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Abstract. In this paper we investigate the astronomical time series
(TS) which is the photometric observations of the variable object V363
Lyr. We perform the spectral analysis of the time series and compare
two approaches to forecast the outbursts of this time series. Since the
data contain missing values we do the missing values imputation as well.
The outbursts occur regularly, but our analysis shows that they are not
strictly periodic. Hence, to improve the forecast of outburst position we
compare several machine learning techniques for the two main forecast-
ing approaches. Our results show that each approach can be beneficial
depending on the starting point of forecast.
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1 Introduction and Problem Motivation

In this work, we study astronomical time series and we are interested in long-
term forecasting. Data is obtained from the V363 Lyr star and described pre-
cisely in the subsequent paragraphs. Besides general forecasting accuracy, we
are interested in forecasting outbursts (peaks) in the time series. In total there
are 4201 data points, which are depicted in Fig. 1 (a). The data also contains
missing values which prohibits the direct application of many time series fore-
casting methods. Therefore, as a preprocessing step, we perform the imputation
of missing values by the method described in Section 2. Forecasting algorithms
are described in Section 4.

The variable object V363 Lyr has been classified as a dwarf novae type vari-
able based on its light curve properties [1], also the spectroscopic properties
matching well those of dwarf novae [2]. A dwarf novae is a sub-type of cata-
clysmic variable stars, that is thought to consist of a close binary star system,
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in which one of the components is a white dwarf that accretes matter from its
companion. Dwarf novae exhibit outburst states that are thought to be rather
regular over time. The mechanism of the excitation of the outburst is believed to
result from an instability in the accretion disk, which causes an enhancement in
the viscosity of the matter in the accretion disk. As a result of the disk becom-
ing more turbulent and angular momentum being more efficiently transported
outwards in the disk, the accretion rate increases, which causes the matter to
collapse onto the white dwarf. This release of large amounts of potential energy
is then seen as brightening of the object. This disk instability scenario, although
quite generally accepted amongst astronomers, lacks its final proof, and competes
with the mass-transfer outburst model, which explains the rapid accumulation
of matter as being due to more mass suddenly been brought into the accretion
disk due to some process occurring in the companion star.

From earlier photometric observations [3], a regular outburst cycle of roughly
22 days has been reported for V363 Lyr, associated with almost symmetrical rise
and fade phases of the light curve. The increase in brightness from minimum to
maximum has been measured to be of the order of 3 magnitudes or slightly more.
Both the length of the outburst cycle and brightness variations roughly fall in
the category of typical dwarf novae. The light curve shape and its pronounced
stability, however, have been noted to the unusual for dwarf novae. Evidence for
short-term periodicity was also looked for, but not found in earlier investigations.
One of the problems in the earlier analysis was the rather poor time sampling
of the observations (except very short subsamples), and additionally, the time
span of the observations did not cover more than two outburst states. Therefore
it may well be that all the characteristics of the outburst cycle of this object
have yet not been detected due to these limitations.
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Fig. 2: Time Series

In this work, we study the dense photometry obtained of V363 Lyr with the
KEPLER satellite. In the KEPLER database the object has an identifier KIC
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7431243, and roughly 86 days (4201 samples) of recent photometry is available
for the object. During this time, the object exhibits six outbursts, immediately
casting doubt on the stability of the length of the outburst cycle detected in
previous studies [3]. The outbursts do not appear always symmetric, and far
less similar to each other than previously thought. Most notably, one super out-
burst occurred during the KEPLER observations. This dense KEPLER, sample
also enables us to look for higher frequency oscillations in the time series, and
reconsider the possible origin of the outbursts in V363 Lyr.

2 Missing Values Imputation

There are several long intervals of missing values which are seen in Fig. 1 (a)
and many single missing values. The longest missing interval of length 555 is
not imputed, it and the data before it is ignored in the subsequent analysis. The
remaining time series has a length of 3392 points and about 3% of the values
are missing. The longest interval of missing values has a length of 57 points.

After this, the gaps in the time series are filled using a Gaussian mixture
model, according to the procedure described in detail in [4]. Gaussian mixture is a
very flexible distribution which can fit any other continuous distribution provided
enough number of Gaussian components is taken [5]. The exact procedure is the
following. A rolling window is used to extract sub-sequences of length d, d = 100
is used for the final imputation. The next step is a time-delay embedding, where
each subsequence is interpreted as a point in R%. The coordinates are determined
by the respective values of the time series. As an output of the method the matrix
is obtained. Each row of it is one subsequence of length d. Because every missing
value appears possibly in several places in this matrix we take their average as
the final imputation.

