
Compressive ELM: Improved Models through

Exploiting Time-Accuracy Trade-Offs

Mark van Heeswijk1, Amaury Lendasse1,2,3, and Yoan Miche1

1 Aalto University School of Science,
Department of Information and Computer Science,

P.O. Box 15400, FI-00076 Aalto, Finland
2 Arcada University of Applied Sciences, Helsinki, Finland

3 Department of Mechanical and Industrial Engineering, The University of Iowa,
Iowa City, IA 52242-1527, USA

Abstract. In the training of neural networks, there often exists a trade-
off between the time spent optimizing the model under investigation, and
its final performance. Ideally, an optimization algorithm finds the model
that has best test accuracy from the hypothesis space as fast as possible,
and this model is efficient to evaluate at test time as well. However,
in practice, there exists a trade-off between training time, testing time
and testing accuracy, and the optimal trade-off depends on the user’s
requirements. This paper proposes the Compressive Extreme Learning
Machine, which allows for a time-accuracy trade-off by training the model
in a reduced space. Experiments indicate that this trade-off is efficient
in the sense that on average more time can be saved than accuracy lost.
Therefore, it provides a mechanism that can yield better models in less
time.

Keywords: Extreme Learning Machine, ELM, random projection,
compressive sensing, Johnson-Lindenstrauss, approximate matrix
decompositions.

1 Introduction

When choosing a model for solving a machine learning problem, which model is
most suitable depends a lot on the context and the requirements of the applica-
tion. For example, it might be the case that the model is trained on a continuous
stream of data, and therefore has some restrictions on the training time. On the
other hand, computational time in the testing phase might be restricted, like in
a setting where the model is used as the controller for an aircraft or a similar
setting that requires fast predictions. Alternatively, the context in which the
model is applied might not have any strong constraints on the computational
time, and above all, accuracy or interpretability is considered most important
regardless of the computational time.

This paper focuses on time-accuracy trade-offs in a neural network architec-
ture known as Extreme Learning Machine [1], and on trade-offs between training
time and accuracy in particular. This trade-off can be affected in two ways:

V. Mladenov et al. (Eds.): EANN 2014, CCIS 459, pp. 165–174, 2014.
c© Springer International Publishing Switzerland 2014



166 M. van Heeswijk, A. Lendasse, and Y. Miche

– by improving the accuracy through spending more time optimizing the model,
– or vice-versa, by reducing the computational time of the model, without

sacrificing accuracy too much.

Each type of model has its own ways of balancing computational time and accu-
racy, and has an associated curve (or set of points) on a “training time”-accuracy
plot that expresses the efficiency of the model in achieving a certain accuracy
(the closer the curve is to the bottom left, the better). Thus, given a collection
of models, the question becomes: which model produces the best accuracy the
fastest?

The remainder of this paper is organized as follows. Section 2 discusses the
preliminaries and methods relevant for this paper and gives an example of the
time-accuracy trade-offs that exist within several ELM variants. This illustrates
the notion of ’efficiency’ of a model, and motivates the choice of model that is
studied in the rest of the paper. Section 3 proposes the Compressive ELM, a new
model which allows trading off computational time and accuracy by performing
the training in a reduced problem space rather than the original space. Finally,
Section 4 contains the experiments and analysis which form the validation for
the proposed approach.

2 Background

Regression / Classification. In this paper, the focus is on the problem of
regression, which is about establishing a relationship between a set of output
variables (continuous) yi ∈ R, 1 ≤ i ≤ M (single-output here) and another set
of input variables xi = (x1

i , . . . , x
d
i ) ∈ R

d. Note that although in this paper the
focus is on regression, the proposed approach can just as well be used when
applying the ELM in a classification context.

Extreme Learning Machine (ELM). The ELM algorithm is proposed by
Huang et al. in [1] and uses Single-Layer Feedforward Neural Networks (SLFN).
The key idea of ELM is that the hidden layer weights and hidden layer biases of
the SLFN can be generated randomly, and do not need to be trained.

