Neurocomputing 149 (2015) 187-197

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

NEUROCOMPUTING
LETTERS

journal homepage: www.elsevier.com/locate/neucom

Binary/ternary extreme learning machines

@ CrossMark

Mark van Heeswijk *, Yoan Miche

Aalto University School of Science, Department of Information and Computer Science, P.O. Box 15400, FI-00076 Aalto, Finland

ARTICLE INFO ABSTRACT

Article history:

Received 28 August 2013

Received in revised form

17 December 2013

Accepted 19 January 2014

Available online 28 September 2014

In this paper, a new hidden layer construction method for Extreme Learning Machines (ELMs) is
investigated, aimed at generating a diverse set of weights. The paper proposes two new ELM variants:
Binary ELM, with a weight initialization scheme based on {0, 1}-weights; and Ternary ELM, with a
weight initialization scheme based on {—1,0, 1}-weights. The motivation behind this approach is that
these features will be from very different subspaces and therefore each neuron extracts more diverse
information from the inputs than neurons with completely random features traditionally used in ELM.
Therefore, ideally it should lead to better ELMs. Experiments show that indeed ELMs with ternary
weights generally achieve lower test error. Furthermore, the experiments show that the Binary and
Ternary ELMs are more robust to irrelevant and noisy variables and are in fact performing implicit
variable selection. Finally, since only the weight generation scheme is adapted, the computational time
of the ELM is unaffected, and the improved accuracy, added robustness and the implicit variable
selection of Binary ELM and Ternary ELM come for free.

Keywords:

Extreme learning machine
Hidden layer initialization
Intrinsic plasticity
Random projection

Binary features

Ternary features

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The core idea of the Extreme Learning Machine (ELM) [1,2] is
that it creates a single-layer feedforward neural network (SLFN)
consisting of a randomly initialized hidden layer which randomly
projects the inputs into a high-dimensional space. These randomly
projected inputs are then transformed in a nonlinear way using
some (often) nonlinear transfer function like tanh. Finally, the
training of the ELM consists of solving the linear system formed by
these nonlinearly transformed outputs of the hidden layer, and
their corresponding target values [1,2].

The fact that the hidden layer is not touched after initialization
and training consists of solving a linear system, makes the ELM very
fast compared to other learning methods based on for example back-
propagation or gradient-descent [1,2]. However, an aspect of the ELM
that has not received much attention so far is how to exactly initialize
the hidden layer. Typically, some heuristics are used and the random
layer weights and biases are drawn from a uniform distribution in
interval [—5,5] (assuming that the data is normalized to be zero
mean and unit variance) [3], or from another probability distribution
like the Gaussian distribution [4]. However, heuristics like these are
not necessarily optimal for any given data set and it is possible to
improve the hidden layer initialization by adapting it to the problem
at hand.

* Corresponding author.
E-mail address: mark.van.heeswijk@aalto.fi (M. van Heeswijk).

http://dx.doi.org/10.1016/j.neucom.2014.01.072
0925-2312/© 2014 Elsevier B.V. All rights reserved.

One approach for adapting the hidden layer to the context is
the mechanism of batch intrinsic plasticity (BIP) [5-7]. The idea of
BIP is that it adapts the slope and bias of the hidden layer neurons
such that their outputs are approximately exponentially distrib-
uted. Given that the exponential distribution is the maximum
entropy distribution, the information transmission of the neurons
is maximized, resulting in a better model [8].

However, given that a transfer function typically looks like
fwTx+b), and w'x, the inner product between weight vector w
and input X, can be rewritten as w'x = |wllx| cos 6, where @ is the
angle between vectors w and X, it can be seen that the diversity of
neuronal inputs is mostly affected by the diversity of the norms of
vectors w and x and their angle 6. Although BIP adapts the scaling of
the input weights (and with that, the expected value of (wlx|) such
that the neuron operates in a useful regime, BIP does not optimize
the weight generation scheme itself. This suggests that in order to
further improve the diversity of the information extracted by the
hidden layer, the diversity of the angle & between the weight vectors
and the inputs could be optimized. In this paper, this is achieved by
using a binary {0, 1}—weight scheme, or a ternary {—1, 0, 1}—weight
scheme. By using a weight scheme like this, each neuron in the
hidden layer focuses on a particular subspace of the variables, and
the diversity of the extracted information is improved. Furthermore,
the binary and ternary weight schemes allow the ELM to perform
implicit variable selection, because neurons that incorporate useful
variables extract more useful information and receive higher weight,
while neurons that incorporate bad variables extract less useful
information and are given lower weight.

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://dx.doi.org/10.1016/j.neucom.2014.01.072
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.01.072&domain=pdf
mailto:mark.van.heeswijk@aalto.fi
http://dx.doi.org/10.1016/j.neucom.2014.01.072

188 M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

Experiments show that especially the ternary weight scheme
can generally improve the achieved test error. Furthermore, it is
shown that the Binary ELM and the Ternary ELM are more robust
against irrelevant and noisy variables and are in fact performing
implicit variable selection. These advantages come at no increase
in computational cost in comparison to drawing the random
weights from e.g. a uniform or Gaussian distribution, since only
the weight generation scheme is adapted.

The rest of the paper is organized as follows. Section 2 of the
paper discusses the background and theory of ELM, and gives a
short overview of ELM variants as well as preliminaries and
methods relevant for this paper. In particular, it is discussed how
to perform efficient model selection and optimization of the L2
regularization parameter in ELM, which is important for training
robust models. Furthermore, BIP is discussed, since it is useful to
adapt the scaling of the hidden layer weights such that the neurons
operate in an optimal regime. BIP is also important because it
allows us to conclude that any observed differences in performance
between ELMs are due to the different weight generation scheme.
Section 3 discusses the proposed binary and ternary weight
schemes. Finally, Section 4 contains the experiments and analysis
which form the validation for the proposed approach.

2. Preliminaries
2.1. Regression/classification

In this paper, the focus is on the problem of regression, which is
about establishing a relationship between a set of output variables
(continuous) y; e R, 1 <i< M (single-output here) and another set
of input variables x; = (x/, ...,xf’) e R%. Note that although in this
paper the focus is on regression, the proposed pretraining
approach can just as well be used when applying the ELM in a
classification context.

2.2. Extreme Learning Machine (ELM)

The ELM algorithm is proposed by Huang et al. [2] and uses
Single-Layer Feedforward Neural Networks (SLEN). The key idea of
ELM is the random initialization of a SLFN weights. Below, the
main concepts of ELM as presented in [2] are reviewed.

Consider a set of N distinct samples (x;,y;) with x; € R? and y; € R.
Then, a SLEN with M hidden neurons is modeled as the following
sum

M
-—Zlﬁ’f(wi -Xj+by), je[l,N], 1)

with f being the activation function, w; the input weights to the ith
neuron in the hidden layer, b; the hidden layer biases and f; the
output weights.