A Gaussian mixture model can be fit to the data in the d-dimensional space
by the EM algorithm, appropriately marginalizing over any missing values. Ad-
ditional constraints are applied to ensure that the covariance structure of the
mixture model is consistent with the autoregressive time series configuration.
After convergence, the resulting model can be used to find the expected value
of any missing value, conditional on the nearby known values. This conditional
mean imputation is used to fill the gaps. The number of Gaussian components
is chosen by trying different number of components and selecting the one with
smallest BIC value.

The results of the imputation are not analyzed further in a quantitative way.
However, visual investigation shows that the patterns existing in the time series
are preserved after imputation. For example, imputation of the longest missing
values interval of length 57 is shown on Fig. 1 (b).

3 Spectral analysis

Since the time series is taken from the astronomical domain we are also interested
in a spectral analysis. Frequency content of the signal can provide astronomers
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information about, for example, rotation frequency of the object and the accre-
tion characteristics. Another issue to check is the stationarity of the time series
with respect to constituent frequencies. The time series has been divided into
three approximately equal parts, each containing two outbursts. We estimate
the power spectral density (PSD) of each part and compare them in order to
evaluate the stationarity of frequency content of the signal.
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Fig. 4: Spectral Estimation. Frequencies are relative to the sampling frequency.

Before estimating the spectrum, signal is normalized to have zero mean and
no zero frequency in the spectrum. Power spectrum estimation by the Welch
method [6, p. 415] is shown in Fig. 2 (a). The Welch method is a nonparamet-
ric spectral estimation method whose idea is similar to the basic periodogram
method (Fourier transform), but the signal is divided into several overlapping
windows, the periodogram of every window is computed and the final PSD esti-
mation is the average of the window periodograms.

As we see from Fig. 2 (a), there are four main spectral components. The
lowest one correspond to the periodicity resulted by outbursts. Then there is a
double peak around the frequency 0.1 corresponding to the main frequency of os-
cillations. The highest frequency peak is slightly above 0.2. To precisely estimate
frequencies, the MUSIC method [6, p. 463] for frequency estimation has been
applied. Before applying the MUSIC method, the trend has been removed from
the time series. The trend is calculated by the basic method of rolling averaging
of time series. The length of the rolling window is 20. The trend removal is done
in order to estimate more precisely the higher frequency components rather than
frequency of outbursts. The idea of the MUSIC frequency estimation is to model
the signal as a sum of sinusoids and using the eigenvectors of the autocorrelation
matrix to compute the pseudospectrum. This pseudospectrum is shown in Fig. 2
(b). Low frequency content is absent in the pseudospectrum because of the trend
removal.
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Table 1: Frequencies estimated by the MUSIC method (relative to the sampling fre-
quency).

1st segment 2nd segment 3rd segment

1st peak 0.103625 0.103875 0.103000
2nd peak 0.109875 0.109625 0.109875
mean of first two peaks 0.106750 0.106750 0.106430
3rd peak 0.209125 0.209375 0.209125

Frequencies estimation by MUSIC method are summarized in Table 1. For
all three segments, frequencies are very close. So, the signal is quite stationary
with respect to its frequency content. The corresponding period in hours for the
frequency 0.103 is 4.76h and for the frequency 0.109875 is 4.46h. We believe
that the double peaks near the frequency f = 0.1 Hz are a result of amplitude
modulation of the signal. According to the elementary trigonometric formula

Acos(2m fr, + @) cos(2nfe) = g[cos(%r(fc — fm) + @) + cos(2m(fe + fm))]

If the signal is amplitude modulated then we obtain two frequencies in the spec-
trum which are sum and difference of the the main frequency f. and the modula-
tion frequency f,,. Hence, the main frequency equals the mean of the two close
peaks and is given in the third row of Table 1. The third peak around 0.209
appears to be the second harmonic of the main frequency.

