a
variety of applications [1]. For instance, it is used for climate forecasting,
prediction of economical characteristics, stock market prediction, electricity
consumption forecasting and many others.

Depending on the application, two main approaches to time series predic-
tion usually appear: one-step-ahead prediction and long-term prediction. As
it is clear from these names, in one-step-ahead prediction interest constitutes
only estimation of the next single value ahead, while in long-term prediction
estimations of multiple values are required. In this thesis, the problem of
long-term time series prediction is addressed. By definition, it is a harder
problem than one-step-ahead prediction because of the accumulation of er-
rors and increasing uncertainties [2].

Earlier works for long-term time series prediction have shown that vari-
able selection methods are needed to reduce the influence of irrelevant or
correlated variables and to constrain the growth of the prediction error [2].
In part this situation is caused by the use of models like K-NN [3] which are
sensitive to irrelevant variables. In this thesis, we propose to use OP-ELM
model which is more robust to irrelevant or correlated variables due to inter-
nal pruning of inessential neurons [4]. OP-ELM model is described in more
details in Section 3.2.

There exist three strategies for long-term time series prediction: Recur-
sive strategy, Direct and DirRec. A detailed description of these strategies
is given in Section 2.2. This thesis shows that using DirRec strategy with

11



CHAPTER 2. INTRODUCTION TO LONG-TERM TSP 12

OP-ELM model for long-term time series prediction in most cases produces
better results than a linear model which is the most commonly used in con-
temporary time-series prediction [5]. For a particular time series any of the
three strategies can provide the best results, however only DirRec strategy
in vast majority of cases is better than linear model.

In addition, predictions made by ensemble of 100 [6] OP-ELMs are an-
alyzed. Ensemble methods have been a topic of active scientific research
in machine learning in general [7] and in ELM domain in particular [8] [9].
The thesis shows that ensemble averages can significantly improve the pre-
diction accuracy. It is also empirically established that none of the predictive
strategies is always superior when ensemble method is used.

Application of various types of ELMs to time series prediction or similar
problems has been studied recently as well. Some references are [6], [10],
[11], [12]. However, here we address the problem of long-term time series
prediction with emphasis on computational time and prediction accuracy.
Combination of ELM based model and DirRec prediction strategy has not
been investigated before.

In the next section, three strategies used in time-series prediction are
explained in detail. In the Section 3.2, concepts of ELM and OP-ELM are
presented. Methodology Section 4.2 summarizes the building blocks of our
approach. After that, experimental Section 4.3 follows.

In the long-term time series prediction the aim is to predict multiple
values ahead. There exists a fundamental problem in this type of prediction.
The state of underlying processes behind time series may change for times
for which predictions are made. This means that behavior of a time series
might become completely different from the observed patterns. Of course,
this depends on a particular time series and on prediction horizon but is valid
for all interesting time series, for which predictions are required [1]. Even for
stationary time series, excluding several simple examples, for which statistical
properties do not change over time, autocorrelation function decreases when
lags grow [13]. This also implies that after some horizon, prediction becomes
infeasible because future values are not related in any way with given values.

There exist another source of inaccuracy for long-term prediction. The
strategy which is used for prediction utilize already predicted values to fore-
cast further into the future. Three strategies for a time series predictions are
described below in this section. Thus, inputs for a model are already an ap-
proximation and contain some errors. Errors, therefore, propagate through
an algorithm and may amplify, which leads to inaccurate prediction. Addi-
tionally, size of the training data decreases for Direct and DirRec strategies.

Aforementioned problems are typical for long-term prediction while one-
step-ahead prediction lacks those. However, the regular issues concerning
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model selection and parameter optimization are present for both.
There are three main strategies for long-term time series prediction as

mentioned earlier. Here an overview of each one of them is presented.

2.2 Strategies for long-term time series pre-

diction

2.2.1 Recursive strategy

The Recursive strategy for long-term time series prediction is a simple and
intuitive strategy. The goal is to build the model which estimates the next
value by using r previous values. Here r, which is called regressor size, is a
hyper-parameteter of a model, and can be determined via cross-validation or
other methods for selection of hyper-parameters. Section 4.2 explains how
r is selected for datasets in this article. Thus, on the first step the model
computes the following estimation:

ŷt+1 = f(yt, yt−1, . . . yt−r+1) (2.1)

To predict the second value, the first predicted value is introduced into
the model:

ŷt+2 = f(ŷt+1, yt, . . . yt−r+2)

...

ŷt+r+1 = f(ŷt+r, ŷt+r−1, . . . ŷt+1)

(2.2)

The process can be continued until we predict as many values as needed.
It is clear that prediction of t + r + 1-th value is based only on estimations
ŷt+r, · · · ŷt+1, and does not depend on any original values of time series. Since
each prediction has some error, errors accumulate with the increase of the
prediction horizon.

2.2.2 Direct strategy

In the Direct strategy, the regressor size r is also a hyper-parameter of
the model. The goal is to directly predict p steps ahead using regressors
yt, yt−1, . . . yt−r+1. Later in this article p is called prediction horizon. Hence,
for every next future value training of a separate model is needed, that is:



CHAPTER 2. INTRODUCTION TO LONG-TERM TSP 14

ŷt+1 = f1(yt, yt−1, . . . yt−r+1)

ŷt+2 = f2(yt, yt−1, . . . yt−r+1)

...

ŷt+p = fp(yt, yt−1, . . . yt−r+1)

(2.3)

It is seen, that predictions are always based on true values of time se-
ries, but the time lag between regressors and prediction value is constantly
growing. This often causes a gradual growth of prediction error. In addition,
number of training samples decreases for the next predicted value. However,
Direct strategy is generally more accurate than Recursive [2].

2.2.3 DirRec strategy

The DirRec strategy has been introduced in [14] and combines both Recursive
and Direct strategies. The number of regressors is not constant anymore.
On the first step, DirRec strategy coincides with the Direct strategy, then all
predicted values serve as new regressors and the order of the model grows.
In mathematical form it is written as:

ŷt+1 = f1(yt, yt−1, . . . yt−r+1)

ŷt+2 = f2(ŷt+1, yt, yt−1, . . . yt−r+1)

...

ŷt+p = fp(ŷt+p−1, . . . , ŷt+1, yt, yt−1, . . . yt−r+1)

(2.4)

As in Direct strategy, for every future prediction the corresponding model
needs to be trained. So, the complexity of the training is proportional to
the number of values p to be predicted. It has been shown by [14] that
in general DirRec strategy with variable selection have superiority over two
other strategies when the model f is nonlinear.

The goal of this thesis is to show that this statement holds without vari-
able selection when for the role of a model f , OP-ELM is taken. The moti-
vation for this is that OP-ELM intrinsically performs a variable selection in
a hidden space.



Chapter 3

Optimally-Pruned Extreme
Learning Machine

3.1 Extreme Learning Machine (ELM)

The ELM algorithm was originally proposed by Guang-Bin Huang et al
in [15] and it makes use of the Single Layer Feedforward Neural Network
(SLFN). The main concept behind the ELM lies in the random initializa-
tion of the SLFN weights and biases. It has been proven in [15] that ELM
possesses an interpolation property, which means that having M distinct
samples an ELM with no more that M hidden nodes can approximate these
samples with arbitrary low error. Therefore, under conditions of the Theo-
rem 1 in [15] the input weights and biases do not need to be adjusted and it
is possible to calculate implicitly the hidden layer output matrix and hence
the output weights. The network is obtained with very few steps and very
low computational cost.

Consider a set of M distinct samples (xi,yi)
M
i=1 with xi ∈ Rd1 and yi ∈

Rd2 ; then, a SLFN with N hidden neurons is modeled as the following sum

N∑
i=1

βif(wT
i xj + bi), 1 ≤ j ≤M, (3.1)

with f being the activation function, wi the input weights, bi the biases and
βi the output weights.

In the case where the SLFN perfectly approximates the data, the errors
between the estimated outputs ŷi and the actual outputs yi are zero and the
relation is

15



CHAPTER 3. OP-ELM 16

N∑
i=1

βif(wT
i xj + bi) = yj, 1 ≤ j ≤M, (3.2)

which writes compactly as HB = Y, with

H =

 f(w1x1 + b1) · · · f(wNx1 + bN)
...

. . .
...

f(w1xM + b1) · · · f(wNxM + bN)

 , (3.3)

and B = (βT
1 . . .β

T
N)T and Y = (yT

1 . . .y
T
M)T .

The way to calculate the output weights B from the knowledge of the
hidden layer output matrix H and target values, is proposed with the use
of Moore-Penrose generalized inverse of the matrix H, denoted as H† [16].
Overall, the ELM algorithm is summarized as:

Algorithm 1 ELM

Given a training set (xi,yi)
M
i=1, xi ∈ Rd1 , yi ∈ Rd2 , an ac-

tivation function f : R 7→ R and the number of hidden nodes
N .

1: - Randomly assign input weights wi and biases bi, i ∈ 1 ≤ j ≤ N ;
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix B = H†Y.

The proposed solution to the equation HB = Y in the ELM algorithm,
as B = H†Y has three main properties making it an appealing solution:

1. It is one of the least squares solutions of the mentioned equation, hence
the minimum training error can be reached with this solution.

2. It is the solution with the smallest norm among the least squares solu-
tions.

3. The smallest norm solution among the least squares solutions is unique
and it is B = H†Y.

Theoretical proofs and a more thorough presentation of the ELM algo-
rithm are detailed in the original paper [15]. In Huang et al.’s later work it
has been proved that the ELM is able to perform universal function approx-
imation [17]. Universal approximation property means that any continuous
function on a compact set X can be approximated in the sense of standard
L2(X) distance by ELM with arbitrary low error, provided enough hidden
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layer neurons are taken. Hence, from the theoretical point of view ELM is
equal to other popular types of Single Layer Feedforward Neural Networks
(SLFN).

However, the ELM tends to have problems when irrelevant or correlated
variables [4]. For this reason, it is proposed in the OP-ELM methodology, to
perform a some sort of variable selection, via pruning of the related neurons
of the SLFN built by the ELM.

3.2 Optimally-Pruned ELM (OP-ELM)

The OP-ELM is made of three main steps summarized in the following algo-
rithm:

Algorithm 2 OP-ELM

Given a training set (xi,yi)
M
i=1, xi ∈ Rd1 , yi ∈

Rd2 .

1: - Build a regular ELM model with initially large number of neurons
2: - Rank neurons using multiresponse sparse regression (LARS regression

if output is one dimensional)
3: - Use leave-one-out validation to decide how many neurons to prune.

The very first step of the OP-ELM methodology is the actual construction
of the SLFN using the original ELM algorithm with a large number of neurons
(100 in our experiments). Second and third steps are presented in more
details in the next two subsections and are meant for an effective pruning of
the possibly unuseful neurons of the SLFN: Multiresponse Sparse Regression
algorithm [18] enables to obtain a ranking of the neurons according to their
usefulness, while the actual pruning is performed using the results of the
Leave-One-Out validation.

In the original OP-ELM algorithm [4] it was suggested to use a combi-
nation of three different types of kernels, for robustness and more generality,
where the original ELM proposed to use only sigmoid kernels. Three types
are linear, sigmoid and Gaussian kernels. Having the linear kernels included
in the network helps when the problem is linear or nearly linear.

Experiments in this paper are conducted using only linear and sigmoid
neurons. Gaussian neurons are not used because preliminary tests showed
that their usage does not improve the results.

Sigmoid weights are drawn randomly from a uniform distribution in the
interval [−5, 5]. This allows neurons to operate in the right regime when
input data is normalized with zero mean and unit variance.
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3.2.1 Multiresponse Sparse Regression: MRSR

In order to get rid of irrelevant neurons in the hidden layer, the Multire-
sponse Sparse Regression (MRSR), proposed by Timo Similä and Jarkko
Tikka in [18], is utilized. It is mainly an extension to the Least Angle Re-
gression (LARS) algorithm introduced in [19]. LARS assumes that the
output is one dimensional. MRSR extends it for the multi-output case and
coincide with LARS if the output is one dimensional.

The main idea of these algorithms is that variables enter the regression
model one by one. Hence, if this process is stopped at some iteration, the
obtained solution is sparse. Spareness means that only a subset of regressors
participate in the model and contribution of the rest regressors is neglected.
This agrees with the rule of parsimony which states that the simpler model
is preferred if it describers data equally well. The criteria by which the next
entering variable is selected is that is has maximum absolute correlation (or
minimum angle) with the current residual. More specific details are given in
the original papers.

If MRSR is not stopped, ranking of variables is obtained. Algorithm has
been developed for linear systems and ELM belongs to that class. There is
a linear dependency between hidden layer and outputs, so results are fully
applicable. Neurons serve as variables and,hence, MRSR provides an exact
ranking of neurons.

3.2.2 Leave-One-Out (LOO)

Since MRSR only provides a ranking of the neurons, the decision over the
actual best number of neurons for the model is taken using a Leave-One-Out
(LOO) validation method.