In the case where the SLFN would perfectly approximate the
data (meaning the error between the output y; and the actual
value y; is zero), the relation is

M
'Elﬂif(wi'ijFbi):.Vja Jell,N],)

which can be written compactly as

HB =Y, 3)
where H is the hidden layer output matrix defined as

fwq - X1 +by) FWyr - X1 4+bw)

H= 4)

fwi-Xy+b1) - f(Wy - Xn+bw)

and 8 = (,...y)". With these notations, the theorem presented in
[2] states that with randomly initialized input weights and biases
for the SLFN, and under the condition that the activation function f
is infinitely differentiable, then the hidden layer output matrix can
be determined and will provide an approximation of the target
values as good as desired (non-zero).

Algorithm 1. Standard ELM.

Given a training set (X;,¥;),X; € R%,y; € R, an activation function
f : R—R and M hidden nodes:

1. Randomly assign input weights w; and biases b;, i [1, M].

2. Calculate the hidden layer output matrix H.

3. Calculate output weights matrix f = H'Y.

The proposed solution to the equation HF =Y in the ELM
algorithm, as #=H'Y has three main properties making it a rather
appealing solution:

1. It is one of the least-squares solutions to the mentioned
equation, hence the minimum training error can be reached
with this solution.

2. Among the least-squares solutions, it is the solution with the
smallest norm.

3. This smallest norm solution among the least-squares solutions
is unique and is f =H'Y.

The reason why the smallest norm solution is preferred, is because
smaller norm solutions tend to have better generalization perfor-
mance, as discussed in [9]. Theoretical proofs and a more thorough
presentation of the ELM algorithm are detailed in the original paper
in which Huang et al. present the algorithm and its justifications [2].
Furthermore, the hidden nodes need not be ‘neuron-alike’ [10-12].

Finally, it is recommended to have a bias in the output layer (e.
g. achieved by concatenating the H matrix with a column of ones).
Although this output bias is often not included in the description
of the ELM (since theoretically it is not needed), having the output
bias allows the ELM to adapt to any non-zero mean in the output
at the expense of only a single extra parameter, namely the extra
output weight. This way, the rest of the nonlinear weights can
focus on fitting the nonlinear part of the problem. In a different
context of deep learning [13], decomposing the problem into a
linear part and a nonlinear part has proven to be very effective.

Given a set of candidate neurons, what remains is optimizing the
ELM's other parameters like the subset of M neurons to use or the
regularization parameter. Approaches for picking a subset of M
neurons include model structure selection using an information
criterion like BIC and cross-validation using a criterion like the
leave-one-out error (described in the next section). Other approaches
include methods which first generate a larger than needed set of
neurons, and consequently prune this set of neurons (for example
OP-ELM |3], TROP-ELM |[14]), or incremental ways for determining a
set of hidden layer neurons (for example I-ELM [12], CI-ELM [10],
EM-ELM [11]).

An optimization mechanism that is orthogonal to optimizing the
subset of neurons is that of batch intrinsic plasticity (BIP) pretraining
(see Section 2.5), which is a method for optimizing the output
distribution of a given neuron, such that the amount of information
encoded about the inputs is maximized. Also, the proposed binary
and ternary weight schemes (see Section 3) can be considered as
orthogonal to optimizing the subset of neurons, since - like batch
intrinsic plasticity pretraining - it takes place before the training and
optimization of ELM. Therefore, both BIP and the proposed binary
and ternary weight schemes can be applied as a step in many
different ELM variants, and are not restricted to a particular ELM.

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197 189

2.3. Efficient LOO computation and model selection

Given a set of candidate ELM models and their corresponding
parameters, model selection enables one to determine the optimal
ELM and parameters. The set of candidate ELMs consists of ELMs that
can for example vary in terms of the number of neurons in the
hidden layer (most common), or the L2 regularization parameter.
Given this set of candidate ELMs, the quality of each ELM is evaluated
using some criterion which estimates its generalization capabilities.

The particular criterion used in this paper for the model selection
is leave-one-out (LOO) cross-validation [15]. In LOO cross-validation,
given a training set of N samples, the candidate models are trained
on N different training sets each of which has exactly one of the
samples left out (hence the name LOO cross-validation). The left-out
sample is then used for evaluating the trained model, and the final
estimation of the generalization error is the mean of the N obtained
squared errors (MSE). Due to the fact that maximum use is made of
the training set, the LOO cross-validation gives a reliable estimate of
the generalization error [15], which is important for performing
accurate model selection.

The amount of computation for LOO cross-validation might seem
excessive, but for linear models one can compute the LOO error
MSE™ESS | without retraining the model N times, by using PRESS
statistics [16]. Since ELMs are essentially linear models of the outputs
of the hidden layer, the PRESS approach can be applied here as well:

pRess _ 1 & Yi—JYi 2
MSE _Ni 1 1—hatﬁ)

where y; and y; are respectively the ith training targets, and its
approximation by the trained model, and hat;; is the ith value on the
diagonal of the HAT-matrix, which is the matrix that transforms Y
into Y:

Y =Hp
=HH'Y
=HHH) 'HY
=HAT Y (6)

From Eq. (6), it can be seen that a large part of the HAT-matrix
consists of H', the Moore-Penrose generalized inverse of the matrix
H. Therefore, by explicitly computing H, and reusing H' to compute
the LOO error MSE™RESS model structure selection of the ELM comes
at very low overhead. A detailed description of this approach can be
found in [17]. In summary, the algorithm for training and LOO-based
model structure selection of ELM is stated in Algorithm 2.

Algorithm 2. Efficient LOO cross-validation for ELM

Given an ELM and a set H = {H;,Hy, ..., HyJof H matrices
corresponding to ELMs with e.g.

different number of hidden neurons, different regularization
parameters, etc.

1: for all Hie H

2: Train the ELM:

3¢ - Calculate H! by solving it from (H/H)H[= H[;

4. _ calculate output weights matrix p= HTY;

5! Compute MSEPRESS:

6 - Compute diag(HAT) (row-wise dot-product of H; and

H[");

N

1 Vi _}‘,_ 2
- PRESS _ 1 < —9i \°
ssc - MSE N Xizq <1 —hat;;) ;
end for

9: As model structure, select the ELM corresponding to that
H; € H which minimizes MSE"RFS;

o

With regard to Algorithm 2, in case an L2-regularization parameter
is optimized and the H matrices correspond to H matrices with
different regularization parameters, this is Regularized ELM [18],
which is referred to as TR-ELM in this paper. In the next section an
efficient way is discussed for cross-validating the L2-regularization
parameter of Tikhonov regularization.

2.4. Efficient Tikhonov regularization

When applying Tikhonov regularization, the pseudo-inverse
used in the ELM becomes H' = (HTH+AI) " 'H", for some regular-
ization parameter A [18]. Each value of A results in a different
pseudo-inverse H', and it would be computationally expensive to
recompute the pseudo-inverse for every A. However, by incorpor-
ating the regularization in the singular value decomposition (SVD)
approach to compute the pseudo-inverse, it becomes possible to
obtain the various H''s with minimal re-computation. This scheme
was first used in the context of TROP-ELM in [14], and is discussed
next (with some minor optimizations).