4 Forecasting methodology

4.1 Forecasting approaches

The main goal of this paper is to forecast the next outburst of the time series.
We define that the outburst starts when the value of the time series exceeds
750. In the forecasting setup, we assume that the last outburst has just ended
and the starting point of forecasting is the value in the valley of the time series.
In other words, the starting point of forecasting can not be on the previous
outburst (values higher than 750) it must be one of the time points where time
series has low value. We have divided our time series into three sets: training,
validation, and test, and this division is show in Fig. 3 (a). We want to estimate
how well we can predict the outburst depending on the starting time point of
forecasting. For instance, consider the validation set. First we assume that no
points of validation set are observed and we try the forecast the next outburst.
Then we assume that only one point of validation set is observed and again
forecast the outburst. Finally, we assume that all points in validation set before
the outburst are observed and we check whether our forecasting method can
predict the outburst in the next point in time. The marks where the outbursts
start and end on the training set are drawn in Fig. 3 (b).

There are two different approaches to forecasting the next outburst which we
investigate in this paper:
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Fig. 6: Time series forecasting

— Directly predict the time point where the next outburst happen.
This can done by building a regression model between the last observed time
window of length d (this is called regressor size) and the position of the next
outburst. This approach we further divided onto two sub-methods:

e Explicitly include in the model a variable whose value is the distance
from the end of the previous outburst. If the time series is strongly
periodic then this variable alone may provide a very good estimation of
the next outburst.

e Do not include this periodicity variable and build a regression model
where regressors are just the previous values of the time series.

— Conduct time series prediction and monitor where the predictions
indicate an outburst. At first this seems to be a more complex problem
because we forecast not only the position of outburst but also the time series
values. However, as shown later, this approach may be more beneficial than
the first one under certain conditions.

4.2 Regression models

All aforementioned approaches intrinsically use some regression methods. We
have tried several regression models starting from basic ones and proceeding to
the state-of-the-art ones.

The most simple one is the Linear model which is linear regression with
Tikhonov regularization. The regularization parameter is optimized by leave-
one-out (LOO) cross-validation computed by Allen’s PRESS statistic [7].

The second model is Optimally-Pruned Extreme Learning Machine (OP-
ELM) [8]. This is a version of a single layer feed-forward neural network where
weights of the hidden layer are not optimized but instead randomly generated.
Randomly generated neurons are sorted by Least Angle Regression (LARS) and
pruned by the LOO validation. The output weights are calculated by a least
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squares method. It has proven to be a fast and accurate nonlinear regression
model, and its application to time series prediction has been studied in [9]. Note
that the output of the model varies from run to run because of the randomly
generated weights, however average accuracy is very good. In the experiments
we use 100 runs to evaluate forecasting with this model.

The third model is Tikhonov Regularized Optimally-Pruned Extreme Learn-
ing Machine (TROP-ELM) [10]. This is a variation of OP-ELM where the dif-
ference is that the additional Tikhonov regularization is used in the least squares
calculation of output weights. The regularization parameter is again optimized
by LOO with Press statistic.

The fourth model is Random Forest (RF) [11] which is a well known re-
gression technique which may be considered as the current state-of-the-art. The
output of this regression model also vary from run to run because random subsets
of variables (and samples) are chosen to train each tree in the forest.

4.3 Forecasting the outburst position directly

Before presenting the result of direct outburst forecasting let us consider how to
measure the quality of forecast. For both validation and test sets we know the
position of true outburst. So, for every starting point of forecasting, a regression
model predicts the position of the next outburst and we compute the absolute
error between the prediction and the true outburst. Since the starting point roll
from the beginning of the validation (or test) set up until one point before the
true outburst, we average all the predictions. So, the error is the Mean Absolute
Error (MAE). Because all regression models except linear involve randomness
we repeat the experiment 100 times (20 for Random Forest) and again average
the result.

Table 2: MAE of outburst position forecast

Periodicity | Data |Linear | OP-ELM |TROP-ELM Random Forest

variable Model

Excluded Valid. [80.37  |44.69 + (1.05)[43.59 & (0.87) | 42.42 + (0.002)
Test |66.86 35.28 £+ (1.38)]32.27 £ (0.95) | 19.76 £+ (0.13)

Included Valid. (3.27 3.41 + (0.05) | 3.62 + (0.05) 3.53 +(0.01)
Test [29.0 29.66 £ (0.04)[29.33 £ (0.05)| 29.25 £ (0.02)

Results of direct outburst forecasting are presented in Table 2. Hyper param-
eters of all models are optimized on the validation set and the best values are
used to forecast on the test set. For the OP-ELM and TROP-ELM models, the
hyper parameter is the regressor size. The optimal value is 20 which equals the
two periods of the main frequency of the time series. For Random Forests, hyper
parameters include the regressor size (again 20), minimum number of samples
in leafs and the number of randomly selected variables used to build trees. For
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the linear model, the only hyper parameter is again the regressor size. It turns
out that for the linear model which includes the periodicity variable regressor
size = 0, so only the periodicity variable is used. For linear model without the
periodicity variable regressor size = 5.