In general, computing of LOO error can be very time consuming because
we need to take apart each sample, train the model ignoring it, and then
compute an error on this sample. Thus, number of times training the model is
required equals the number of samples. Fortunately, for linear systems there
exists a closed formula which provides an exact analytic LOO error without
retraining the model for each sample. This is called PRESS (PREdiction
Sum of Squares) statistic, see [20], [21] for details of this formula and its
implementations.

For ELM training we have Hβ = y assuming that the output is one
dimensional (notations are changed form B and Y to β and y because output
is one dimensional and now β and y are vectors). The size of the matrix H
is (M × N), where M - number of samples and N - number of neurons in
the hidden layer. There are several methods to solve β in the least squares
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sense [22]. One of them is to multiply the both sides of the system by
HT and then solve HTHβ = HTy. Matrix multiplication costs O(MN2),
while solving the latter system takes O(N3) operations. Therefore, the naive
implementation of Leave-One-Out cross-validation would require increase in
complexity by the factor M : O(MN3) +O(M2N2).

The PRESS formula, which exactly calculates LOO error is:

εPRESS = ‖D ( y − (HTH)−1Hy )‖22, (3.4)

where D is a diagonal matrix with elements Dii =
1

1− (H(HTH)−1HT)ii
.

Extension of this formula to multiple output case is straightforward.
Calculation of εPRESS takes O(N3) + O(MN2) operations to compute

(HTH)−1HT and the final results can be computed by O(MN) operations
in addition. Therefore, computational complexity of PRESS statistic is
O(N3) + O(MN2) and it is M (number of samples) times smaller than the
naive implementation of LOO error. Because of the small computational
complexity this formula is utilized in OP-ELM to select optimal number of
neurons.

After ranking the neurons by MRSR the least important are pruned and
LOO error is computed on the rest neurons. In order to further speed up
computations, pruning is done in batches of five neurons. At first the LOO
decreases because insignificant neurons tend to overfit the model. After prun-
ing of several batches, LOO increases. At this point pruning is stopped and
OP-ELM is considered to be trained.

In the end, a SLFN using a mix of linear and sigmoid kernels is obtained,
with a highly reduced number of neurons, all within a small computational
time. Comparison of running times for OP-ELM and linear model is given
in the Subsection 4.3.2.



Chapter 4

OP-ELM for long-term time se-
ries prediction

Three model training strategies described in Section 2.2 are applied for a
long-term time series prediction. Usage of OP-ELM model is analyzed for all
three strategies and superiority of DirRec strategy is shown with some small
remarks. OP-ELM is also compared with linear ordinary least squares model
which is the most commonly used model for a long-term time series predic-
tion [5]. The complete algorithm is summarized further in the Section 4.2.

4.1 Motivation

Earlier, it has been shown [14] that DirRec strategy with variable selection
and K-NN model is beneficial in terms of accuracy. As a variable selection
method forward-backward algorithm was used [2]. Variable selection meth-
ods can be very time consuming especially if we consider wrapper class of
methods [2]. Thus, the motivation for our approach is the desire to avoid
computationally expensive variable selection. It can be achieved by utilizing
OP-ELM which intrinsically prunes irrelevant neurons, and therefore is not
so sensitive to non-optimal input variables.

Accuracy of OP-ELM is compared to the ordinary least squares model
which serves as a baseline. It is one of the simplest models for time series
prediction, however it is fast, easily interpretable and, therefore, frequently
used in practice [5].

Performance of OP-ELM has been shown to be comparable to other pop-
ular nonlinear models like Support Vector Machines (SVM), Multi-Layer
Perceptron (MLP), Gaussian Processes (GP), etc. [4]. Moreover, for other
nonlinear models fine tuning of hyper-parameters is necessary, for example,
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(C, ε) in Support Vector Regression (SVR). This is often done through cross-
validation on a grid in parameters space. So, for each point on a grid new
model must be trained and accuracy needs to be computed on a validation
set. The point in parameters space with the highest accuracy is selected as
a final value for parameters. Therefore, to select good values of (C and ε)
as many SVRs as there are points in the grid, need to be trained. Further-
more, coming back to time series prediction, this grid search is necessary for
every consecutive future value prediction (for Direct and DirRec strategies).
Thus, this parameter selection procedure dramatically increases computa-
tional time and many well known nonlinear machine learning models may
become impractical for long-term time series prediction.

4.2 Algorithm

It is worth mentioning that our approach is developed only for a stationary or
semi-stationary time series. Therefore, the preliminary step which is required
is stationarizing time series. Stationarity means that statistical properties of
a time series do not change over time [13]. There are methods to detect
non-stationarity e.g. [23], or it can be known or assumed a priori. Methods
exist to deal directly with non-stationary time series [24], or time series can
be transformed into a stationary one. Good overview of these transformation
methods and stationarity is given in [25] and references there in. For example,
linear trend can be removed from a time series, or instead of an original
time series first difference (yt − yt−1,∀t ∈ [2, · · · , n]) can be studied. After
stationarizing has been done, or under assumption that initial time series is
(semi-)stationary, further steps can be undertaken.

The second step is converting time series prediction problem into a re-
gression problem. To do it, one needs to choose a regressor size r which plays
role of (initial) dimensionality of input data. Regressor size is the number of
previous values of time series which are used to predict the future value. It
can be chosen using preliminary knowledge or some computationally easy al-
gorithms one of which is described in experimental part of this paper. Early
mentioned prediction strategies: Recursive, Direct and DirRec immediately
influence the way how regression problem is constructed. Exact matrices for
Recursive strategy and time series {y1, y2, · · · , yn} under assumptions that
regressor size equals r, are presented below:
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
y1 y2 · · · yr 1
y2 y3 · · · yr+1 1
...

yn−r yn−r+1 · · · yn−1 1

 −→

yr+1

yr+2
...
yn

 (4.1)

The column of ones at the end of the first matrix corresponds to the
constant term in the linear model: ŷn+1 = [yn, yn−1, · · · , yn−r+1]

T × β + c.
As described in section 2.2 for the Recursive strategy, the model needs

to be trained only once, and after that the same model is used to predict
time series for 1, 2, 3, · · · , p values ahead. In contrast, for Direct and DirRec
strategies, first a model is trained to predict one value ahead. The regression
problem in this case is exactly the same as for Recursive strategy. Having
predicted the first value, training a different model is needed to predict the
second value. Regressors and right part in (4.1) changes in accordance
with the rules in Section 2.2. This process repeats until all the values up to
prediction horizon p are predicted.

Algorithm 3 Complete method for long-term time series prediction

1: Stationarize (detrend) time series
2: Select an appropriate regressor size r, and required prediction horizon p
3: for s = 1 to p do
4: Using selected strategy and chosen regressor size convert time series

prediction problem into regression problem (For Recursive strategy
model training is needed only once)

5: Train regression model
6: Predict the s-th value
7: end for

As an approach to regression problem two models are used and com-
pared. The first one is a linear ordinary least squares which is one of the
simplest regression model, however it is fast, easily interpretable and, there-
fore, frequently used in practice. The second one is OP-ELM, which, as was
mentioned before, is nonlinear, computationally efficient and robust against
irrelevant input variables.

In addition, modern hardware often allows parallel computations almost
without any increase in running times. Hence, several OP-ELM can be
trained in parallel. These ensemble methods are known to improve accu-
racy [9] [8] [26]. In this thesis, averaging of predictions of 100 OP-ELM is
conducted and investigated.
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Figure 4.1: Visualization of investigated time series

4.3 Experimental results

The method is applied to three different time series: Sea-water tempera-
ture [27], Sun Spots [28] and Santa Fe A [29]. First one contains weekly
measurements of sea water temperature during several years, there are 875
measurements in total. The second is one of the oldest time series in his-
tory; it provides monthly averages of a number of dark spots on the sun
from year 1749 until 2012, there are 3161 measurements in total. Santa Fe
A is a dataset recorded from a far-infrared-laser in a chaotic state and it is
explicitly divided into training set (1000 points) and test set (9093 points).
We would like to emphasize that these time series are taken from completely
different domains, so our method is applied to time series with completely
different properties and behavior.
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Sea-water temperature time series

Linear Model

Mean and std
of 100

independent
OP-ELMs
(ensemble)

Ensemble of
OP-ELMs
(Average)

Regressor size = 15, prediction horizon = 15
Recursive 2.4397 2.3306± 0.3458 2.1557
Direct 2.8868 2.6638± 0.1229 2.4604
DirRec 2.8729 2.4096± 0.1184 2.3239

Regressor size = 50, prediction horizon = 50
Recursive 2.8476 3.0721± 1.1807 2.3644
Direct 3.3081 3.5260± 0.1997 3.0299
DirRec 3.2637 2.8599± 0.1332 2.6984

Regressor size = 15, prediction horizon = 50
Recursive 3.9383 3.7315± 0.6280 3.2017
Direct 3.6858 3.4801± 0.1015 3.1361
DirRec 3.7018 3.2409± 0.0943 3.0692

Table 4.1: Mean Square Errors(MSE) for Sea-water temperature dataset. Different

regressor sizes and prediction horizons are considered. In the first column results for linear

model are given; second column - mean and standard deviation of MSEs of 100 independent

OP-ELMs; third column - MSE of averaged predictions of OP-ELM ensemble. In bold font

best MSEs for each column (and each regressor size and prediction horizon) are presented.

Usually, in time series prediction the number of regressors to use is un-
known and it has to be estimated, see Section 4.2. Here, a priori information
is used to select appropriate regressor sizes. For the Sea-water temperature
dataset regressors of sizes 15 and 50 are analyzed [30]. For the Sun Spots
dataset number of regressors equals 28 and is estimated by the following
procedure. Linear model is trained for various number of regressors and the
number with the minimal leave-one-out validation error is taken. For the
Santa Fe A dataset number of regressors equals 12 [31] and is known to be
enough to predict this time series reasonably well.
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Sun spots time series

Linear Model
Mean and std of 100

independent OP-ELMs
(ensemble)

Ensemble of
OP-ELMs
(Average)

Regressor size = 28, prediction horizon = 12
Recursive 496.8105 491.0473± 11.2947 471.8737
Direct 493.3891 487.1273± 5.9080 456.3721
DirRec 493.4853 482.1657± 4.4942 467.9926

Regressor size = 28, prediction horizon = 24
Recursive 785.6096 748.2101± 30.3272 716.5362
Direct 772.9818 739.3338± 8.8929 692.1222
DirRec 773.7776 734.1157±−8.2450 713.7017

Regressor size = 28, prediction horizon = 28
Recursive 891.3626 832.1842± 39.0713 791.2807
Direct 874.8780 825.9258± 11.6144 773.8031
DirRec 876.1438 824.1604± 10.6708 801.8169

Table 4.2: Mean Square Errors(MSE) for Sun spots dataset. Different regressor sizes and

prediction horizons are considered. In the first column results for linear model are given;

second column - mean and standard deviation of MSEs of 100 independent OP-ELMs; third

column - MSE of averaged predictions of OP-ELM ensemble. In bold font best MSEs for

each column (and each regressor size and prediction horizon) are presented.

4.3.1 Estimation of generalization accuracies of OP-
ELMs trained by different strategies

To estimate accuracies of different models, generalization errors need to be
calculated. For this, datasets are divided into two parts i.e. training part
and test part. Training part is used to train the model, while test part - to
compute predictions and compare them with original values. Mean square
error (MSE) criteria serves to compare true and predicted values. For Santa
Fe dataset separation into training and test sets is done by the providers of
this time series. Two other datasets are divided approximately into equal
parts one for training and one for test. For the Sea-water temperature data
training and test parts are swapped and results are averaged. Note, that
leave-one-out validation which is build-in into OP-ELM is done during train-
ing phase, so it uses training set.

Predictions are calculated for each subsequence of a test set which length
equals regressor size. In other words, if a regressor size is r, for each r consec-
utive values of a test set predictions up to prediction horizon are calculated.
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Santa Fe time series

Linear Model
Mean and std of 100

independent OP-ELMs
(ensemble)

Ensemble of
OP-ELMs
(Average)

Regressor size = 12, prediction horizon = 12
Recursive 817.4984 682.5525± 138.2294 310.7285
Direct 764.4508 396.7355± 12.1111 284.9972
DirRec 764.5608 468.2166± 20.5188 259.6164

Regressor size = 12, prediction horizon = 24
Recursive 1207.5 1410.1± 491.4630 596.9967
Direct 1114.6 595.0148± 18.9030 429.5736
DirRec 1115.0 706.7502± 30.0598 403.0144

Regressor size = 12, prediction horizon = 100
Recursive 2049.6 1.2086e+ 10± 1.2005e+ 11 1.2811e+08
Direct 1896.7 1494.0± 26.0241 1262.8
DirRec 1898.0 1816.5± 54.2133 1289.8

Table 4.3: Mean Square Errors(MSE) for Santa Fe dataset. Different regressor sizes and

prediction horizons are considered. In the first column results for linear model are given;

second column - mean and standard deviation of MSEs of 100 independent OP-ELMs; third

column - MSE of averaged predictions of OP-ELM ensemble. In bold font best MSEs for

each column (and each regressor size and prediction horizon) are presented.