Similar to Eq. (6) in Section 2.3, with Tikhonov regularization
the HAT matrix consists for a large part of the pseudo-inverse H'.
Only now, the pseudo-inverse is dependent on A. Using the SVD
decomposition of H=UDV/, it is possible to obtain all needed
information for computing the PRESS statistic without recomput-
ing the pseudo-inverse for every A:

Y =Hp
=HMHH+)'HY
=HV(D?+1)~'DUTY
=UDV'V(D*+ A1)~ 'DUTY
=UDMD?+1)~'DUTY
=HAT-Y

where D(D?>+AI)~'D is a diagonal matrix with dizi/(d,-zi+/1) as the
ith diagonal entry. From the above equations it can now be seen

that given U:
meeress 1 N/ yi—9i)
MSE _Nigl 17’10[’1‘,‘
. 2
_1 % Yi—Yi
N & \1—h,HH+ A~ 'h]
2
=% gN: Yi—Yi

i

2
1w —zd“ u/
di+A

where h;. and u;. are the ith row vectors of H and U, respectively.
Now, the Tikhonov-regularized PRESS and the corresponding A can
be computed using Algorithm 3, where AoB refers to the element-
wise product of matrices A and B (Schur product). Due to the
convex nature of criterion MSE™ ~PRESS with respect to regulariza-
tion parameter A, the Nelder-Mead procedure used for optimizing
A converges quickly in practice [19,20].

Algorithm 3. Tikhonov-regularized PRESS. In practice, the while
part of this algorithm (convergence for A) is solved using by a
Nelder-Mead approach [19], a.k.a. downhill simplex.

1: Decompose H by SVD: H=UDV’
2! Precompute B=U"y
3: while no convergence on A achieved do

190 M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

4: di; di
i +1 di +1
- Precompute C=Uo : :
dy .. _dn
diy+7 diy+4
5: - Compute y = CB, the vector containing all y;
6: - Compute d = diag(CU"), the diagonal of the HAT matrix,
by taking the row-wise dot-product of C and U
- Compute £ =¥=¥, the leave-one-out errors
. — PRESS
8: - Compute MSE™®~FRESS — I5'N g2
9: end while

10: Keep the best MSE™ ~PRESS and the associated A value

2.5. Intrinsic plasticity

2.5.1. Background

The mechanism of intrinsic plasticity is one that is orthogonal
to the earlier mentioned approaches. Namely, it generally takes
place right after generating the random weights of the neurons,
and its result is subsequently used in the further optimization,
pruning and training of the ELM. As such, intrinsic plasticity can be
used in combination with most other ELM approaches.

The concept of intrinsic plasticity has a biological background
and refers to the fact that neurons adapt in such a way that they
maximize their entropy (and thus the amount of information
transmitted), while keeping the mean firing rate low. Intrinsic
plasticity originally appeared in the neural networks literature in
the context of reservoir computing, recurrent neural networks,
liquid state machines and echo state networks [21-23], where it is
used as a method to construct a priori suitable networks that are
guaranteed or likely to offer a certain performance [23]. Like its
biological equivalent, the goal of intrinsic plasticity in the context
of neural networks is to maximize the information transmission of
the neurons in the neural networks. The way it achieves this, is by
shaping the neuron outputs such that they approximately follow
an exponential distribution, which is the maximum entropy
distribution among all positive distributions with fixed mean [8].

2.5.2. Batch Intrinsic Plasticity (BIP) ELM

In [5,7,6,24] the principle of intrinsic plasticity is transferred to
ELMs and introduced as an efficient pretraining method, aimed at
adapting the hidden layer weights and biases, such that the output
distribution of the hidden layer is shaped like an exponential
distribution. The only parameter of batch intrinsic plasticity is the
mean /i, of the target exponential distribution.

Given the inputs (X1, ...,Xy) € R¥*¢ and input matrix W™ ¢ R>M
(with N being the number of samples in the training set, d the
dimensionality of the data, and M the number of neurons), the
synaptic input to neuron i is given by s;(k) = kaT. Nowy, it is possible
to adapt slope a; and bias b;, such that the desired output distribution
is achieved for neuron output h; = f(a;s;(k)+ b;). To this end, for each
neuron random targets t= (tq,to,...,ty) are drawn from the expo-
nential distribution with mean gy, and sorted such that t; < -+ <ty.
The synaptic inputs to neuron are sorted as well into vector
s; = (si(1),5i(2), ...,si(N)), such that s;(1) < 5;(2) < -+ < 5i(N).

Now, in the case of an invertible transfer function, the targets
can be propagated back through the hidden layer, and a linear
model can be defined that maps the sorted si(k) as closely as
possible to the sorted t;(k). To this end, a model &(s;) = (s, (1 D)
and parameter vector v;=(a;, b))’ are defined. Then, given the
invertible transfer function f the optimal slope a; and bias b; for
which each s;(k) is approximately mapped to t, can be found

by minimizing
I d(s;) - vi—f ' (©)ll

The optimal slope a; and bias b; can therefore, like in ELM, be
determined using the Moore-Penrose pseudo-inverse:

vi=(a;,b) =D/ (s)-f(®)

This procedure is performed for every neuron with an invertible
transfer function, and even though the target distribution cannot
exactly be matched (due to the limited degrees of freedom in the
optimization problem) it has been shown in [5,7] that batch intrinsic
plasticity is an effective and efficient scheme for input-specific tuning
of input weights and biases used in the non-linear transfer functions.
Effectively, it makes the ELM insensitive to the original scaling of the
inputs and generated weights, and automatically adapts the transfer
function such that it operates in a meaningful regime.

There are several approaches to setting parameter f.x, of the
exponential target distribution from which targets t are drawn:

® setting pexp randomly in the interval [0, 1] per-neuron [5,7]
® setting p.xp to a specific value for all neurons [5,7]
® cross-validating .y, such that it adapts to the current context

In this paper, the first variant (denoted BIP(rand)-ELM) is used
since it offers an attractive balance between computational time
and accuracy.

As mentioned before, BIP is an optimization mechanism that is
orthogonal to most other approaches to optimizing an ELM, and can
therefore be incorporated in many existing ELM schemes like for
example the ELM trained with L2 regularization. A nice advantage
of this combination is that the stability of BIP-ELM combined with
L2 regularization essentially removes the need to tune the amount
of hidden neurons. Therefore, this is the approach used in the
experiments, combined with weights generated from a Gaussian
distribution, or generated using the proposed binary or ternary
weight scheme that is discussed in the next section.

3. Binary/ternary ELM
3.1. Motivation

The main idea behind the ELM is the fact that theoretically it is
sufficient to generate the hidden layer weights in a random way.
As long as the weights are independent and the transfer functions
are infinitely differentiable [1,2] the ELM is a universal approx-
imator and can approximate any function, given enough data and
given enough neurons. This is however, an asymptotic result, and
in practice there is only limited data available. Therefore, proper
care needs to be taken that the ELM does not overfit by e.g. using
L1 regularization [3], L2 regularization [18], or L1 and L2 regular-
ization [14] on the hidden layer.