Looking at Table 2, one can notice that when the periodicity variable is in-
cluded, the best model is the Linear model. This indicates that outbursts are
quite periodic. However, test error is much larger than validation error because
the last outburst (which belongs to the test set) is closer to previous outburst
than the outburst distances in the rest time series. Hence, even though the
outburst periodicity is quite apparent, it is not constant. When the periodicity
variable is not included, the best model on validation and test sets is Random
Forest. This agrees with the fact that it is a state-of-the-art regression model.
It produces the lowest MAE on the test set — significantly lower than the linear
model with periodicity variable. Therefore, Random Forest model without pe-
riodicity variable is compared in the following section with the approach when
outburst predicted by forecasting time series values.

An interesting observation about the forecasts is that the accuracy is on
average higher the closer the next outburst is. For instance, the MAE of the
last 30 predictions before the outburst in the test set is only 12.65 for Random
Forest. This is demonstrated in more details below.

4.4 Forecasting the outburst by time series prediction

In this approach, time series prediction is performed and when the predicted
values become larger than 750 (outburst detection threshold) we assume that
the outburst is starting. We can quantify the error between the true outburst
position and forecasted position similarly as in the previous case - by absolute
error of difference of two positions. However, it may happen that predicted values
are never larger than the threshold as shown in Fig. 4 (b). Therefore, we must
treat this special case separately. So, we assume that the outburst forecasting
error is infinity and denoted by inf.

A typical outburst detection error vector is presented in Table 3. Different
values there correspond to different starting points of time series forecasting.
More precisely, the top left value correspond to the case when the prediction
starts from the first point of the validation set (or test set). Then row-wise are
the outburst errors for starting points which go further into the validation set.
The last value in the table is the outburst error when we start prediction just
one point before the true outburst. In the validation set the outburst happens
at sample 270, so the are 269 values in Table 3. We can summarize this table by
four numbers:

— Total non-inf number. This number count how many non-infinity num-
bers there are in the table.

— Last non-inf sequence length. This measures how many non-inf values
in a row are at the end of the error vector. This is a measure of the accuracy
and stability of the forecasting model because the closer we are to the true
outburst the more accurate (in theory) we are able to forecast it.
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Fig. 8: Successful and unsuccessful time series forecasts

— Mean absolute error (MAE). This is the average absolute error (MAE)
of the non-infinity values in the table.

— First non-inf index. This quantity measure how early we can forecast the
outburst relatively correctly.

The tuple of these four numbers for Table 3 is (45, 33, 8.87, 157). The main
drawback of the outburst detection by time series forecasting is that the set of
non-inf MAEs is not sequential. This means that the outburst forecast started
from earlier starting point may be more accurate (non-infinite) than the forecast
obtained from later starting point. This situation is clearly seen in the table.
However, the more the starting point is closer to the true outburst, the less
infinite errors we have. Therefore, the most important parameter out of four is
the first one, Total non-inf number, as it characterizes the forecasting as more
stable and reliable.

Table 3: Absolute error of outburst location for TROP-ELM model on the validation
set. Every value correspond to different starting point of forecasting.

-

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf

-

inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf
inf, inf, inf, 12, inf, 20., inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf,
inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 28, inf, 26, inf, inf, 27, 9, 5, 28,
inf, inf, 18, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 38, inf, inf,
inf, inf, inf, inf, inf, inf, inf, inf, 36, 39, inf, inf, inf, inf, inf, inf, 11, 1, 9, 10, 11, 9,
9 8 7, 7, 3, 0, 3 2 3 0 4, 1, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1,
1, 1, 1, 1, 0

. e
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‘We have tried several time series prediction methods. Most of them are based
on regressing the future values of a time series on the previous values. In partic-
ular, we construct a time delay embedding matrix of width 20 (20 was selected
using the validation set) and for each time window we define the next time series
value as a value to estimate. Using training data we make a regression model
and then we use Recursive prediction strategy [9] (sometimes called rolling fore-
cast) for long-term forecasting. There are other long-term forecasting strategies
such as Direct and DirRec but again by experimenting on the validation set we
observed that recursive strategy works the best for this time series. Regression
models which are used for T'S prediction are the same as in Section 4.3, namely
Linear, OP-ELM, TROP-ELM and Random Forest.