For a certain number of steps ahead prediction, Mean Square Errors (MSE)
are averaged over all subsequences of size r, and finally obtained MSEs are av-
eraged over all numbers of steps ahead, up to prediction horizon. Therefore,
for an experiment with a single OP-ELM (or linear model) one number is
obtained - twice averaged MSE which characterizes the prediction accuracy.

Results of experiments are given in Tables 4.1,4.2,4.3. Because of ran-
domness involved in the OP-ELM definition, many instances of OP-ELMs
need to be studied in order to estimate its performance. For every set of
parameters 100 [6] OP-ELMs are build, for each of those MSE described in
previous paragraph is computed. Averages and standard deviations of these
MSEs are presented in the second columns of the tables. In addition, arith-
metic mean between forecasts of 100 OP-ELMs and its MSE are calculated
and depicted in the third columns. This is called ensemble method [8]. Errors
of the linear models are given in the first column.

For each time series three sets of parameters (r, p) were investigated. For
each set of parameters best MSE of each column is marked in a boldface.
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Figure 4.2: Visualization of predictions from ensemble of OP-ELMs. Ten
steps ahead predictions as well as fifty steps ahead predictions are plotted for
each time series. Regions for predictions are taken from the end of each time
series and consist of aroud 700 points. (a) regressor size - 15, (b) regressor
size - 28, (c) regressor size - 12
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There are several findings one can notice in the result tables:

• Average MSE of DirRec strategy (second column) is better than the
best MSE among all strategies for linear ordinary least squares model.

This statement holds for all time series under investigation and all sets
of parameters, except for one experiment: Sea-water temperature time
series, second set of parameters. In this case linear model provides
slightly better MSE: 2.8476 vs. 2.8599, see Table 4.1.

Except for the Santa Fe time series, where Direct strategy significantly
outperforms other strategies, standard deviation of DirRec strategy is
less than standard deviations of other strategies. This indicates that
in a single run OP-ELM with DirRec strategy tends to be the most
accurate.

• For other strategies there are no such straightforward results as in the
previous item.

For instance, if we again perform comparison with the best linear
model: OP-ELM with Recursive strategy can be better than the
best linear model (Sea-water time series, parameters set 1) or worse
(Sea-water time series, parameters set 3). The same is true for Direct
strategy, it is superior to the best linear model (Sun spots time series,
parameters set 1) or inferior (Sea-water time series, parameters set 1).

Comparing only OP-ELM and three strategies, it is seen that there
exist cases where each one of them is the best. Thus, DirRec is not
generally the best strategy, but is it almost always better that the best
linear model.

• Using an ensemble method can improve the results dramatically.

For example, for Santa Fe dataset (parameter set 1) MSE of ensemble
of OP-ELMs is 259, 6164 while for the best linear model it is 764.4508,
so the accuracy is improved by 66%. However, again, any of three
strategies can be superior for the ensemble method.
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Running times (seconds)
OP-ELM Linear

Recursive 1 0.04
Direct 33 0.25
DirRec 47 0.47

Table 4.4: Running times for Sea-water time series, regressor size - 50, pre-
diction horizon - 50

On the Figure 4.2 predictions of all three time series are presented for
various prediction horizons. For instance, each point on a curve for 10 steps
ahead predictions, is calculated from regressors which are ten points behind
the given point. For Sea-water and Sun Spots time series we see that even
50 steps ahead predictions repeat basic pattern of time series. For Santa
Fe dataset 50 steps ahead predictions are quite far away from the original
values, however 10 steps ahead predictions match reasonably well.

4.3.2 Running Times

This subsection is given to provide estimates of how fast our method is in
comparison with linear model. Linear ordinary least squares is one of the
fastest and widely used in practice for regression and/or time series prediction
problems. Hence, it is given as a baseline method against which OP-ELM is
compared. Characteristics and parameters of time series prediction which
influence a running time are: length of time series, regressor size r and
prediction horizon p. Length of time series and regressor size determine
sizes of matrices which are intrinsically involved in computations. Prediction
horizon is the number of future values to be predicted and, therefore, defines
number of steps in prediction loop. Table 4.4 shows running times comparison
for one experiment.

One of our most computationally heavy experiment is described in Ta-
ble 4.4. It is Sea-water temperature time series with regressor size - 50 and
prediction horizon - 50. Accuracy estimation for this experiment is summa-
rized in Table 4.1, and the length of the training part of this time series
equals 320 values.

From this table one can conclude that approximately a factor of 100 is
added to the computational cost of linear least squares model. Thus, if the
standard trade-off between an accuracy and computational cost can afford
such increase, nonlinear OP-ELM model can be exploited for time series
prediction.



CHAPTER 4. OP-ELM FOR LONG-TERM TSP 30

4.4 Conclusions

In this thesis, OP-ELM model is applied for long-term time series predic-
tion problem. Three different strategies i.e. Recursive, Direct and DirRec
are studied and compared. It is shown that OP-ELM, being a nonlinear
model, needs a hundred times more computing time than linear ordinary
least squares model. OP-ELM is known to be robust against irrelevant or
correlated variables, hence it can be used without computationally heavy
variable selection techniques and, unlike other nonlinear methods, there are
no hyper-parameters to adjust. This makes OP-ELM appealing to the prob-
lems where such increase in computations is affordable.

To analyze accuracy of predictions three time series were taken from com-
pletely different domains. For all our experiments except one, OP-ELM with
DirRec strategy outperforms linear model with the best of three strategies.
In the exceptional experiment the difference is very small. Therefore, using
OP-ELM with a DirRec strategy as a black box method may be considered
preferable than using linear model. Considering only results of OP-ELM,
experiments show that there are no superior strategy i.e. any strategy can
be the best for a given time series.

Another way to improve accuracy of predictions is to run several OP-
ELMs (possibly in parallel) and average their predictions (ensemble method).
Which prediction strategy to use in this case is unclear - each one can be the
best, however increase in accuracy can be very substantial.

Utilizing Recursive, Direct and DirRec strategies in one ensemble of OP-
ELMs seems feasible direction for future work. This ensemble could obtain
the global optimum in terms of MSE without the need of multiple trials
for each prediction strategy. Different ensemble methods such as weighted
ensemble of models and comparison with other methods for long-term time
series prediction will be investigated in the future.



Part II

Missing Values Estimation of
Pyhäjärvi data
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Chapter 5

Datasets construction

5.1 Pyhäjärvi

Pyhäjärvi lake (one of the several lakes with the same name in Finland)
is located on the south-west of Finland, in the municipality Säkylä. It is
the largest lake in the south-west Finland and it is a center of agricultural
activity. It is also famous due to large yields of fish. While average annual
fish yield in Finland is 10 kilograms per hectare, Pyhäjärvi lake provides 60.
So, there are fishing companies as well as independent fishermen operating
in the area. Lake’s geographic location is shown on the Figure 5.1 and key
characteristics are summarized in the Table 5.1.

(a) Location of the lake (b) Shape of the lake

Figure 5.1: Google maps images of location and shape of Pyhäjärvi

However, there is a threat which may deteriorate well-being of Pyhäjärvi.
The lake suffers from the process called eutrophication. Eutrophication

32
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Parameter Value
Area 155 km2

Perimeter 111 km
Max. depth 26m
Mean depth 5.5m
Catchment area 431 km2

Table 5.1: Pyhäjärvi characteristics

means an excess of nutrients coming mostly from the land. Nutrients cause
a dense growth of plant life and death of animal life from the lack of oxy-
gen. Due to the high interest of local people to preserve the lake’s quality,
several measures have been implemented to overcome eutrophication. Mu-
nicipality and local industry established Pyhäjärvi Institute which monitor,
analyze and develop lake’s environment. Under the institutes’s supervision
new water protection practices such as buffer-zones, sedimentation ponds and
wet-lands have been introduced. New filtering ditches and sand filters have
been installed to prevent excessive nutrients to penetrate into the lake [32].
These efforts have not been spent in vain and for now the eutrophication
process is stopped.

The main nutrient which impacts the lake is phosphorus. It is used inten-
sively as a fertilizer by local agricultural industry which operates in the lake’s
catchment area. The important aim is to reduce amount of phosphorus in
the lake. This is done by introducing filtering systems mentioned in the pre-
vious paragraph, and also by fishing of commercially unprofitable fish. This
fish catch is sponsored by lake conservation project and it helps to remove
twenty five percents of annual phosphorus load. Additional challenges arise
because of the changing climate. During extremely warm winters of 2007,
2008 ice cover period was very short and it increased phosphorus penetration
into the lake.

Modeling of phosphorus concentration is becoming very important. It
helps to make intelligent decisions about lake preservation activities and bet-
ter understand the lake’s ecosystem. In this thesis phosphorus concentration
in several ditches (springs) is modeled. Physical measurements of phospho-
rus concentration has been done but they are too sparse to estimate the
real dynamics. Therefore, filling missing values is essential for further anal-
ysis of underlying processes. In addition, relation with other variables like
temperature, precipitation and previous values of phosphorus needs to be
investigated. The name of phosphorus variable in the dataset is ”Total P”



CHAPTER 5. DATASETS CONSTRUCTION 34

and it’s estimation is the topic of the second part of this thesis.

5.2 Data preprocessing

Initial data has been received in several Excel files. The first file contains
several variables which are: ”Suspended solids (fine)”, ”Suspended solids
(rough)”, ”Total P”, ”Total N”, ”Ammonium N”, ”Dissolved P”, ”Nitrite-
nitrate N”. These variables are given for different dates and different loca-
tions. Locations are denoted as S1, S2 ... S13 - thirteen locations in total,
and each of them represents one catchment of the lake. In this thesis, anal-
ysis of three locations S10, S11 and S12 is conducted and methodology for
processing the rest locations is built. The exact meaning of variables is not
relevant for understanding the material, except the main variable for which
analysis is hold - ”Total P” is an abbreviation of total phosphorus. There are
other three files, one of them contains daily values of flow for each catchment
in [m3/sec]. Another one contains daily average air temperature in the region
of the lake. The last file contains precipitation level in [mm/(5 days)], so
the values are given for every 5 days. Precipitation variable is called ”Rains”
from now on for better illustration and conciseness. However, in general,
precipitation includes rains as well as snow and hail.

By consulting with domain specialists from Pyhäjärvi Institute, variable
”Suspended solids (rough)” is discarded from the very beginning because it
does not provide any additional information. The usefulness of other vari-
ables is unclear at this stage. The time period for which at least some values
are present is from 01.01.1980 to 10.11.2011, so 11637 days in total. How-
ever, important variables like ”Total P”,”Total N”,etc. are given only for
228 days. Exact number of present values is given in Table 5.2.

The main goal of the work is to estimate total phosphorus concentration
(”Total P”) on dates when it is unknown. Since almost all other variables
contain missing values, using classical statistical methods becomes impossible
here. Bayesian regression methods are another potential way to tackle this
type of problems but in this thesis they are not investigated due to the time
and space constraints of the thesis work. Thus, missing values approach is
given a priority here. But which variables to include in the matrix for missing
values imputation? On the one hand, including ”useful” variables on which
phosphorus concentration depends is necessary. On the other hand including
variables which are sparse, increases sparsity of resulting matrix. Sparsity
refers to the amount of missing values in a matrix. If sparsity is high, and
since number of free parameters in the model is fixed, less certain estima-
tions are obtained. Therefore trade-off between including more variables and
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Number of present values
No. Variable name Location

S10
Location
S11

Location
S12

1 ”Flow” 11637 (All) 11637 (All) 11637 (All)
1 ”Rains” 11637 (All) 11637 (All) 11637 (All)
2 ”Ammonium N” 201 205 202
3 ”Dissolved P” 187 191 188
4 ”Nitride-Nitrate N” 183 185 182
5 ”Suspended solids (fine)” 224 228 226
6 ”Total P” 225 228 226
7 ”Total N” 224 228 226

Table 5.2: Numbers of present values for variables at different locations

reducing number of sparse variables appears.
The decision to construct missing values matrix for each location

(S1,S2,...S13) separately follows from aforementioned trade-off. Otherwise,
the joint matrix would be too sparse. However, even considering each loca-
tion separately, the sparsity of the matrix for S11 location in Table 5.2 is
73%. It means that 73% of values are missing. After several trials with this
matrix it is concluded that sensible estimations are impossible to make with
such level of sparsity.

As it is seen from Table 5.2, besides fully complete variables, the variable
”Total P” is the most populated. The disturbing fact, which is revealed by
more detailed analysis of dates when missing values appear, is that for each
location other variables like ”Ammonium N”, ”Dissolved P”etc. are given
on exactly the same dates as ”Total P”. Hence, it is not possible to use
these variables in a regression setting where ”Total P” is used as a variable
to predict, while other variables serve as regressors. Using these variables
in the missing values approach seems dubious as well, because there are no
cases when some variable, say ”Ammonium N”, is given and ”Total P” is
absent.