Furthermore, as already discussed in the previous section, the
biases and hidden layer weights can be adapted using batch
intrinsic plasticity (BIP) pretraining such that they extract as much
information as possible from the inputs. However, apart from
scaling the weights and picking proper biases, BIP does not optimize
the direction of the weights themselves. It is still perfectly possible
that there exist redundancies between the neurons, and that
although each neuron extracts the maximum amount of informa-
tion, between neurons this information may be very similar. There-
fore, the ELM may still benefit from a weight picking scheme that
ensures the diversity of the extracted information.

To this end, in this paper a binary {0, 1}—weight and a ternary
{—1,0, 1}—weight scheme are proposed. The motivation for these
schemes is that weights picked in this way lie in very different

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197 191

subspaces, and therefore result in diverse inputs to the hidden
layer.

Another way to look at binary and ternary weight schemes is
by looking at the weights in terms of their direction. Weights
generated in this way point in very different directions, which is
advantageous for the diversity of the hidden layer inputs (and thus
the extracted information). This can be seen by rewriting the w’x
that is part of f(w'x+b) as w/x =|wllx| cos @, where @ is the
angle between vectors w and x. Now, if the weights w have diverse
directions, the angles 0 between w and x - and therefore the
hidden layer inputs - will be diverse as well. Furthermore,
combined with BIP pretraining (which essentially makes the
ELM insensitive to the initial jw| and |x|), any difference between
ELMs that only differ in the way they generate the weights, will
have to come from the diversity of cos 6, and hence the angles
between the weights and the input data.

Finally, since the only thing that is adapted in the binary and
ternary weight scheme is the way to generate the random weights,
the computational time of the ELM is not affected compared to the
traditional random weights, and any advantages that may result
from the different weight generation scheme will come for free.

3.2. Binary scheme

In this scheme, the M d-dimensional weights of the hidden layer
are binary {0,1}9—weights, generated starting from the sparsest
weight vectors. This way, first all (‘{) subsets of 1 variable are
included, then all (§) subsets of 2 variables, etc., until there are M
hidden neurons generated and each neuron employs a different
subset of input variables. The weights are normalized to have unit
length, such that the expected value of w'x is approximately the
same for every neuron, regardless of the number of non-zero
weights. Otherwise, the number of non-zero weights would
strongly affect what part of the transfer function is activated. The
procedure is summarized in Algorithm 4. In case M >2% (the
number of possible binary weights), also randomly rotated versions
of the binary weights are added. However, this rarely happens since
the number of possible weights grows exponentially with d.

Algorithm 4. Binary weight scheme, with M being the desired
number of hidden neurons, n the dimension of the subspaces in
which to generate weights, and d the number of inputs.

1: Generate ELM:

2: n=1;

3: while numneurons <M and n <d do

4 - Generate the (g) possible assignments of n ones to d
positions

5: - Shuffle the order of the generated weights to avoid bias
to certain inputs due to the scheme used to generate the (%)
assignments

6: - Add the generated weights (up to a maximum of M
neurons)

7: -n=n+1;

end while

9: - Normalize the norm of the weights, such that they are unit
length.

%

3.3. Ternary scheme

Whereas the binary weight scheme takes its motivation mostly
from an increase in the diversity of extracted information by
having each neuron use a different subset of variables, the ternary
weight scheme is more geometrically motivated: the procedure is
the same as for the binary weights, except that each position can
be a —1 or a 1, and therefore each weight can be seen as pointing
towards a corner of the hypercube. By including —1 as a possible
weight, the number of possible directions of the weights is
increased, while retaining the advantage of the neurons operating
on a different subset of input variables.

In summary, in the ternary scheme, the M d-dimensional
weights of the hidden layer are ternary {—1,0, 1}d—weights.
generated starting from the sparsest weight vectors. This way,
first all 2" x () weights of 1 variable are included, then all 2% x (9)
weights of 2 variables, etc., until there are M hidden neurons
generated. In case M>3? (the number of possible ternary
weights), also randomly rotated versions of the ternary weights
are added. This rarely happens though, since the number of
possible weights grows exponentially with d.

Fig. 1 illustrates the possible weights in both the binary and
ternary weight scheme within the 2D subspace constituted by
Abalone variables 2 and 4. Note that this is just one of the many 2D
subspaces, and the weights of Binary ELM and Ternary ELM are

Fig. 1. Illustration of possible weights (arrows) for binary (a) and ternary (b) weight scheme, in a 2D subspace of normalized Abalone data (blue dots). (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)

192 M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

drawn randomly from subspaces of increasingly higher dimension
in the way described above, until the desired number of neurons is
reached. Once the weights have been drawn, they may be normal-
ized in some fashion, or as is done in this paper, scaled using BIP
pretraining.

3.4. Motivation for BIP pretraining

Since for given weight w and input x, the expected value of
lwlx| determines in which part of the transfer function is
activated most, the norm of the weights is important and affects
the performance of ELM. Of course, the weights could be normal-
ized to be e.g. unit length, but the question remains what is the
optimal length for the given data. Therefore, to ensure that the
weights are properly scaled, the ELMs are pretrained using Batch
Intrinsic Plasticity (BIP) pretraining. In particular, the BIP(rand)
variant [5,7] is used, since it offers an attractive balance between
computational time and accuracy. An added advantage of using

Table 1
Summary of the properties of the UCI data sets [25] used.

Task Abbreviation Number of variables # Training # Test
Abalone Ab 8 2000 2177
CaliforniaHousing Ca 8 8000 12,640
CensusHouse8L Ce 8 10,000 12,784
DeltaElevators De 6 4000 5517
ComputerActivity Co 12 4000 4192
a
0.7 .
s --- ELM
0.69 N — LOO(CV)-ELM
: — BIP(rand)-TR-ELM
0.68 B — BIP(rand)-TR-2-ELM
) — BIP(rand)-TR-3-ELM
0.67 g
513 0.66
de .
0.65
0.64
0.63
0.62
0 100 200 300 400 500 600 700 800 900 1,000
numhidden
Cc
0.7
--- ELM
0.68 —LOO(CV)-ELM
— BIP(rand)-TR-ELM
— BIP(rand)-TR-2-ELM
0.66 — BIP(rand)-TR-3-ELM
=
0
=
o~

0 100 200 300 400 500 600 700 800 900 1,000

numhidden

BIP pretraining is that when comparing ELMs with varying weight
schemes, any differences in performance must come from the
differences in the direction of the weights and are not a result of
the different scaling of the weights.

Since BIP pretraining adapts the neurons to operate in their
non-linear regime, as many linear neurons are included as there
are input variables. This ensures good performance of the ELM,
even if the problem is completely linear.

3.5. Motivation for Tikhonov regularization

With limited data, the capability of ELM to overfit the data
increases with increasing number of neurons, especially if those
neurons are optimized to be well-suited for the function approx-
imation problem. Therefore, to avoid overfitting, Tikhonov reg-
ularization with optimized regularization parameter as explained
in Section 2.4, is used.

4. Experiments

This section describes the experiments that investigate the
effectiveness of the Binary and Ternary weight scheme compared
to the traditional random weights:

® the first experiment compares the average performances of
each weight scheme on several UCI data sets.