In addition, K-Nearest Neighbor (K-NN) method for time series forecasting
which represent another class of methods is taken for the comparison. It is a
simple forecasting method which has shown decent accuracy in forecasting com-
petition [12]. The idea of the method is that for the last available 20 values of
the time series we search the closest segment (or several closest neighbors) with
respect to some simple transformation (scaling and adjusting the mean). Then
the forecast is the application of this transformation to the values following the
closest segment. It is worth to mention that in contrast to other TS forecasting
methods where we predict future values one by one, in K-NN method we pre-
dict values by batches of 20 values. Actually, 20 is taken by analogy with other
methods, also 10 has been evaluated on validation set, but 20 performed better,
so we leave only it in the following. Different number of nearest neighbors have
been evaluated on the validation set but forecasting with one nearest neighbor
performs the best, so only it is left for the comparison with other models.

The validation performance of outburst forecasting of various time series
prediction methods is shown in the Table 4. For the methods which outcomes
are probabilistic average values over 100 iterations are presented. Each model
is characterized by four numbers which are described earlier. There is no model
which is the best by all four parameters, but we suppose that TROP-ELM model
is optimal because it has large average Total non-inf number and relatively good
average MAE.

Table 4: Summary of outburst detection of different models on the validation set

Models Total non-|Last non-inf{Total aver-/First mnon-
inf number |sequence age error|inf index
length (MAE)
1-NN 167 12 67.80 6
Linear Model|269 269 65.29 0
OP-ELM |66.16 53.39 21.35 171.72
TROP-ELM [100.18 63.71 32.13 95.24
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5 Comparison of direct outburst forecasting and
forecasting by TS prediction

We have two different approaches for the forecasting the outburst. We have
selected the best models from each approach based on validation results. Now
we want to compare this two approaches on the test set. It is worth to mention
again that the time series prediction approach can not provide outburst forecast
at all for some starting points in which case can we assume that the forecasting
error is infinite. So, the error we provide for this approach is calculated only for
those values for which the forecast is available. The MAE of outburst forecasting
is presented in Table 5.

Table 5: Average outburst MAE

average MAE| average MAE
(over all starting|(over last 30
pints) starting points)
Direct outburst forecasting|19.76 + (0.13) |12.65+0.17
(Random Forest)
Forecasting outburst by TS|26.86 + 5.84 4.14 +£1.37
prediction (TROP-ELM)

The difference between two error columns in the table is that in the first one
average MAE over all the starting points is shown. In the last one over only the
last 30 starting points which are adjacent to true outburst. From Table 5 we
see that that direct forecasting of outburst position by Random Forest is more
accurate than forecasting by time series prediction. However, the third column
of Table 5 shows us that in the vicinity of the true outburst the time series
forecasting model becomes more accurate with noticeable gap.

Hence, it is established that for the starting points which are relatively far
away from the true outburst forecasting directly the outburst position works
better. On the other hand, if the starting point is close to the true outburst then
forecasting by time series prediction becomes more accurate. In real situation
we don’t know when the true outburst is, so we could use mixed approach. First
forecast by the direct approach, if the predicted outburst is going to happen in
the next 30 values then perform time series forecasting and use its result.

6 Conclusions

This paper studies the densely sampled time series of photometry of the V363
Lyr star, and consider it from the perspective of predicting the outbursts. The
outbursts occur regularly, but our analysis shows that they are not strictly pe-
riodic. Only considering the time since that last outbursts leads to a decent
prediction, but the various prediction strategies in Section 4 are able to improve
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on this by including information of the current state of the time series. In partic-
ular, the autoregressive forecasting models can identify the time of the upcoming
outburst with high accuracy when it is imminent. This fact, combined with the
smaller fluctuations and slight increasing trend apparent in each valley between
the outbursts, seems to support the disk instability mechanism believed to be
responsible for the phenomenon.

Separately from the main outbursts, the spectral analysis in Section 3 iden-
tifies faster and lower amplitude component with a consistent period of about
4.5-5 hours. This fluctuation seems to originate from the angular rotation of the
object.

In the Section 4 two approaches for outburst forecasting are investigated,
namely direct outburst forecasting and forecasting by predicting values of the
time series. From the first look the second approach seems less feasible because
the problem is solved not directly but through predicting time series values.
Indeed our analysis shows that the first approach is better when the true outburst
is far away. However, we show that when the true forecast is within 30 time steps
the second approach is preferable. To use the advantages of both methods we
can combine them as written in Section 4.4.
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