5.2.1 Correlation analysis of different locations

From the same analysis of dates of missing values, it is established that ”To-
tal P” in one location is often given on different dates than ”Total P” in some
other location. To be precise, not all the dates are different, for substantial
part dates are still the same, but also non-intersecting dates present signifi-
cantly. Therefore, if dependency between phosphorus concentrations in two
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
S1 1.00 0.16 0.24 0.14 0.16 0.11 0.38 0.04 0.33 0.09 0.14 0.09 0.08
S2 0.16 1.00 0.45 0.37 0.26 0.14 0.11 0.13 0.23 0.26 0.25 0.21 0.15
S3 0.24 0.45 1.00 0.59 0.64 0.56 0.59 0.56 0.80 0.68 0.51 0.34 0.27
S4 0.14 0.37 0.59 1.00 0.53 0.46 0.18 0.31 0.38 0.48 0.46 0.25 0.23
S5 0.16 0.26 0.64 0.53 1.00 0.37 0.23 0.32 0.37 0.41 0.38 0.22 0.20
S6 0.11 0.14 0.56 0.46 0.37 1.00 0.35 0.73 0.33 0.70 0.47 0.37 0.29
S7 0.38 0.11 0.59 0.18 0.23 0.35 1.00 0.33 0.76 0.41 0.27 0.21 0.12
S8 0.04 0.13 0.56 0.31 0.32 0.73 0.33 1.00 0.27 0.69 0.29 0.36 0.21
S9 0.33 0.23 0.80 0.38 0.37 0.33 0.76 0.27 1.00 0.47 0.49 0.23 0.13
S10 0.09 0.26 0.68 0.48 0.41 0.70 0.41 0.69 0.47 1.00 0.67 0.53 0.36
S11 0.14 0.25 0.51 0.46 0.38 0.47 0.27 0.29 0.49 0.67 1.00 0.54 0.36
S12 0.09 0.21 0.34 0.25 0.22 0.37 0.21 0.36 0.23 0.53 0.54 1.00 0.73
S13 0.08 0.15 0.27 0.23 0.20 0.29 0.12 0.21 0.13 0.36 0.36 0.73 1.00

Table 5.3: Pairwise covariance matrix of the variable ”Total P” for different
locations

locations is estimated, one can predict it at some location using the given
value from another location. Moreover, after discussion with researchers from
Pyhäjärvi Institute it becomes obvious that two relatively close locations
must have very correlated phosphorus concentrations. Hence, to estimate
values of phosphorus in one location matrix corresponding to this location is
inserted phosphorus from other locations. To determine locations with simi-
lar behavior of phosphorus concentration, correlations analysis is performed.
Pairwise covariance matrix [33] is presented in Table 5.3.

In the Table 5.3 the most correlated locations with S11 regarding the
variable ”Total P” are marked in boldface. They are S10 and S12. It is
known that in a multivariate problem Pearson’s correlation coefficient, which
is present in the covariance matrix in Table 5.3, is not always giving correct
measure of dependency between two variables because they can be related
through other variables. To measure correlation between two variables ex-
cluding influence of other variables partial correlation coefficient in used. It’s
definition is the following:

If there are p variables X1, X2, · · · , Xp, which are normalized to have zero
mean and unit variance, and two sets of coefficients w?

1,w
?
2 are determined

by:

w?
1 = arg min

w13,w14,··· ,w1p

{∑
i

(X1
i − w13X

3
i − w14X

4
i − · · · − w1pX

p
i )2

}

w?
2 = arg min

w23,w24,··· ,w2p

{∑
i

(X2
i − w23X

3
i − w24X

4
i − · · · − w2pX

p
i )2

} (5.1)

then residuals are defined as:
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r1i = X1
i − w?

13X
3
i − w?

14X
4
i − · · · − w?

1pX
p
i

r2i = X2
i − w?

23X
3
i − w?

24X
4
i − · · · − w?

2pX
p
i

(5.2)

and the partial correlation coefficient between variables X1 and X2 is
Pearson’s correlation coefficient between their residuals:

ρ12,(12) =

∑
(r1i − E[r1])(r2i − E[r2])

σ[r1]σ[r1]
(5.3)

In the notations above E[r1] denotes mean value of the residual vector r1

and σr1 - standard deviation of this vector. So, at first linear regression is
performed on each X1 and X2 while all other variables X3 · · ·Xp are being
regressors. Then differences between true values ofX1 or X2 and correspond-
ing regression model are calculated, these are called residuals. Finally, regular
correlation coefficient is calculated between two residual vectors. Thus, de-
pendency between X1 and X2 is analyzed while influence of other variables
is removed. Of course this is true only in linear sense. To perform corre-
lation analysis which is based on partial correlation coefficient, all pairwise
coefficients need to be computed. Solving those regression problems for each
pair seems cumbersome, but luckily there exist a neat formula for computing
partial correlations [34]. If pij are elements of the inverse of correlation ma-
trix (or covariance matrix), then partial correlation coefficient between i− th
and j − th variables can be computed by:

ρ12,(12) = − pij√
pii
√
pjj

(5.4)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13
S1 1.00 -0.13 0.07 -0.04 -0.08 -0.04 -0.23 0.01 -0.06 0.10 -0.03 -0.00 -0.04
S2 -0.13 1.00 -0.47 -0.12 0.21 0.10 -0.01 0.19 0.31 0.06 -0.09 -0.13 0.12
S3 0.07 -0.47 1.00 -0.17 -0.54 -0.04 0.16 -0.39 -0.76 -0.26 0.26 0.12 -0.21
S4 -0.04 -0.12 -0.17 1.00 -0.17 -0.20 0.16 0.12 0.00 -0.05 -0.10 0.05 -0.03
S5 -0.08 0.21 -0.54 -0.17 1.00 0.01 -0.06 0.14 0.35 0.13 -0.20 -0.01 0.06
S6 -0.04 0.10 -0.04 -0.20 0.01 1.00 -0.16 -0.44 0.13 -0.15 -0.19 0.13 -0.12
S7 -0.23 -0.01 0.16 0.16 -0.06 -0.16 1.00 -0.07 -0.59 -0.17 0.29 -0.07 -0.02
S8 0.01 0.19 -0.39 0.12 0.14 -0.44 -0.07 1.00 0.29 -0.29 0.21 -0.21 0.21
S9 -0.06 0.31 -0.76 0.00 0.35 0.13 -0.59 0.29 1.00 0.19 -0.41 -0.03 0.17
S10 0.10 0.06 -0.26 -0.05 0.13 -0.15 -0.17 -0.29 0.19 1.00 -0.47 -0.14 0.05
S11 -0.03 -0.09 0.26 -0.10 -0.20 -0.19 0.29 0.21 -0.41 -0.47 1.00 -0.27 0.04
S12 -0.00 -0.13 0.12 0.05 -0.01 0.13 -0.07 -0.21 -0.03 -0.14 -0.27 1.00 -0.68
S13 -0.04 0.12 -0.21 -0.03 0.06 -0.12 -0.02 0.21 0.17 0.05 0.04 -0.68 1.00

Table 5.4: Matrix of partial correlation coefficients of ”Total P” between
different locations

Matrix of partial correlation coefficients between ”Total P” in different
locations is given in Table 5.4. Again, in the boldface locations with the
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highest absolute correlation with location S11 are emphasized. As we see,
there are two other locations: S9 and S7, which have relatively high partial
correlation coefficient with S11. However, partial correlations are computed
via inverse of covariance matrix, which is taken as pairwise covariance matrix.
Pairwise covariance matrix is only an estimate of true covariance matrix
under the presence of missing values. Therefore, partial correlations are
estimates as well, and it is unwise to completely rely on those. Taking all
this into account, decision is made to keep locations S10, S11 and S13 as a
group and in missing values matrix for each of them include the other two.
The complete list of variables in missing values matrix for location S11 is
presented further in the Table 5.6.

5.2.2 Correlation analysis of integrated flow

There is a hypothesis that phosphorus concentration depends not on the flow
at the same day, but on the accumulated flow during several previous days
(or weeks). It is easy to imagine, that the more total amount of water arrives
to some point the more it brings phosphorus, or vice versa the more water
flows out the less phosphorus is left. Another conjecture is that ”Total P”
may depend on accumulated flow but with a time delay. For example, total
amount of water during five days may influence phosphorus concentration,
but these five days were three days ago. In other words, these five days
finished three days ago, so there is a time delay between water inflow and
its’ influence to phosphorus concentration. This delay seems natural since
phosphorus penetrates into springs and lake from agricultural fields because
of the rains, and phosphorus needs time to reach a spring through soil layers.

Aforementioned effects are analyzed in the following way. Flow variable
is integrated backwards with integration horizons varying from 1 to 99 days.
Integration backwards means just summing up previous values up to predic-
tion horizon. For instance, for horizon 1: int flow(i) = flow(i)+flow(i−1)
is performed for all valid values i and so forth, where i is the current
day. In addition, time delays from 1 to 99 are being analyzed. Time de-
lay k applied to flow integrated over 2 days is written mathematically as
int flow(i) = flow(i− k) + flow(i− 1− k). For each integration horizon 99
time delays are applied, so in total 99×99 new variables are constructed, Per-
son’s correlation and partial correlation coefficients between ”Total P” and
every new variable are computed. Correlation coefficients are stored in two
99× 99 matrices where rows correspond to integration horizons and columns
to time delays. Matrices are not presented here because of their size.

This analysis has been done for all three locations S10, S11 and S12, and
matrices with correlation coefficients are obtained. Then maximum absolute
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correlation is sought in these matrices. It has been found that maximum of
both Pearson’s correlation and partial correlation for all locations is situated
somewhere in the middle of the matrix. This means that ”Total P” is cor-
related best with flow which is integrated and time shifted. However, it was
noticed that maximum modulus correlation in the first column (without time
shift) is quite close to the global maximum for all locations and all correlation
coefficients. Hence, to simplify interpretation and analysis, time delays are
not studied further. In the Table 5.5 maximum (among integration horizons)
correlation coefficients between phosphorus and integrated flow are written.

Location
S10 S11 S12

Pearson’s correlation coefficient +0.42 :1 -0.42 :55 -0.20 :44
Partial correlation coefficient 0.34 :46 0.19 :44 0.24 :0

Table 5.5: Maximal correlation coefficients between ”Total P” and integrated
flow

In each table cell, maximal correlation coefficient and, behind the colon,
corresponding integration horizons are provided. For location S11 the max-
imum modulus Pearson’s correlation coefficient is −0.42 and it is obtained
when flow is integrated over 55 days. The maximum partial correlation co-
efficient is 0.19 with flow integrated over 44 days. It is decided to include
55 day integrated flow into the dataset corresponding to S11. The reason is
that partial correlation coefficient is not much less for 55 days integration and
that −0.42 is significantly larger number by absolute value. The complete
list of variables in missing values matrix for location S11 is presented further
in the Table 5.6.

For other two locations situation is different. There are peaks in modulus
of correlation coefficient near 44 days integration, however there are other
peaks at 1 day integration. This is explicitly seen from the table of S10
location and Pearson’s correlation. For location S12 there is also local peak
for 1 day integration, but because it is local it is not shown in the table.
Partial correlations have also local peaks when flow is integrated over one
day. Taking this into account, it is decided to construct two datasets for each
location S10 and S12. The only difference is that the first dataset includes
flow integrated over previous 55 days, while other includes flow integrated
over 1 previous day. The other variables are the same and analogous to those
of S11 location.
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5.2.3 Smoothing of flow

By looking at the plot of flow in the location S11 which is shown on the
Figure 5.2a, one can notice that flow has spiky and very non-smooth shape.
It may cause troubles in regression as well in imputation setups. The reason
is that if phosphorus depends nonlinearly on the flow, changes in phospho-
rus concentration may be much less than changes in flow intensity. This is
quite typical behavior in real physical systems. Although we use methods of
nonlinear analysis, they do not always find the correct dependency, therefore
it might be useful to facilitate these methods by smoothing flow intensity.

Smoothing is done by substituting each value of flow by an average of five
values fnew(i) = 1

5
[f(i−2) +f(i−1) +f(i) +f(i+ 1)+f(i+ 2)]. This simple

sequential averaging suppresses high frequency components in a sequence of
values and result is more smooth. The shape however remains mostly the
same. This procedure has been done with flow intensity in each location and
this new variable is included into the corresponding dataset 5.6.

5.2.4 Averaging over five day intervals

For each location S10, S11, S12 ”Total P” variable from other two locations
is added to missing values matrix as described in Subsection 5.2.1. Distances
between present values of phosphorus (in each location) are quite large. For
instance, for location S11 average distance in days between given values of
”Total P” is 27 days. Under this high sparsity of a variable ”Total P” it is
hard to hope that imputed values are satisfactory accurate. Test experiments
with such sparse data, cross-validation and MSE as a measure of accuracy,
confirmed that suspicion.

In addition, variable ”Rains”, which provides data about precipitation in
the lake region, is given only each five days. Consultation with Pyhäjärvi
researchers confirmed that this variable can be useful for phosphorus estima-
tion. The reason is that phosphorus penetrates into the lake from agricultural
fields and rain water is a transport. Therefore, decision is made to average
all the data over five day intervals. Averaging is done in agreement with
Pyhäjärvi researchers, so for them this time resolution is satisfactory. The
aim is twofold, first reduce sparsity of the data, and second ability to include
”Rains” variable into the dataset. Averaging with missing values is done in
a way that only present values contribute to the result. If all five values are
missing then the result is missing as well. This five day interval is called
”Week” from now on for conciseness and brevity.