0.64 --- ELM
0.62 —LOO(CV)-ELM
’ — BIP(rand)-TR-ELM
0.6 — BIP(rand)-TR-2-ELM
— BIP(rand)-TR-3-ELM
0.58
/= 0.56
=
0.54
[t
052 1T N S v Tre——anm ittt
0.5
0.48
0.46
0 100 200 300 400 500 600 700 800 900 1,000
numhidden
0.32
. --- ELM
0.3 —LOO(CV)-ELM
0.28 — BIP(rand)-TR-ELM
' — BIP(rand)-TR-2-ELM
0.26 — BIP(rand)-TR-3-ELM
B o024
E 0.22
0.2
0.18
0.16
0.14

0 100 200 300 400 500 600 700 800 900 1,000
numhidden

Fig. 2. Number of neurons vs. average achieved test RMSE for ELM (black, dashed), LOO(CV)-ELM (purple), BIP(rand)-TR-ELM with Gaussian (black), binary (blue), ternary
(green) weight scheme. (a) Abalone. (b) CaliforniaHousing. (c¢) CensusHouse8L. (d) ComputerActivity. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

® the second experiment compares the robustness of the various
weight schemes to irrelevant and noisy input variables and
investigates whether the weight schemes are performing
implicit variable selection.

4.1. Data and preprocessing

As data sets, 5 different regression tasks from the UCI machine
learning repository [25] are used, with the division of the data in
training set and test set chosen in the same way as in [7], but
drawn in a random way (without repetition) for each run of the
experiment in order to control for the influence of the particular
realization of the training and test set on the results. The
specification of the data can be found in Table 1.

a
6
--- ELM
— LOO(CV)-ELM
51 |—BIP(rand)-TR-ELM
— BIP(rand)-TR-2-ELM
= 4| |—BIP(rand)-TR-3-ELM
Q .
o ‘
g
B
1
() et
0 100 200 300 400 500 600 700 800 900 1,000
numhidden
C
80
--- ELM
70 1 |—LOO(CV)-ELM
— BIP(rand)-TR-ELM
___ 601 |—DBIP(rand)-TR-2-ELM
x — BIP(rand)-TR-3-ELM
o 50
._g
o 40
k=
=
£ 30
-
=
20
10

0
0 100 200 300 400 500 600 700 800 900 1,000
numhidden

193

The data is preprocessed in such a way that each input and output
variable is zero mean and unit variance. Note that this way of
preprocessing makes it impossible to directly compare with papers
that use a different way of preprocessing like rescaling variables to a
specific interval. Results with different normalization, as well as
denormalized versions of the RMSEs, can be found in Appendix A.

4.2. Average performances of each weight scheme

In this experiment, the average performances are compared for
Binary ELMs, Ternary ELMs and ELMs with weights drawn from a
Gaussian prior. As explained in Section 3, batch intrinsic plasticity
pretraining with randomized .y, (BIP(rand)) is used to adapt the
scaling of the weights to the current context. This controls for
performance differences due to the scaling of the weights and

b

80
- ELM
70 1 |=—LOO(CV)-ELM
— BIP(rand)-TR-ELM
___ 601 |—BIP(rand)-TR-2-ELM
= — BIP(rand)-TR-3-ELM
o 50
g
g
50 40
‘g
3 30
=
20
oy S e
R B rer PR Ll
0 100 200 300 400 500 600 700 800 900 1,000
numhidden
45
- ELM
40 1 |—LOO(CV)-ELM
35 — BIP(rand)-TR-ELM
— BIP(rand)-TR-2-ELM
= 30} |—BIP(rand)-TR-3-ELM
2
= 25
+
£
=
< 15
=
10
st S e

0
0 100 200 300 400 500 600 700 800 900 1,000
numhidden

Fig. 3. Number of neurons vs. average training time for ELM (black, dashed), LOO(CV)-ELM (purple), BIP(rand)-TR-ELM with Gaussian (black), binary (blue), ternary (green)
weight scheme. (a) Abalone. (b) CaliforniaHousing. (c) CensusHouse8L. (d) ComputerActivity. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)

Table 2
Average test RMSE achieved over 100 random divisions in training and test set, for ELMs with 1000 hidden neurons (data normalized to be zero mean and unit standard
deviation).
Model Ab De Co Ce Ca
ELM 1.694 + 0.4185 0.708 + 0.0115 0.232 +0.0088 0.638 + 0.0171 0.520 + 0.0070
LOO(CV)-ELM 0.668 + 0.0203 0.605 + 0.0095 0.229 +0.0076 0.630 + 0.0179 0.515 + 0.0069
BIP(rand)-TR-ELM 0.651 + 0.0184 0.602 + 0.0096 0.178 + 0.0070 0.584 + 0.0177 0.506 + 0.0098
BIP(rand)-TR-2-ELM 0.653 + 0.0202 0.602 + 0.0104 0.205 + 0.0360 0.592 + 0.0187 0.510 + 0.0090

BIP(rand)-TR-3-ELM 0.646 + 0.0202 0.602 + 0.0093

0.165 + 0.0050 0.583 +0.0170 0.503 +0.0129

194 M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

ensures that any differences in performance are actually due to the
weight scheme used. Furthermore, since the better the neurons
are the easier it will be to overfit, the ELMs also use Tikhonov
regularization (TR) as described in Section 2.4.

To illustrate the advantages and trade-offs made in the proposed
models, the models are also compared to standard ELM. Finally, since
the basic ELM suffers from overfitting in case the number of neurons is
large compared to the number of samples, another basic ELM variant
is included which includes cross-validation of the number of neurons
according to the LOO error. In this cross-validation procedure, the
number of neurons is increased in steps of 10 (up to the currently
tested number of hidden neurons), and an early stopping criterion is
used, such that the optimization stops if there was no decrease in LOO
error for 5 consecutive steps (i.e. 50 neurons).

Therefore, in summary, the ELMs tested are

ELM

LOO(CV)-ELM
BIP(rand)-TR-ELM
BIP(rand)-TR-Binary-ELM
BIP(rand)-TR-Ternary-ELM

These ELMs have

® 3 trained output bias (achieved by adding a column of ones to
the H matrix);

a
— BIP(rand)-TR-ELM
077 | — BIP(rand)-TR-2-ELM
—— BIP(rand)-TR-3-ELM
= 0.68
2]
=
~
0.66
0.64
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of added noise variables
0.4
— BIP(rand)-TR-ELM
0.35 4 |— BIP(rand)-TR-2-ELM
—— BIP(rand)-TR-3-ELM
m 03
n
=
/=025
0.2 //
0.15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of added noise variables

Fig. 4. Effect of adding irrelevant extra variables on RMSE for BIP(rand)-TR-ELM
with 1000 hidden neurons and with Gaussian (black), binary (blue), ternary (green)
weight scheme. (a) Abalone. (b) ComputerActivity. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version
of this paper.)