Because data is provided for several years, catching correlations between
different seasons, months and even weeks seems reasonable here. Therefore
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each five day interval which is called ”Week” is given a number within a year
i.e. first interval has number 1 and last interval’s number is 72. It would
be possible to include this variable into the dataset. However, there is a
problem, that within one year distances between two dates are correct, but
considering two consecutive years this is not true anymore. For example, the
last ”Week” of year 1990 has number 72 while the first ”Week” of year 1991
has number 1. These are two consecutive weeks but the distance between
them equals 72. This is not desirable property because two actually close
”Weeks” are far away from each other with respect to this new variable.

To overcome this difficulty two new variables are added instead, one is sine
of ”Week” and the second one is cosine. This is a standard way of modeling
periodic variables [35]. In that case the maximum Euclidean distance between
two weeks equals 2 and is obtained when weeks are on the opposite sides of
a year. Actually close weeks of two different years appears to be close in this
case. Thus two variables ”Sine week” and ”Cosine week” are included into
the dataset and their usefulness is investigated below. The complete list of
variables in missing values matrix for location S11 is presented further in the
Table 5.6
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5.3 Exploratory data analysis

(a) Given values of phosphorus along with flow in S11 location.

(b) Consecutive differences in days between given values of phosphorus.

Figure 5.2: Sparsity analysis of Total Phosphorus in S11 location.

The sparsity of phosphorus concentration of averaged dataset is analyzed in
this section. On the Figure 5.2a ”Total P” is shown against flow intensity.
Variable ”Flow” is a full variable, so it is given for every week. As we can
see from the figure there are no phosphorus measurements before year 1991
and after 2008.
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It is also noticeable that sometimes there are large gaps between mea-
surements. Analysis of gaps is shown in more details on Figure 5.2b. At this
plot first difference of phosphorus concentration is shown i.e differences in
dates of every two consecutive present values. In the middle there is a huge
peak about 70 weeks of missing values which correspond to a year when no
phosphorus measurements were taken. There are other relatively large gaps
in values - more than 20 weeks, which correspond to absence of measurements
during a season.

Imputation of missing values in this thesis is performed only within time
period when ”Total P” values are given. So, analysis is restricted to years
1991-2008. Missing values approach is applied only to time periods when
phosphorus concentration does not contain large gaps. If there are large
gaps accuracy of missing values approach is dubious. There are two such
periods and they are denoted by numbers 1 and 2 on the Figure 5.2b. For
other ”Weeks” regression approach is selected for estimation of phosphorus
concentration.

5.4 Regression and missing values datasets

5.4.1 Missing values dataset

The resulting datasets for missing values imputation for location S11 are
presented in the Table 5.6. There are three datasets as mentioned in the
previous Section 5.3. The first one corresponds to complete time interval
and is not solved as a missing values problem. It servers as an input to the
regression problem after removing incomplete columns. The other two are
subsets of the first one and are solved via missing values methods. They
correspond to the two parts displayed on the Figure 5.2b.

All variables in these datasets have been described before, except the last
six variables. They correspond to the shifted versions of variables 2, 3 and 4.
The idea is to make missing values imputation problem more similar to the
time series prediction problem. In time series prediction problem predictions
are made on the basis of previously known values. More details are given
in Part ?? of this thesis. So, for example, variables 11 and 12 are shifted
versions of ”Total P S11” (2-nd variable) by one and two weeks respectively.
By doing so, in one row phosphorus from some ”Week” becomes aligned
with phosphorus one week and two weeks before. Since, some missing values
imputation methods process information row wise, dependency between value
of phosphorus and values from previous two weeks is modeled. The similarly
shifted ”Total P” for locations S10 and S12 are added as variables 13, 14 and



CHAPTER 5. DATASETS CONSTRUCTION 44

Dataset
No. Variable name Complete dataset Part 1 Part 2

(1230 rows) (351 rows) (271 rows)
1 ”Flow S11” 1230 (full) 351 (full) 271 (full)
2 ”Total P S11” 227 59 58
3 ”Total P S10” 225 60 58
4 ”Total P S12” 226 58 72
5 ”Temperature” 1228 351 (full) 271 (full)
6 ”Integrated Flow S11” 1230 (full) 351 (full) 271 (full)
7 ”Smoothed Flow S11” 1230 (full) 351 (full) 271 (full)
8 ”Rains” 1230 (full) 351 (full) 271 (full)
9 ”Sin Week” 1230 (full) 351 (full) 271 (full)
10 ”Cos Week” 1230 (full) 351 (full) 271 (full)
11 ”Time shift 1 Ph. S11” 226 58 57
12 ”Time shift 2 Ph. S11” 226 58 57
13 ”Time shift 1 Ph. S10” 225 59 57
14 ”Time shift 2 Ph. S10” 225 59 57
15 ”Time shift 1 Ph. S12” 225 57 71
16 ”Time shift 2 Ph. S12” 225 57 71

Table 5.6: Datasets for S11 location and amounts of present values in columns

15,16 respectively.
However, there is a negative side of introduction shifted variables. Spar-

sity of dataset increases because of that. For example, sparsity of the part
1 dataset without addition of shifted variables is 25% while after their in-
troduction it is almost 47%. The same is for part 2 dataset, before shifted
variables introduction sparsity is 23% and after 43%. It is one of the ques-
tions investigated in this thesis whether it worth adding these shifted variable
of not. From the experiments in the next chapter the answer is positive that
the addition is beneficial.

Similar datasets as the one shown is the Table 5.6 are constructed for
locations S10 and S12. They contain either the common variables like ”Tem-
perature”, ”Rains” or symmetrically substituted variables for a specific lo-
cation e.g. ”Flow S10”. For each location S10 and S12 the same division on
part 1 and part 2 has been done because time lags between present values
of phosphorus are approximately the same for all locations. Thus, in total
there are six datasets for missing values imputations: part 1 and part 2 for
all three locations.
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5.4.2 Regression dataset

Regression dataset is constructed from the complete dataset in the Table 5.6.
In order to maximize number of training samples only complete variables are
taken as regressors (including ”Temperature”). The variable to predict is
”Total P”. The number of training samples for S11 location is 227 and
equals the number of present values of ”Total P S11”. Having trained the
regression model, it is possible to estimate phosphorus concentration on all
other weeks when it is missing. This is called regression approach and it is
compared to missing values approach described in the previous subsection.
Since missing values approach is studied only during periods ”Part 1” and
”Part 2”, for other dates regression approach is used to estimate ”Total P”

The same process is done for other locations to construct corresponding
regression datasets. Variables for regression dataset, this time, for location
S10 are presented in Table 5.7

No. Variable name
To predict ”Total P S10”

1 ”Flow S10”
2 ”Temperature”
3 ”Integrated Flow S10”
4 ”Smoothed Flow S10”
5 ”Rains”
6 ”Sin Week”
7 ”Cos Week”
8 ”Rains Int. 1”
9 ”Rains Int. 2”
...

...
17 ”Rains Int. 10”

Table 5.7: Regression dataset for S10 location. Number of training samples
is 224

As was said earlier, variable to predict is ”Total P S10”, regressors No.
1-7 are complete variables from the missing values dataset. For S10 dataset
there are 224 training samples. Ten more variables No. 8-17 added to each
regression dataset and their usefulness is investigated in Chapter ??. They
are integrated values of ”Rains” over 1 week ( current one plus one week
before ), 2 weeks and so forth up to 10 weeks. Integration is done in exactly
the same manner as integration of flow in Subsection 5.2.2. The motivation
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for including these variables is to check possibility that phosphorus concen-
tration depends on accumulated precipitation intensity during a long period.

Analysis and comparison of regression and missing values approaches are
presented in the next chapter.



Chapter 6

Estimation of phosphorus con-
centration

6.1 Regression

Regression problem arises when one wants to model dependency between two
variables : x - input variable and y - output variable, based on the observed
pairs (xi,yi)

N
i=1. The output variable takes continuous values within bounded

of unbounded region Y . In this thesis output variable ”Total P” is one
dimensional, therefore subsequently y is written in a normal, not a bold font.
It is assumed that there exists a joint, unknown distribution P (x, y), and the
goal is to minimize the risk functional R =

∫
L[y, ŷ(x)]P (x, y) dxdy, where

L[y, ŷ(x)] is, so called, loss function which measures inaccuracy between true
value y and the one obtained from the model ŷ(x). The most common loss
function is the quadratic loss L = (y − ŷ(x))2. Under the quadratic loss
it is possible to show that the optimal model is ŷ(x) = E[y|x], which is
called regression function, and expectation is taken over P (y|x). Since the
distribution P (x, y) is unknown it is not possible to find regression function
directly. Alternative formulation of regression problem is y = f(x) + ε(x),
where f - is a deterministic function of input variables while ε is random
noise which may also depend of input variable x.

Regression models can be linear and nonlinear. Linearity leads to fast
training algorithms and validation procedures. In linear models, outputs de-
pend linearly on the model parameters. It is worth to emphasize that it is not
necessary that outputs depend linearly on inputs, only on model parameters.
Hence, linear models may also be nonlinear in inputs, in particular, nonlinear
features can be extracted and serve as new inputs. The limitation of linear
models is that number of parameters grows exponentially with the number

47
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of input dimensions [35]. This is a form of curse of dimensionality. Many
nonlinear models are capable to avoid that growth of parameters number. In
this thesis one linear model - ridge regression, and two nonlinear SVM and
LS-SVM are compared for phosphorus concentration prediction.

Another issue that can deteriorate regression models is the presence of
irrelevant, redundant, or too noisy input variables. Those can increase com-
putational time, contribute to the curse of dimensionality and finally, reduce
accuracy of the regression. In addition, selecting of only useful variables facil-
itates interpretability of the model. In this thesis variable selection is applied
to the regression datasets in order to determine useful variables and use them
in missing values approach and final estimation of phosphorus concentration.

6.1.1 Variable selection

There exist many methods for variable selection. Overview of some of them is
presented in [36]. These methods can be divided into three main categories:
filters, wrappers and embedded methods. Filter methods optimize some ex-
ternal criteria for each subset of input variables and select a subset which
corresponds to the optimum. Criteria is usually computed between output
variable and subset of inputs and can be, for instance, mutual information,
delta test or gamma test. The advantage of the filter methods is that they
are usually faster to compute than other types of methods. However, disad-
vantage is that they are completely unrelated with the training process, and
therefore do not take into account properties of data model.

Wrapper methods utilize learning machine as a black box method to score
different subsets of input variables. This is usually done through taking apart
validation set and measuring performance of the machine using only a subset
of inputs. Therefore, multiple retraining of learning algorithm is required
which is a main disadvantage of this class of methods. If the number of
input variables is high (≥ 10 depending on the learning algorithm and number
of samples) wrapper methods become infeasible. In this case, some search
heuristics can be used [2].

Embedded methods for variable selection are built-in into learning ma-
chine and selection is done simultaneously with learning. Their properties
depend on the particular data model and learning algorithm and, hence they
can be very diverse. They are not studied in this thesis; however, they can
be potentially useful for these kind of tasks.

Hierarchical variable selection is applied in this thesis. There are three
stages of variable selection. Initially, when there are many variables more
computationally effective, but less accurate filter methods are used. When
substantial part of variables is discarded, finer wrapper methods are applied.
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In fact, correlation analysis which is described in Chapter 5 is a first stage
of variable selection. It has helped to construct datasets and choose best
correlated locations and integration horizons of flow intensity.

Regression datasets, which are similar to the one shown in the Table 5.7,
contain 17 variables. Thus, as mentioned above, direct application of more
precise but computationally intensive wrapper methods becomes impossi-
ble. Hence, at first Delta test method which belongs to the filter category
is utilized. Based on its outcome variables are divided onto three groups.
The first group is redundant of unimportant variables and is discarded from
subsequent investigation. The second group is important and informative
variables which are kept in datasets. To the third group attributed variables
which are harder to include into two previous groups. All possible their com-
binations (i.e. greedy search) with important variables are analyzed further
using wrapper methods and regression modeling.

There are five datasets for which variable selection needs to be done. One
of them is presented in Table 5.7 and it corresponds to S11 location. Each of
locations S10 and S12 has two datasets associated with it. Hence, datasets
names are: ”reg S11”, ”reg S10 1”, ”reg S10 2”, ”reg S12 1”, ”reg S12 2”.
Two datasets corresponding to the same location differs only in one vari-
able ”Integrated Flow” as described in Subsection 5.2.2. In the dataset
”reg S10 1” flow is integrated over 55 previous days, while in ”reg S10 2”
it is integrated over 1 previous day. The same difference is present between
”reg S12 1” and ”reg S12 2” datasets.

6.1.1.1 Delta test

Delta test has been successfully applied for variable selection, see for exam-
ple [37],[38]. Originally this method has been developed for noise variance
estimation. If regression is considered as

yi = f(xi) + εi , i = 1 · · ·N (6.1)

where f(xi) is a smooth function of input xi, and εi is zero mean, i.i.d.
noise. Then estimation of noise variance is given by:

V ar(ε) ≈
i=N∑
i=1

(
yi − yNN(i)

)
(6.2)

Here notation NN(i) means index of the nearest neighbor of xi: xj =
arg min

j 6=i
‖xi − xj‖, and NN(i) = j.
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It turns out [39], [38] that Delta test can also be applied for variable
selection. The procedure is the following, all subsets of input variables are
taken one by one, delta test for each one is calculated and subset with the
smallest estimation of noise variance is selected.