Table 3

® as many linear neurons as inputs;
® Fermi neurons

to approximate respectively the constant, linear, and nonlinear
component of the function. The number of hidden neurons is
varied up to 1000 hidden neurons, and the ELMs are tested on 100
random partitions of each data set into training and test set
(samples drawn without repetition).

4.2.1. Average RMSE

In Fig. 2 the average achieved RMSE on the test set is reported for
the varying number of hidden neurons. As expected, for increasing
number of neurons, the standard ELM starts to overfit at some point,
resulting in an increase in the RMSE on the test set. Performing the
LOO cross-validation to limit the number of used hidden neurons
prevents this overfitting. Furthermore, the proposed methods gener-
ally achieve much better RMSE than the basic ELM variants. Finally, it
can be seen that generally, ternary weights outperform weights drawn
from a Gaussian distribution, and binary weights generally perform
worse than ternary and Gaussian weights.

One possible hypothesis for why the binary weights perform worse
than the ternary weights is that the binary weights result in less
diverse activation of the hidden neurons with transfer function
fwTx+b)=f(wl x| cos 8+b). Indeed, considering Fig. 1, there are
only 3 possible binary weights within a particular 2D subspace,
covering /2 radians of the circle (compared to 8 possible ternary
weights, covering all 27 radians of the circle). Therefore, for a fixed
sample X, the binary weight scheme can potentially produce 3 different
values of @ (and thus cos 0) that are 7 /4 radians apart, whereas the
ternary weight scheme can potentially produce 8 different values that
are 7/4 radians apart. After removing symmetries (since
cos (0+m) = — cos 0), this leaves 4 different values for cos 6 that
would add different information to the hidden layer, compared to the
3 different values of the binary weight scheme, which might give the
ternary weight scheme its advantage. A further theoretical analysis of
the relative performance of the binary and ternary weight scheme will
be the subject of a future paper.

4.2.2. Average training time

The average training time for each model can be found in Fig. 3. It
is interesting to see that the computational time of the LOO(CV)-ELM
strongly depends on the used data set. For Abalone, the cross-
validation procedure finds an optimal number of hidden neurons of
about 50, after which the leave-one-out error quickly increases and
further optimization is quickly halted due to the stopping criterion.
Hence, the computational time remains low. However, for the other
data sets, the number of optimal hidden neurons is much higher, and
the cross-validation procedure becomes tedious. Furthermore, given
the fact that it is possible to perform both BIP pretraining and
optimization of the Tikhonov regularization parameter in less time
than it takes to train a basic ELM (i.e. the computational time is not
even doubled), cross-validation of the number of neurons becomes
very unattractive.

The relatively low overhead on the computational time com-
pared to the basic ELM, and the decreasing nature of the curves in

Average RMSE loss of ELMs with 1000 hidden neurons, trained on the original data, and the data with 30 added irrelevant variables.

RMSE Ab Co

Gaussian Binary Ternary Gaussian Binary Ternary
RMSE with original variables 0.6509 0.6537 0.6475 0.1773 0.1987 0.1653
RMSE with 30 added irr. vars 0.6949 0.6926 0.6763 0.3650 0.2335 0.1967
RMSE loss 0.0441 0.0389 0.0288 0.1877 0.0348 0.0315

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197 195

22— T T T T T T BT T T T T T T T T T T T T T T T T T
10k i 30 E
5} o 25F B
1] o
= 8F 4]
o +
3 S 20 1
2 2
g 6 - =]
R= =
3 L 15F B
= el
< <
% ns | %
= = 10f E
2+ 1 5k E
0 0
—_ QM D~ N MM D o~ N M D © I~ 00 HN IO A N M D AN FID O~ 0 DD N
a A A [a=Ja=fa o eI A TR ARAAAMEAEEE DO O0 \U'\UUCSG
variables variables
ST T T T T 7T T T BT T T T T T T T T T T T T T T T T T T
7. -
20 E
6. -
53 <53
<o <O
= =1
g 5t 1 =
= = 15f E
=] o
=% <%
E 4t {1 £
= B
=2 2
= = L i
TE 3l | F-é 10
I I=d
2. -
5. B
1. -

e f
22—/ T T T — T HFr—T—T—TT T T T T T T T T T T T T T T T T T
10 b
20 R
<5 <5}
S =
=
3 g5 1r 1
= 2
g or 1 E
(5] [}
= = 10r E
2 =
ER
2 =g
sk _
2_ -

variables

variables

Fig. 5. Variable relevance measure for Abalone and ComputerActivity with 5 random noise variables R1, ..., R5, 5 irrelevant variables D1, ..., D5, and the original variables.
(a) Abalone, Gaussian. (b) Computer Activity, Gaussian (c) Abalone, binary. (d) Computer Activity, binary. (e) Abalone, ternary. (f) Computer Activity, ternary

Fig. 2 therefore suggests that a robust and fast way to build a good
ELM is to use L2 regularization and a large number of neurons.
Table 2 summarizes the performance for the various weight
schemes for ELMs with 1000 neurons (i.e. the most right points
in the figures). Although for larger number of neurons the
differences in terms of RMSE are smaller, the advantages of ternary
weights over Gaussian weights are still present. Furthermore, the
results show that the standard deviations of the RMSEs for the

ternary weight scheme are consistently lower or equal than those
for the Gaussian weight scheme.

4.3. Effect of irrelevant variables
In this experiment, the robustness against added irrelev-

ant variables is evaluated, as well as a criterion showing that the
binary and ternary ELMs are performing implicit variable selection.

196 M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197

4.3.1. Robustness against added noise variables

Both the binary and ternary weight schemes result in neurons
operating on a diverse collection of subsets of the input variables.
However, since these subsets might also include irrelevant variables
in this experiment the robustness against irrelevant variables is
tested. The various weight schemes are evaluated on the Abalone
and ComputerActivity data with up to 30 irrelevant Gaussian noise
variables added.

The results are summarized in Fig. 4 and Table 3. These results
are again the averages over 100 random partitions of the data in
training and test set. It can be seen that the ternary and binary
weight schemes are more robust against irrelevant variables. The
difference is especially large for the ComputerActivity data set.

4.3.2. Implicit variable selection

Considering the fact that the weights are sparse in the input
variables, each neuron is in fact only extracting information from a
certain subset of variables. Therefore, given a trained ELM, the
output weights could be considered as an indication of how
important or useful a specific neuron and variable subset is for
the function approximation. In this experiment, the relevance of
each input variable in the ELMs is quantified as

M
relevance= Y |f; x wjl,
i=1

where M is the number of hidden neurons; f; is the output weight;
w; is the input weight corresponding to neuron i, and relevance is
the d-dimensional vector containing a measure of relevance for
each of the d input variables. If a variable j has a large value of
relevance;, compared to other variables, this can be interpreted as
that variable being implicitly selected by the ELM (i.e. the ELM
favors neurons that extract information from that variable).