Delta test has been applied for every regression dataset, however algo-
rithm has been slightly modified in accordance with [38], to make it more
stable and robust. As before delta test is calculated for every subset of vari-
ables, but then histogram of delta tests is plotted. Based on the histogram,
two types of analysis are held: positive analysis and negative analysis. Let’s
consider positive analysis first. Instead of selecting subset of variables which
minimizes Delta test, some threshold value is selected below which delta test
is assumed to be small. All variable subsets which delta test is below the
threshold are considered and each variable is scored by number of subsets it
presents in. The higher the score the more useful the variable is, because it
is found in many subsets with low noise variance estimation.

Negative analysis is almost the same except threshold is selected above
which the Delta test is assumed to be too high. Variables are scored in the
same way, except this time the higher the score, the worse the variable is.
The more ”bad” subsets a variable is present, the less relevant it is considered
to be.

Delta test analysis has been done for all five regression datasets and results
are present in Table 6.1. Since number of variables in each dataset is 17,
(217 − 1) Delta tests need to be computed for one dataset. It is done on
a Core 2 Quad 2.83Ghz × 4 computer in the Matlab environment. Entire
computation for one dataset takes approximately 30 minutes.

As one can notice from the table, only variable ”Temperature” is selected
to be relevant for all datasets. Importance of other variables does not have
significant evidence at this stage. One of the periodic ”Week” variables
appears among relevant variables almost for all datasets and various ”Flow”
variables enter relevant group quite often. All variables which are not in this
table are discarded and are not used any more for regression modeling.

Variables in the right most column are investigated further through a
wrapper approach. All possible combinations of these variables are evaluated
via Monte-Carlo 15-fold cross-validation. Important variables are always
present in all subsets. There are 50 iterations of Monte-Carlo validation, on
each iteration dataset is randomly permuted and 15-fold cross-validation is
applied. Number of folds is increased in comparison to standard 10 because
number of samples in each dataset is small, and there is a need to increase
number of samples for training. In the end, mean square errors (MSE) are
averaged over 50 iterations and over 15 folds within one iteration. Best
subsets of variables are those with the minimal MSE.
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Dataset
/(No. of
samples)

Relevant variables
Variables to be investigated
further

reg S11
(227)

”Flow S11” ,
”Temperature”,
”Integrated Flow S11”

”Smoothed Flow S11”,
”Rains”, ”Sin Week”,
”Cos Week”, ”Rain int 1”

reg S10 1
(224)

”Temperature”,
”Integrated Flow S10”,
”Smoothed Flow S10”,
”Sin Week”

”Flow S10”, ”Rains”,
”Cos Week”, ”Rain int 1”,
”Rain int 4”, ”Rain int 9”

reg S10 2
(224)

”Temperature”, ”Sin Week”

”Flow S10”,
”Integrated Flow S10”,
”Smoothed Flow S10”,
”Rains”, ”Cos Week”,
”Rain int 1”

reg S12 1
(225)

”Temperature”,
”Integrated Flow S12”,
”Cos Week”

”Flow S12”,
”Smoothed Flow S12”,
”Rains”, ”Sin Week”,
”Rain int 2”, ”Rain int 9”

reg S12 2
(225)

”Flow S12”, ”Temperature”,
”Cos Week”

”Integrated Flow S12”,
”Smoothed Flow S12”,
”Rains”, ”Sin Week”,
”Rain int 1”, ”Rain int 2”

Table 6.1: Variable selection via Delta test for regression datasets

Besides selection of best variables, different regression models are eval-
uated in the same cycle of validation. Again the one that has lower MSE
is selected as the best and used for final estimation of ”Total P”. For each
model all variable subsets from the previous paragraph are tried and com-
pared. There are three regression models which are analyzed: Ridge regres-
sion, Support Vector Regression (SVR) and Least-Squares Support Vector
Regression (LS-SVR). In fact, SVR is split into two models: one with hyper-
parameters optimization and another one without. Details of these models
and results are written in the following subsections.
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6.1.2 Ridge regression

Ridge regression is a linear technique for regression where output ynew (as-
sumed to be one dimensional) is expressed as:

ynew = xT
new(XTX + λI)−1XTy (6.3)

given new input xnew. Here X and y contains training data of inputs
and outputs respectively. Ridge regression provides biased estimates of the
coefficients of linear regression model, but the variance is often lower than for
least-squares solution [40]. The term λI is a Tikhonov regularization term
and makes solution more stable especially if matrix XTX is close to singular.

There is one parameter to adjust - λ. In this work it is adjusted via a
second internal cycle of cross-validation.

6.1.3 Support vector machines

Support Vector Machines has been invented already a long time ago - in
1960s by Vladimir Vapnik. However, useful extensions such as soft-margin
SVM, nonlinear SVM and Support Vector Regression (SVR) appeared only
in 1990s in the works of Vapnik and his colleagues [41], [42], [43]. Here we
are interested in regression problem, but it shares similar properties as SVMs
for classification. The solution of binary classification problem depends only
on the subset of training points which are close to the separating hyperplane
between two classes. Analogously, solution of regression problem depends
only on the training points which lie outside ε-tube of the model prediction.

In general mathematical formulation this model can be expressed as the
following: suppose we want to find solution of regression problem in the form

y(x) = wTφ(x) + b (6.4)

where φ is a mapping from original space to higher (possibly infinite)
dimensional space, which is called reproducing Hilbert Space. This mapping
does not need to be known or estimated in advance because it is not used
explicitly. Then, training regression model can be expressed in constrained
optimization form, where objective function to be minimized, includes ‖w‖2
because we are interested in finding simpler model, and the sum of slack
variables which measure violation of ε-tube by each training point.
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min
1

2
‖w‖2 + C

i=N∑
i=1

(ξ+i + ξ−i )

s. t. yi −wTxi − b ≤ ε+ ξ+i

wTxi + b− yi ≤ ε+ ξ−i
ξ+i ≥ 0, ξ−i ≥ 0, 1 ≤ i ≤ N

(6.5)

This problem can be represented in dual form which is historically used
more frequently for SVM training:

max−1

2

N∑
i,j=1

(α+
i − α−i )(α+

j − α−j )K(xi,xj)− ε
N∑
i=1

(α+
i + α−i )+

+
N∑
i=1

yk(α+
i − α−i )

s. t.
N∑
i=1

(α+
i − α−i ) = 0

0 ≥ α+
i , α

−
i ≤ C 1 ≤ i ≤ N

(6.6)

Here α+
i and α−i are Lagrange multipliers corresponding to the first and

second constraints in Equation 6.12, K(xi,xj) is called kernel and equals
K(xi,xj) = φ(xi)

Tφ(xj) scalar product in reproducing Hilbert space. The
regression function is expressed through parameters α in the form:

y(x) =
N∑
i=1

(α+
i − α−i )K(x,xj) (6.7)

The most common algorithms used for SVR training are Sequential Min-
imal Optimization (SMO) algorithm and interior point methods [44]. One of
the main chooses of kernel function is Gaussian kernel:

K(xi,xj) = exp{‖xi − xj‖2

2σ2
} (6.8)

This form of kernel function is used for experiments in this thesis. A
well-known library LIBSVM [45] with additionally written Matlab wrapper
has been used.
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6.1.4 Hyper-parameters selection for SVR

There are three hyper-parameters to adjust in support vector regression for-
mulation: C - regularization parameter, ε - width of a tube inside which no
penalty for a point occurs, and σ - width of a Gaussian kernel. Despite the
fact that kernel methods have being developed for about two decades there
is no unified view about selection of hyper-parameters.

Authors of LIBSVM package propose using grid search where exponen-
tial grid in parameters space is formed and for each vertex separate model is
trained. Parameters corresponding to the vertex which minimize validation
error are selected. Other methods are: random search, Nelder-Mead simplex
search, method of Cherkassky and Ma, pattern search, various methods of
local search. Some empirical results are given in technical report [46]. There
it is shown that for different datasets different methods perform the best;
however, pattern search provides good balance between accuracy and com-
putational cost. Pattern search is a simple method which operates on the
similar parameter grid. Given an initial point it explores all possible one
step moves and if some direction is superior it moves there. On the next
step the size of the grid is decreased in two times and the process continues.
Superiority is characterized by mean squared error on validation set.

Another appealing approach is the method proposed by Cherkassky and
Ma [47]. Parameters are estimated only from the training data and no model
training and validating is required.

C = max(|meany − 3σy|, |meany + 3σy|) (6.9)

ε = 3ν

√
logN

N
, where ν − variance of noise (6.10)

σ = (0.3 range( dist( Xtrain ) ))
1
d (6.11)

In the last equation d - is the dimensionality of the data, dist - obtains all
pairwise distances between training data points, and range - obtains range
of these distances. Variance of noise ν is estimated via Gamma test with
number of neighbors equal 10.

Applicability of Cherkassky and Ma approach is one of the questions of
this thesis. Hence, two different parameter selection procedures are applied.
The First is pure Cherkassky and Ma approach, the second is Cherkassky and
Ma approach with subsequent pattern search. Idea is that if pure Cherkassky
and Ma method is not very accurate, then it is refined by the subsequent
pattern search, which anyway needs to receive some initial point. These two
SVR procedures are called SVR 1 and SVR 2 respectively.
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6.1.5 Least-Squares support vector machines

Least-Squares support vector machines (LS-SVM) are viable modification to
the original SVM. For the regression problem it corresponds to the following
optimization problem:

min
1

2
‖w‖2 + C

i=N∑
i=1

ξ2i

s. t. yi −wTxi − b = ξi, 1 ≤ i ≤ N

(6.12)

As one can notice there is no ε-tube inside which there is no penalty.
Now all deviations of regression function wTxi + b from actual values yi
are penalized by addition of squared deviation to the cost function. LS-
SVMs have proven to have competitive performance [48] and they have an
advantage that in the dual space only system of linear equations needs to be
solved. However, the sparsity of the solution is sacrificed.

To perform experiments LS-SVM Toolbox for Matlab has been used.
Parameter optimization in this toolbox is done through coupled simulated
annealing algorithm [49] and fine tuning through simplex method and cross-
validation.

6.1.6 Regression Results

Before applying regression modeling all input variables and output variable
have been normalized to have zero mean and unit variance. Then, as men-
tioned earlier, generalization error of different models and different subsets of
input variables is measured by Monte-Carlo 15-fold cross-validation. There
are 50 loops of validation and on each loop 15-fold cross-validation is per-
formed. Best regression models and best subsets of variables are presented
in the Table 6.2.

Not all results are presented here due to space constraint, only the best
models and best subset of variables. Only ridge regression performs signifi-
cantly worse than other methods. This is most likely because data is nonlin-
ear in input variables while ridge regression is a linear model. Other models
i.e. LS-SVR, SVR 1, SVR 2 usually perform similarly and differences are
not high. Also it is notable that in two cases the best model is SVR 1 with
hyper-parameters selection purely by Cherkassky and Ma method. It means
that subsequent pattern search included in SVR 2 does not improve hyper-
parameters selection. The reason might be that intrinsic cross-validation in-
cluded in pattern search overfits hyper-parameters. Among the all datasets
only reg S11 has reasonably low MSE, others have substantially high taking
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Dataset Best model Relevant variables MSE ± (std)

reg S11 LS-SVR

”Flow S11” ,
”Temperature”,
”Integrated Flow S11”,
”Smoothed flow S11”,
”Sin Week”, ”Cos Week”

0.530± (0.312)

reg S10 1 SVR 1

”Temperature”,
”Integrated Flow S10”,
”Smoothed Flow S10”,
”Rains”, ”Sin Week”,
”Rain int 1”

0.750± (0.548)

reg S10 2 LS-SVR
”Temperature”,
”Smoothed flow S10”,
”Sin Week”

0.783± (0.489)

reg S12 1 SVR 2

”Temperature”,
”Integrated Flow S12”,
”Cos Week”, ”Rain int 2”,
”Rain int 9”

0.814± (0.927)

reg S12 2 SVR 1

”Flow S12” ,
”Temperature”,
”Integrated Flow S12”,
”Smoothed flow S12”,
”Cos Week”

0.939± (1.172)

Table 6.2: Relevant variables and best models for five regression datasets

into account that mean imputation would give MSE equal to 1 for normalized
data.

Concerning variable selection, situation is not straightforward. ”Rains”
variable (and integrated rains) is selected in ”reg S10 1” and ”reg S12 1”
datasets. Moreover, in the latter dataset, integrated over large period
”Rain int 9” is selected. However, for the best dataset it terms of MSE -
”reg S11”, and for the rest two no ”Rains” are selected. Hence, even if
”Rains” brings some useful information, its relevance level is not high.

To remind, datasets ”reg S10 1” and ”reg S10 2” differ only by one vari-
able ”Integrated Flow S10”, so in ”reg S10 1” flow is integrated over 55
previous days while in ”reg S10 2” over 1 previous day. The same is for
”reg S12 1”, ”reg S12 2” datasets. From the table it is seen that MSE for
”reg S10 1” and ”reg S12 1” are lower than for ”reg S10 2” and ”reg S12 2”,
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however the difference is rather small. Moreover, standard deviation for
”reg S10 2” is lower than for ”reg S10 1”. Thus, it is more likely that in-
tegration over 55 days is superior and it is decided to discontinue using
datasets ”reg S10 2” and ”reg S12 2”. So, for each location only one regres-
sion dataset is left.

There is also no clear evidence which of flow variables are is best ”Flow”,
”Integrated Flow” or ”Smoothed Flow”. For different datasets various sub-
sets of these variables are selected. This issue is analyzed again in missing val-
ues imputation approach. Another interesting fact is that both ”Sin Week”
and ”Cos Week” are selected only in ”reg S11” dataset. In other datasets
best subset includes either one or the other of these variables. Therefore,
definitely some periodicity in dates is important for regression but for two
locations only half of the information encoded in periodic variables turns out
to be useful.

6.2 Missing values imputation

Missing values datasets have been described in Sections 5.3 and 5.4 of the
previous Chapter. The list of variables and dataset sizes for location S11
are presented in the Table 5.6. As mentioned earlier, each location S10, S11,
S12 has 2 datasets associated with it. They correspond to the two periods
in time when measurements of ”Total P” are not very sparse.

There are also several variables which importance is unknown and needed
to be checked. They include time shifted versions of ”Total P”, and discarded
variables during regression phase. However, because missing values imputa-
tion methods are quite computationally costly, comprehensive variable selec-
tion is not possible. Hence, several heuristic sets of variables are constructed
and checked. Heuristics are mostly based on results of regression variable
selection and general understanding of the problem. For instance, feasibility
of including shifted versions of phosphorus is studied by constructing two
datasets - one contain those variables and another does not.

In the following subsections description of three methods used for missing
values imputation is given. Generally, missing values imputation is a wide
area of research with many applications [50], [51], so there is no goal to check
all possible methods and compare them. It would be hardly possible. Only a
subset from different classes of methods is selected and subsequent ensemble
averaging is utilized to lighten possible disadvantages of a single method.
Each of the methods presented below takes as input a matrix with missing
values, fills missing values and returns the complete matrix.



CHAPTER 6. ESTIMATION OF PHOSPHORUS CONCENTRATION 58

6.2.1 Mixture of Gaussians

It is assumed that rows of a data matrix come from the mixture of Gaussian
distribution:

P (x|θ) =
K∑
k=1

πkN (x|µk,Σk) (6.13)

Here K - number of Gaussian components. The set of parameters θ
includes πk, µk, and Σk. It is possible to introduce latent variable z which
helps to write distribution of x in marginal form:

p(x) =
∑
z

p(z)p(x|z) =
K∑
k=1

πkN (x|µk,Σk) (6.14)

Latent variable z is a vector of length K each component of it can take
either 0 or 1, and there is a constraint

∑
j

zj = 1. Then, it can be shown that

distribution of x can be expressed as a marginal of a distribution p(x, z)
in the form of Equation 6.14. Hence, for every sample (xi)

N
i=1 there exist a

corresponding sample (zi)
N
i=1 which is not observed. That is why z is called

latent variable.
In general, fitting models with latent variables is possible via EM-

algorithm [35]. The extension of EM-algorithm to include missing data has
been proposed in [52], [53]. Implementation of EM-algorithm with missing
values has been taken from [54]. There is one hyper-parameter of the algo-
rithm - number of Gaussian components. The more components we take the
more free parameters we have in the models and hence, the more training
data is needed. After preliminary tests, it has been established that using
more than 2 components is unjustified for this problem. Thus, mixtures
of Gaussians with 1 and 2 components are used for imputations and their
abbreviations are ”MM 1” and ”MM 2”.

6.2.2 Empirical Orthogonal Functions

Empirical orthogonal functions (EOF) is a widely used method in meteorol-
ogy and climate research for missing values imputation [55]. It is based on
Singular Value Decomposition (SVD), which is valid for any matrix X:

X = UDV T (6.15)

Matrix D is a rectangular diagonal matrix and has the same dimension-
ality as original matrix X. Singular values are located in the diagonal of it in



CHAPTER 6. ESTIMATION OF PHOSPHORUS CONCENTRATION 59

the decreasing order. Matrices U and V are square and orthogonal matrices.
SVD decomposition can be applied directly only to complete matrices. EOF
utilizes iterative way to apply singular value decomposition to missing values
imputation. The algorithm is presented below:

Algorithm 4 Empirical Orthogonal Functions

Given the incomplete matrix X ∈ Rm,n

1: Make initial imputation X0, for example, by column means
2: i = 0 (iteration number)
3: repeat
4: Perform SVD: X i = U iDi(V i)T to obtain U i,Diand(V i)T

5: Nullify K smallest singular values of Di. Denote this modified matrix
as Di

0

6: Do inverse transformation: X i
0 = U iDi

0(V
i)T

7: Restore exactly known values: known(X i
0) = known(X0)

8: i = i + 1 (iteration number)
9: until Convergence

Iterations continue until convergence which is measured by maximal
difference between matrix elements on two consecutive iterations. Hyper-
parameter in this algorithm is K - number of singular values to nullify. Ac-
tually this operation serves as data denoising and can be applied even for
complete matrices. In this case is is equivalent to Principal Component Anal-
ysis. Selection of K has been performed by the same Monte-Carlo 15-fold
cross-validation, in the same cycle as model selection for missing values. This
validation cycle is described in more details below in Subsection 6.4.1.

6.2.3 Singular Values Thresholding

Singular value thresholding algorithm was proposed in the paper [56] as a
fast but approximate algorithm to solve the following optimization problem:

min ‖X‖?
s.t. Xij = Mij

(6.16)

In the notations above X - is a complete matrix we want to obtain and
Mij are known values. The norm ‖X‖? =

∑
k

σk is the sum of singular val-

ues of a matrix and is called nuclear norm. In another paper of the same
authors [57] it has been shown that the problem 6.16 under some mild con-
ditions is equivalent to minimizing rank (number of nonzero singular values)
under the same constraints. The summary of the algorithm is the following:
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Algorithm 5 Singular Value Thresholding

Given the incomplete matrix M ∈ Rm,n, denote matrix X0 which equals M
and take matrix Y 0 = 0 ∈ Rm,n

1: repeat
2: k = k + 1 (iteration number)
3: Xk = shrink(Y k−1, τ) (shrinking means applying operation

max{σ − τ, 0} to all singular values of a matrix)
4: Y k = Y k−1 + δkP(M −Xk) (where operation P(·) returns zero

for incomplete element and element itself if it is known)
5: until Convergence

The implementation used in this thesis is taken from the authors of the
original paper [56]. Default values for parameters have been used and there
are no hyper-parameters to adjust.

6.3 Combining different models

In the previous subsections three different models have been considered. It is
possible to select one of them on the basis of cross-validation outcome. The
one that provides the lowest validation error can be assumed superior and
others can be discarded. However, there is a reason to keep all of them and
take arithmetic mean as a final estimator.

Let’s assume that we have M models and we want to estimate value f(x)
where f might be either regression function or estimation of a missing value.
Similarly x might be either regressors or present values of a matrix in an
imputation problem. Assume further that each model provides estimation
ym(x) = f(x)+εm(x), where f(x) is true value and εm(x) is zero mean noise
with variance σ2

m(x). If the noise is not zero mean then estimators are biased,

but it does not change the following reasoning. Let y(x) = 1
M

M∑
m=1

ym(x), then

E[y(x)] = E

[
1

M

M∑
m=1

ym(x)

]
=

1

M

M∑
m=1

E[ym(x)] = f(x) (6.17)

Hence y(x) is unbiased estimator, now consider variance of y(x):
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D[y(x)] = D

[
1

M

M∑
m=1

ym(x)

]
=

{ if ∀k, l : k 6= l εk and εl are uncorrelated: E[εkεl] = 0 } =

=
1

M2

M∑
m=1

D[ym(x)] =
1

M2

M∑
m=1

σ2
m(x) =

σ2(x)

M

(6.18)

So, we see that under assumption that noise is uncorrelated, variance of
the mean estimator equals mean variance divided by M . One benefit is that
division by M may reduce the variance significantly. Another benefit is that
there is no need to find the best model. Of course, mean variance σ2(x)
is larger than the minimum variance of the best model, but since variances
depend on x, it is possible that in one part of space one model is the best and
in another part of space the other model is best. Thus, by taking average,
the variance of estimator is characterized by the mean variance in the given
point, and there is no need to select the best model.

The assumption about uncorrelatedness of noise is rather strong and usu-
ally is not satisfied in practice. However, it is still possible to make estimation
of variance of mean estimator. In Equation 6.19 it is shown that variance of
averaged estimator is less (or equal) than average model variances. So, while
the division by M has disappeared, but the second argument still holds.

D[y(x)] = D

[
1

M

M∑
m=1

ym(x)

]
= E

[
(

1

M

M∑
m=1

ym(x)− f(x))2

]
=

= E

[
(

1

M

M∑
m=1

εm)2

]
≤ {using Jensen’s inequality} ≤ E

[
1

M

M∑
m=1

ε2m(x)

]
=

=
1

M

M∑
m=1

σ2
m(x) = σ2(x)

(6.19)
From the formulas above it is evident that using averaging is beneficial

especially when errors (noise random variables) of the models are uncorre-
lated and their variance if low. Therefore, in this thesis averaging has been
utilized and models which are used for averaging are selected by Monte-Carlo
validation and greedy search. There are five models and each of those can
predict phosphorus concentration for a given ”Week”. Models are: ”Regres-
sion”, ”Mixture of Gaussians 1” (MM1), ”Mixture of Gaussians 2” (MM2),
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”Empirical Orthogonal Functions” (EOF), ”Singular Value Thresholding”
(SVT). So, in every iteration of Monte-Carlo validation cycle, all models
provide predictions and averaging is performed for all possible combinations
of models. Then the best combinations are selected by validation results.

6.4 Model selection results

6.4.1 Experimental setup

Experiments are done in the similar way as regression experiments. Accuracy
of imputation is characterized by MSE and is measured by Monte-Carlo 15-
fold cross-validation. There are 50 iterations in total, on each of those dataset
is randomly permuted and 15-fold cross-validation is performed. The final
estimation of MSE is an average over each fold within one iteration and
total average over all iterations. Iterations of cross-validation are required
because datasets are very small - only around 225 samples. For the same
reason number of folds in cross-validation is increased from standard 10 to
15.

There are two missing values datasets for each location as described in
Section 5.3. They correspond to different time periods and denoted as ”Part
1” and ”Part 2”. All experiments are conducted in a way that these two
datasets are processed simultaneously. Validation is done independently on
each Monte-Carlo iteration because datasets have different number of sam-
ples. However, when variable selection is performed, different groups of vari-
ables are evaluated on exactly the same points of cross-validation.

All matrices have been normalized in the beginning so that each column
has zero mean and unit variance. Under this normalization, mean square er-
ror of mean imputation equals one. That way is easier to compare accuracies
for different datasets. For example, if MSE is below 1 than performance of a
method is better than performance of mean imputation.

6.4.2 Usefulness of other locations in missing values
datasets

In the previous chapter it is written that missing values dataset for each loca-
tion includes phosphorus concentration of other locations. The feasibility of
that inclusion is tested here. This is done only for location S11 and obtained
results are generalized for datasets of other locations. In the Table 6.3 four
groups of variables are presented. First group includes all variables, in the
second - two other locations are discarded, in the third one - time shifts of
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phosphorus are also discarder and in the fourth group all locations are kept
but time shifts are eliminated.

No. Variable Name Group 1 Group 2 Group 3 Group 4
1 ”Flow S11” X X X X
2 ”Total P S11” X X X X
3 ”Total P S10” X X
4 ”Total P S12” X X
5 ”Temperature” X X X X
6 ”Integrated Flow S11” X X X X
7 ”Smoothed Flow S11” X X X X
8 ”Rains” X
9 ”Sin Week” X X X X
10 ”Cos Week” X X X X
11 ”Time shift 1 Ph. S11” X X
12 ”Time shift 2 Ph. S11” X X
13 ”Time shift 1 Ph. S10” X
14 ”Time shift 2 Ph. S10” X
15 ”Time shift 1 Ph. S12” X
16 ”Time shift 2 Ph. S12” X

Table 6.3: Groups of variables to be tested for usefulness of inclusion

Data matrix Group 1 Group 2 Group 3 Group 4
Part 1 (MSE ± std) 0.46± 0.56 0.62± 0.61 0.62± 0.58 0.47± 0.61

models mask 10001 10000 10000 10001
Part 2 (MSE ± std) 0.40± 1.01 0.53± 0.95 0.52± 0.95 0.40± 1.04

models mask 10111 11000 11000 11001

Table 6.4: Performance evaluation for variable groups. Sequence of models
in model mask is: ”Regression”, ”MM 1”, ”MM 2”, ”SVT”, ”EOF”

Comparison of these groups of variables is showed the Table 6.4 for both
”Part 1” and ”Part 2” matrices. Combinations of models which provided
the best MSE are also showed in this table in the form of model mask. In
the mask 1 means that model has been used in averaging and 0 that it has
not. Sequence of models in model mask is: ”Regression”, ”MM 1”, ”MM 2”,
”SVT”, ”EOF”. The best regression model and best variables revealed in
regression analysis has been utilized for every dataset.
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From the table it is clearly seen that using all variables is beneficial in
terms of MSE. However, results are only slightly better than for the fourth
group, and sometimes only small difference in standard deviation matters.
In the second group variables corresponding to other locations are missing,
and relatively large growth of MSE is observed. One can notice that ”Rains”
variable is missing in groups 2 and 3. This is done because this variable is not
selected by regression model which is seen form the Table 6.2. Therefore, it is
believed that this variable has no relevant information. There is no difference
in accuracy (after rounding) between groups 2 and 3. It is also noticeable
that in ”Part 1” dataset, for groups 2 and 3, only regression model is selected
and missing values datasets are not needed at all. It is decided to keep time
shifted versions of phosphorus even though their advantage is very minor.