Appendix A

To test whether the ELMs perform implicit variable selection,
the ELMs are trained on the Abalone and ComputerActivity data
sets, where 5 irrelevant variables (taken from the DeltaElevators
data) and 5 Gaussian noise variables have been added. The results
for this experiment on Abalone and ComputerActivity are sum-
marized in Fig. 5. There, it can be seen that for the Gaussian
weights, the relevance measure indicates that the ELM does not
favor any neurons that employ a particular input variable. How-
ever, for the Binary and Ternary ELM, the relevance measure clearly
shows that the ELMs favor neurons that employ specific input
variables. For example, the 12" input variable in ComputerActivity
seems especially preferred. Finally, the relevance measure indicates
that the irrelevant and noise variables are not given particularly
high importance in general.

5. Conclusion

In this paper, Binary ELM and Ternary ELM have been descri-
bed, which employ a weight initialization scheme based on
{0, 1}—weights and {—1, 0, 1}—weights respectively. The motivation
behind these schemes is that weights picked in this way will be
from very different subspaces, and therefore improve the diversity
of the neurons in the hidden layer. Experiments show that Ternary
ELM generally achieves lower test error. Furthermore, the experi-
ments suggest that the binary and ternary weight schemes improve
robustness against irrelevant variables and that the binary and
ternary weight schemes perform implicit variable selection. Finally,
since only the weight generation scheme is changed, the computa-
tional time of ELM remains unchanged compared to ELMs with
traditional random weights. Therefore, the better performance,
added robustness and implicit variable selection in Binary ELM
and Ternary ELM come for free.

For comparison, RMSEs are included for another commonly-used normalization scheme (minmax), where input variables are rescaled
to interval [—1,1], and output variables are rescaled to interval [0,1]. Denormalized versions of the RMSEs for both normalization schemes
are included as well, which makes the RMSEs of both normalization schemes comparable and allows for evaluating the effect of the
normalization on RMSE. All errors are avg. RMSEs achieved over 100 random divisions in training and test set, for ELMs with 1000

neurons.

A.1. RMSEs for minmax normalization

Ab De Co Ce Ca
ELM 5.246 + 4.3149 0.087 + 0.0086 5.29e3 + 3.60e4 4.433 + 6.9604 2.764 + 2.3442
LOO(CV)-ELM 0.086 + 0.0089 0.059 + 0.0056 1.123 + 8.1590 0.102 + 0.0890 0.132 + 0.0066
BIP(rand)-TR-ELM 0.083 +0.0072 0.060 + 0.0056 0.032 +0.0021 0.063 + 0.0011 0.121 + 0.0022
BIP(rand)-TR-2-ELM 0.083 + 0.0074 0.060 + 0.0056 0.036 + 0.0042 0.064 + 0.0014 0.123 + 0.0022
BIP(rand)-TR-3-ELM 0.082 +0.0073 0.060 + 0.0056 0.031 + 0.0006 0.063 + 0.0012 0.119 + 0.0020
A.2. Denormalized RMSEs for minmax normalization
Ab De Co Ce Ca
ELM 1.33e2 + 1.02e2 211e—3+9.54e-5 5.24e5 + 3.57e6 2.22e6 + 3.48e6 1.34e6 + 1.13e6
LOO(CV)-ELM 220+ 1.10e—-1 1.44e—3+138e—-5 1.11e2 + 8.08e2 5.10e4 + 4.45e4 6.38e4 + 3.16e3
BIP(rand)-TR-ELM 2114+ 3.60e -2 1.45e—3 + 1.30e-5 3.18 +2.10e—1 3.16e4 4+ 5.27e2 5.85e4 + 1.03e3
BIP(rand)-TR-2-ELM 212+ 5.05e—2 145e—-3+1.33e-5 3.58 +4.21e—-1 3.19¢e4 + 6.81e2 5.94e4 + 9.98¢e2
BIP(rand)-TR-3-ELM 2.09 +3.86e—-2 1.45e—3 + 1.36e-5 3.06+5.74e -2 3.14e4 4+ 5.94e2 5.78e4 + 9.15e2

M. van Heeswijk, Y. Miche / Neurocomputing 149 (2015) 187-197 197
A.3. Denormalized RMSEs for zero mean, unit variance normalization
Ab De Co Ce Ca
ELM 5.46 + 1.37 1.68e—3+2.13e-5 425+ 1.24e—-1 3.38e4 +4.23e2 5.99e4 + 5.68e2
LOO(CV)-ELM 215+ 4.36e—-2 1.44e -3 + 1.10e -5 420+ 1.09e -1 3.34e4 + 4.50e2 5.94e4 + 5.40e2
BIP(rand)-TR-ELM 210+ 3.08e -2 143e—-3+1.18e—-5 3.26 + 1.00e—-1 3.10e4 + 5.26e2 5.83e4 + 1.01e3
BIP(rand)-TR-2-ELM 211+ 3.87e—-2 143e—3+1.38e—-5 3.75+6.44e -1 3.14e4 + 6.10e2 5.88e4 + 8.52e2
BIP(rand)-TR-3-ELM 2.08 +3.88e—2 143e—3+1.07e-5 3.02 +5.08e -2 3.09e4 + 4.55e2 5.80e4 + 1.30e3

References

[1] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning
scheme of feedforward neural networks, in: Proceedings of the International
Joint Conference on Neural Networks, vol. 2, 2004, pp. 985-990. http://dx.doi.
org/10.1109/]JCNN.2004.1380068.

[2] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and
applications, Neurocomputing 70 (1-3) (2006) 489-501. http://dx.doi.org/
10.1016/j.neucom.2005.12.126.

[3] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, OP-ELM:
optimally pruned extreme learning machine, IEEE Trans. Neural Netw. 21 (1)
(2010) 158-162.

[4] E. Parviainen, J. Riihimadki, Y. Miche, A. Lendasse, Interpreting extreme learning

machine as an approximation to an infinite neural network, in: KDIR 2010—

Proceedings of the International Conference on Knowledge Discovery and

Information Retrieval, 2010, pp. 65-73.

K. Neumann, JJ. Steil, Batch intrinsic plasticity for extreme learning

machines, in: Artificial Neural Networks and Machine Learning—ICANN 2011,

vol. 6791, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,

2011, pp. 339-346. http://dx.doi.org/10.1007/978-3-642-21735-7_42.

K. Neumann, C. Emmerich, J.J. Steil, Regularization by intrinsic plasticity and its

synergies with recurrence for random projection methods, J. Intell. Learn. Syst.

Appl. 4 (3) (2012) 230-246.

[7] K. Neumann,]J. Steil, Optimizing extreme learning machines via ridge
regression and batch intrinsic plasticity, Neurocomputing 102 (2013)
555-560 ¢http://dx.doi.org/10.1016/j.neucom.2012.01.041.

[8] JJ. Steil, Online reservoir adaptation by intrinsic plasticity for backpropagation-

decorrelation and echo state learning, Neural Netw.: Off. J. Int. Neural Netw,

Soc. 20 (3) (2007) 353-364.

P.L. Bartlett, The sample complexity of pattern classification with neural

networks: the size of the weights is more important than the size of the

network, IEEE Trans. Inf. Theory 44 (2) (1998) 525-536. http://dx.doi.org/
10.1109/18.661502.

[10] G.-B. Huang, L. Chen, Convex incremental extreme learning machine, Neuro-
computing 70 (16-18) (2007) 3056-3062. http://dx.doi.org/10.1016/j.
neucom.2007.10.008.