6.4.3 Model selection for missing values imputation

From the previous section it is known that including phosphorus concen-
tration for other locations and time shifted values of phosphorus might be
beneficial. However, for final imputation it is necessary to know which model
combination and which set of variables to use for each location. To deter-
mine this, experiments have been performed and results are presented in
Tables 6.5, 6.6, 6.7.

For each location there are two datasets and it is possible to do model
selection independently for each of those. However, to facilitate interpretabil-
ity of the results it is desirable that for each location, there is only one set
of useful variables and models in ensemble.

In the Tables 6.5, 6.6, 6.7 groups of variables that have been evaluated are
presented. Because the evaluation procedure requires many cycles of cross-
validation (Section 6.4.1) it is impossible to test many variable groups. For
example, in the experiment for S12 location with four groups, computations
take approximately 20 hours. Therefore, variable groups have been selected
on the basis of regression results (Table 6.2) and domain knowledge.

Experimental output for one location consist of MSE and STD for ”Part
1” and ”Part 2” datasets, for all variable groups (which are analyzed) and
all model combinations. Then, this results are manually processed to find
optimal variable group and model combination. So, sometimes optimality
is a compromise between ”Part 1” and ”Part 2” datasets, because for one
of them one model combination is better while for another some different
combination. Compromise has been searched in terms of MSE and STD,
both are required to be as low as possible. However, as was said earlier, if
we allow different variable groups or different model combinations for ”Part
1” and ”Part 2” interpretability of results is decreased significantly.
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Location S10
No. Variable Name Group 1 Group 2 Group 3
1 ”Flow S10” X
2 ”Total P S10” X X X
3 ”Total P S11” X X X
4 ”Total P S12” X X X
5 ”Temperature” X X X
6 ”Integrated Flow S10” X X X
7 ”Smoothed Flow S10” X X X
8 ”Rains” X X X
9 ”Sin Week” X X X
10 ”Cos Week” X X X
11 ”Time shift 1 Ph. S10” X X
12 ”Time shift 2 Ph. S10” X X
13 ”Time shift 1 Ph. S11” X X
14 ”Time shift 2 Ph. S11” X X
15 ”Time shift 1 Ph. S12” X X
16 ”Time shift 2 Ph. S12” X X
Best model combination 10111: ”Regression SVR 1”, ”MM 2”,”SVT”,”EOF”

MSE ± std, Part 1 0.606± 0.639 0.629± 0.637 0.667± 0.710
MSE ± std, Part 2 0.314± 0.297 0.341± 0.368 0.337± 0.336

Table 6.5: Groups of variables which have been tested for missing values
imputation for location S10
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Location S11
No. Variable Name Group 1 Group 2 Group 3
1 ”Flow S11” X X X
2 ”Total P S11” X X X
3 ”Total P S10” X X X
4 ”Total P S12” X X X
5 ”Temperature” X X X
6 ”Integrated Flow S11” X X X
7 ”Smoothed Flow S11” X X X
8 ”Rains” X
9 ”Sin Week” X X X
10 ”Cos Week” X X X
11 ”Time shift 1 Ph. S11” X X
12 ”Time shift 2 Ph. S11” X X
13 ”Time shift 1 Ph. S10” X X
14 ”Time shift 2 Ph. S10” X X
15 ”Time shift 1 Ph. S12” X X
16 ”Time shift 2 Ph. S12” X X

Best model combination 10001: ”Regression LS-SVM”, ”EOF”
MSE ± std, Part 1 0.503± 0.599 0.504± 0.634 0.503± 0.637
MSE ± std, Part 2 0.343± 0.611 0.340± 0.665 0.340± 0.662

Table 6.6: Groups of variables which have been tested for missing values
imputation for location S11
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From results tables it is seen that accuracy for ”Part 1” is always better
than for ”Part 2”. For location S12 the difference is very large. This might
be due to the fact that time lags between given values of phosphorus are
larger for ”Part 1” as it is seen for the Figure 5.2. Another noticeable fact
is that best groups for locations S10 and S11 are first groups which include
all variables. This goes in accordance with the statement in Subsection 6.4.2
that time shifted variables are important. However, variables rejected by
regression approach, for instance ”Flow S10” for S10 dataset, are not rejected
by missing values approach. On the other hand, for S12 location variables
that are rejected by regression are also rejected by missing values approach.
Thus, it is concluded that variables rejected by regression are of limited
relevance. They do not provide significant accuracy improvement.

Concerning different models, it is seen from the table that each of them
participated at least once in some model combination. For example, for
location S12 all models except ”MM 2” are selected, for S10 everything except
”MM 1” are selected. The important fact is that regression model is always
selected, but never alone. This means that using missing values approach
improves results of regression.

6.5 Final estimation of phosphorus concen-

tration

The final estimation of phosphorus concentration is done for time period
26.03.1991 - 21.04.2008. Outside this time interval no ”Total P” measure-
ments have been done so we decided constrain only to this period. Graphi-
cally this time interval is shown on the Figure 5.2. As earlier, three locations
S10, S11, S12 have been used.

Inside this large time interval there are two short intervals where phos-
phorus concentration is not very sparse and missing values approach can
be utilized. For example, for S11 location these intervals are (26.03.1991 -
06.02.1996) and (01.03.1997 - 01.12.2000) and correspond to missing values
datasets called ”Part 1” and ”Part 2” as before. For other locations small
intervals are almost the same.

At first, for each location, regression model is build. The selection be-
tween ”LS-SVM”, ”SVM 1” and ”SVM 2” is done looking at results of Ta-
ble 6.2. Then two datasets - ”Part 1” and ”Part 2” are build according to
the best variable groups from previous section. Missing values imputation is
performed for this datasets using best model combination for this location
(Tables 6.5, 6.6, 6.7). Therefore, for dates which correspond to dates of
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missing values datasets, we get an improved ”Total P” estimation in com-
parison to only regression approach. For other dates regression predictions
are taken.
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(a) Final ”Total P” imputation for S10 location

(b) Final ”Total P” imputation for S11 location

(c) Final ”Total P” imputation for S12 location

Figure 6.1: ”Total P” imputation
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Location S12
No. Variable Name Group 1 Group 2 Group 3 Group 4
1 ”Flow S12” X
2 ”Total P S12” X X X X
3 ”Total P S10” X X X X
4 ”Total P S11” X X X X
5 ”Temperature” X X X X
6 ”Integrated Flow S12” X X X X
7 ”Smoothed Flow S12” X
8 ”Rains” X
9 ”Sin Week” X X
10 ”Cos Week” X X X X
11 ”Time shift 1 Ph. S12” X X
12 ”Time shift 2 Ph. S12” X X
13 ”Time shift 1 Ph. S10” X X
14 ”Time shift 2 Ph. S10” X X
15 ”Time shift 1 Ph. S11” X X
16 ”Time shift 2 Ph. S11” X X
Best model combination 11011: ”Regression SVR 2”, ”MM 1”,”SVT”,”EOF”

MSE ± std, Part 1 0.795± 1.474 0.777± 1.469 0.753± 1.437 0.791± 1.531
MSE ± std, Part 2 0.497± 0.494 0.453± 0.457 0.567± 0.459 0.564± 0.563

Table 6.7: Groups of variables which have been tested for missing values
imputation for location S12



Chapter 7

Conclusions

The purpose of this thesis is twofold. At first, the problem of pure time se-
ries prediction has been addressed. Time series prediction can be applied to
variety of problems, including environmental modeling which is practically
investigated in this thesis on the Pyhäjärvi case. Lake Pyhäjärvi is large lake
which plays crucial role in the local agricultural and fishing industries. It suf-
fers from excessive growth of plants which cause death of animals from the
lack of oxygen. Plants grow abundantly because of a large load of nutrients
into the lake and the main nutrient is phosphorus. For intelligent planning of
preservation activities and better understanding of this ecological system it
is necessary to have model which predicts the concentration of phosphorus.
Time series modeling seems very natural approach to phosphorus concen-
tration prediction, and methods developed in this thesis can be successive
utilized.

However, there is significant impediment to the direct application of time
series prediction techniques to the phosphorus concentration prediction in
Pyhäjärvi lake. The measurements of phosphorus concentration are done
manually and not very regularly. Therefore, weeks when there are no mea-
surements may be considered as missing data. Imputation of missing values
constitutes the second part of the thesis. Two approaches to estimate miss-
ing values of phosphorus are studied: regression approach and missing values
approach. Moreover, datasets provided by Pyhäjärvi institute include many
variables importance of which is unclear. So, variable selection is performed
and relevance of variables is evaluated.

Conclusions about the first part of the thesis are summarized in detail in
the Section 4.4 of Chapter 4. In particular, OP-ELM with DirRec strategy
has demonstrated very good performance. In all experiments this combina-
tion outperforms linear model with any strategy. In the case, when it does
not hold the difference is very small. It has been confirmed that OP-ELM
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requires much less computations then other nonlinear models like SVM. En-
semble methods are able to provide further substantial improvement of pre-
diction accuracy.

Second part starts with preprocessing and exploratory data analysis. At
this stage some important decisions have been made and framework for fur-
ther analysis has been established. In particular, locations are grouped to-
gether on the basis of correlation analysis. Datasets for each of locations
S10, S11 and S12 are included phosphorus concentrations from two other
locations. Conjecture has been made and investigated that integrated flow
could affect phosphorus concentration more significantly than flow from the
corresponding week. Smoothed flow intensity has been included into the
data sets because sharp changes could negatively influence performance of
algorithms. Integrated versions of ”Rains” variable, sine and cosine of week
number have been included as well. The important decision has been made
about averaging all variables over five day intervals. It helps to avoid ex-
tremely sparse datasets and align other variables with precipitation variable
which is given only for five day intervals.

Two levels of variable selection have been applied in regression approach.
It has been demonstrated that ”Temperature” and ”Integrated Flow” are
always selected as relevant features for phosphorus predictions. At least one
of two periodic time variables (sine or cosine) is also selected. Relevance of
”Rains” variables and ”Integrated Rains” are dubious at this stage because
they are rejected by two datasets out of three. Three regression models i.e.
LS-SVM, SVM 1 and SVM 2 has been investigated and their performance
appears to be very similar. All three datasets select different models as
the best. Thus, it is shown that method of Cherkassky and Ma of hyper-
parameters selection is competitive against greedy cross-validation, at least
for Pyhäjärvi data.

Further improvements over regression approach are done via missing val-
ues approach. It is applied for time periods where gaps between known values
of phosphorus are not very large. It has been shown in Subsection 6.4.2 that
including other locations and shifted versions of phosphorus leads to lower
mean squared error. Inclusion of shifted versions of a variable into a missing
variable dataset is an interesting technique which has been proposed in this
thesis.

Missing values imputation has been done by ensemble method using five
different models. Comparison of Tables 6.2 and 6.4 shows that results of
ensemble of imputation methods outperform the regression approach. Even
single model for missing values imputation may be more accurate than re-
sults of regression. So, for time periods of missing values datasets, improved
estimation of phosphorus concentrations are obtained. Finally, phosphorus
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concentration is filled for three locations S10, S11, S12 for the time interval
(26.03.1991 - 21.04.2008). As a rough estimation of confidence interval of im-
puted phosphorus, properly normalized mean squared error for corresponding
date can be taken.

Methods applied in the second part of the thesis often follow an ad-hoc
way. It is believed that more general and systematic approaches can be
developed. Plenty of artificially generated variables like integrated flows and
rains have been evaluated. Since the generation is done in a systematic
way, interesting research direction would be to automate the selection as
well. Also interesting technique is a combination of missing value imputation
and regression approaches. In environmental domain data is often collected
manually which is quite costly, so presence of missing values is a constant
problem. Therefore, using all available data i.e. complete variables and
incomplete ones for solving the task, is frugal and effective way to exploit
every bit of information which we possess.
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fan Rüping. Determination of hyper-parameters for kernel based classi-
fication and regression. Technical Report / Universität Dortmund, SFB
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