[11] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine
with growth of hidden nodes and incremental learning, IEEE Trans. Neural Netw.
20 (8) (2009) 1352-1357. http://dx.doi.org/10.1109/TNN.2009.2024147.

[12] G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental
constructive feedforward networks with random hidden nodes, IEEE Trans. Neural
Netw. 17 (4) (2006) 879-892. http://dx.doi.org/10.1109/TNN.2006.875977.

[13] T. Raiko, H. Valpola, Deep learning made easier by linear transformations in
perceptrons, in: Proceedings of the 15th International Conference on Artificial
Intelligence and Statistics, 2012, pp. 924-932.

[14] Y. Miche, M. van Heeswijk, P. Bas, O. Simula, A. Lendasse, TROP-ELM: a double-
regularized ELM using LARS and Tikhonov regularization, Neurocomputing 74 (16)
(2011) 2413-2421. http://dx.doi.org/10.1016/j.neucom.2010.12.042.

[15] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, (2006).
http://www.springer.com/computer/image+processing/book/
978-0-387-31073-2, http://books.google.fi/books?id=kTNoQgAACAA].

[16] RH. Myers, Classical and Modern Regression with Applications, 2nd ed.,
Duxbury, (1990). http://books.google.fi/books?id=LOHHKQAACAA]J.

[17] M. van Heeswijk, Y. Miche, E. Oja, A. Lendasse, GPU-accelerated and paralle-
lized ELM ensembles for large-scale regression, Neurocomputing 74 (16) (2011)
2430-2437. http://dx.doi.org/10.1016/j.neucom.2010.11.034.

(5

6

[9

[18] W.-Y. Deng, Q.-H. Zheng, L. Chen, Regularized extreme learning machine, in:
IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09,
IEEE, 2009, pp. 389-395. http://dx.doi.org/10.1109/CIDM.2009.4938676.

[19] J. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7
(4) (1965) 308-313.

[20] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimensions (1998). http://dx.doi.org/10.
1137/S1052623496303470.

[21] J. Triesch, A gradient rule for the plasticity of a neuron's intrinsic excitability,
in: W. Duch,]. Kacprzyk, E. Oja, S. Zadrozny (Eds.), Artificial Neural Networks:
Biological Inspirations—ICANN 2005, vol. 3696, Springer, Berlin/Heidelberg,
2005, pp. 65-70. http://dx.doi.org/10.1007/11550822_11.

[22] J. Triesch, Synergies between intrinsic and synaptic plasticity in individual
model neurons, in: L. Saul, Y. Weiss, L. Bottou (Eds.), Advances in
Neural Information Processing Systems, vol. 17, MIT Press, 2005,
pp. 1417-1424. http://dx.doi.org/10.1162/neco.2007.19.4.885.

[23] D. Verstraeten, B. Schrauwen, M. D'Haene, D. Stroobandt, An experimental
unification of reservoir computing methods, Neural Netw. 20 (3) (2007)
391-403.

[24] K. Neumann,]J. Steil, Intrinsic plasticity via natural gradient descent, in:
ESANN 2012: 20th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2012, pp. 555-560.

[25] A. Asuncion, D.J. Newman, UCI Machine Learning Repository, 2007.

Mark van Heeswijk has been working as an exchange
student in both the EIML (Environmental and Industrial
Machine Learning, previously TSPCi) Group and the
Computational Cognitive Systems Group on his Master's
Thesis on ‘Adaptive Ensemble Models of Extreme Learn-
ing Machines for Time Series Prediction’, which he
completed in August 2009. Since September 2009, he
started as a Ph.D. student in the EIML Group, ICS
Department, Aalto University School of Science. His
main research interests include high-performance com-
puting, scalable machine learning methods, ensemble
models and neural networks like extreme learning
machines and deep belief networks.

Yoan Miche was born in 1983 in France. He received an
Engineer's Degree from Institut National Polytechnique
de Grenoble (INPG, France), and more specifically from
TELECOM, INPG, on September 2006. He also graduated
with a Master's Degree in Signal, Image and Telecom
from ENSERG, INPG, at the same time. He is currently
finishing in both Gipsa-Lab, INPG, France and ICS
Laboratory, Aalto University School of Science and
Technology, Finland, his Ph.D. His main research inter-
ests are steganography/steganalysis and machine learn-
ing for classification/regression.

dx.doi.org/10.1109/IJCNN.2004.1380068
dx.doi.org/10.1109/IJCNN.2004.1380068
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref3
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref3
http://dx.doi.org/10.1007/978-3-642-21735-7_42
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref6
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref6
http://dx.doi.org/10.1016/j.neucom.2012.01.041
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref8
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref8
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref8
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1109/TNN.2009.2024147
http://dx.doi.org/10.1109/TNN.2009.2024147
http://dx.doi.org/10.1109/TNN.2009.2024147
http://dx.doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1109/TNN.2006.875977
http://dx.doi.org/10.1016/j.neucom.2010.12.042
http://dx.doi.org/10.1016/j.neucom.2010.12.042
http://dx.doi.org/10.1016/j.neucom.2010.12.042
http://www.springer.com/computer/image+processing/book/978-0-387-31073-2
http://www.springer.com/computer/image+processing/book/978-0-387-31073-2
http://books.google.fi/books?id=kTNoQgAACAAJ
http://books.google.fi/books?id=LOHHKQAACAAJ
http://dx.doi.org/10.1016/j.neucom.2010.11.034
http://dx.doi.org/10.1016/j.neucom.2010.11.034
http://dx.doi.org/10.1016/j.neucom.2010.11.034
dx.doi.org/10.1109/CIDM.2009.4938676
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref19
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref19
dx.doi.org/10.1137/S1052623496303470
dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1007/11550822_11
http://dx.doi.org/10.1007/11550822_11
http://dx.doi.org/10.1007/11550822_11
http://dx.doi.org/10.1162/neco.2007.19.4.885
http://dx.doi.org/10.1162/neco.2007.19.4.885
http://dx.doi.org/10.1162/neco.2007.19.4.885
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref23
http://refhub.elsevier.com/S0925-2312(14)01151-5/sbref23

	Binary/ternary extreme learning machines
	Introduction
	Preliminaries
	Regression/classification
	Extreme Learning Machine (ELM)
	Efficient LOO computation and model selection
	Efficient Tikhonov regularization
	Intrinsic plasticity
	Background
	Batch Intrinsic Plasticity (BIP) ELM

	Binary/ternary ELM
	Motivation
	Binary scheme
	Ternary scheme
	Motivation for BIP pretraining
	Motivation for Tikhonov regularization

	Experiments
	Data and preprocessing
	Average performances of each weight scheme
	Average RMSE
	Average training time

	Effect of irrelevant variables
	Robustness against added noise variables
	Implicit variable selection

	Conclusion
	RMSEs for minmax normalization
	Denormalized RMSEs for minmax normalization
	Denormalized RMSEs for zero mean, unit variance normalization

	References