Consider a set of N distinct samples (xi, yi) with xi ∈ R
d and yi ∈ R. Then,

an SLFN with M hidden neurons can be written as

M∑

i=1

βif(wi · xj + bi), j ∈ [1, N ], (1)

with f being the transfer function, wi the input weights to the ith neuron in the
hidden layer, bi the hidden layer biases and βi the output weights.

Gathering the outputs of the transfer functions in an N ×M matrix H and
the targets in Y, in case the network would perfectly approximate the targets
this can be written compactly as

Hβ = Y, (2)



Compressive Extreme Learning Machine 167

where H is the hidden layer output matrix defined as

H =

⎛

⎜⎝
f(w1 · x1 + b1) · · · f(wM · x1 + bM )

...
. . .

...
f(w1 · xN + b1) · · · f(wM · xN + bM )

⎞

⎟⎠ (3)

and β = (β1 . . . βM )T and Y = (y1 . . . yN )T . Under the condition that the input
weights and biases are randomly initialized, and the transfer function f is a
bounded non-constant piecewise continuous activation function, [2] proves that
the ELM is a universal approximator. Therefore, given enough neurons, the
ELM can approximate a function or set of target values as good as desired. The
optimal least-squares solution to the equation Hβ = Y in the ELM algorithm is
β = H†Y, where H† is the pseudo-inverse of H. In summary then, the standard
ELM algorithm can be described in Algorithm 1. Theoretical proofs and a more
thorough presentation of the ELM algorithm can be found in [1].

Algorithm 1. Standard ELM

Given a training set (xi, yi),xi ∈ R
d, yi ∈ R, an activation function f : R �→ R and M

hidden nodes:

1: - Randomly assign input weights wi and biases bi, i ∈ [1,M ];
2: - Calculate the hidden layer output matrix H;
3: - Calculate output weights matrix β = (HTH)−1HY = H†Y.

Efficient Optimization of Regularization Parameter with SVD. Trained
on a limited number of samples, the standard ELM is prone to overfitting the
training data. One way of preventing overfitting is by applying Tikhonov Regu-
larization, in which case pseudo-inverse used in the ELM becomes

H†=(HTH+λI)−1HT

for some regularization parameter λ [3]. Each value of λ results in a different
pseudo-inverse H†, and it would be computationally expensive to recompute the
pseudo-inverse for every λ. However, by incorporating the regularization in the
singular value decomposition (SVD) approach to compute the pseudo-inverse, it
becomes possible to obtain the various H†’s with minimal re-computation [4].
This scheme is first described in the context of ELM in [5], and is summarized
next (with some minor optimizations). Suppose

Ŷ = Hβ

= H(HTH+ λI)−1HTY

= HV(D2 + λI)−1DUTY

= UDVTV(D2 + λI)−1DUTY

= UD(D2 + λI)−1DUTY

= HAT ·Y



168 M. van Heeswijk, A. Lendasse, and Y. Miche

where D(D2+λI)−1D is a diagonal matrix with
d2
ii

d2
ii+λ

as the ith diagonal entry.

From the above equations it can now be seen that given U:

MSETR-PRESS =
1

N

N∑

i=1

(
yi − ŷi
1− hatii

)2

=
1

N

N∑

i=1

(
yi − ŷi

1− hi·(HTH+ λI)−1hT
i·

)2

=
1

N

N∑

i=1

⎛

⎝ yi − ŷi

1− ui·
(

d2
ii

d2
ii+λ

)
uT
i·

⎞

⎠
2

where hi· and ui· are the ith row vectors of H and U, respectively. The optimal
Tikhonov-regularized PRESS and corresponding λ can be determined efficiently
using Algorithm 2. Due to the convex nature of criterion MSETR-PRESS with
respect to regularization parameter λ, the Nelder-Mead procedure used for op-
timizing λ converges quickly in practice [6,7].

Algorithm 2. Tikhonov-regularized PRESS. In practice, the while part of this
algorithm (convergence for λ) is solved using by a Nelder-Mead approach [6],
a.k.a. downhill simplex.

1: Decompose H by SVD: H = UDVT

2: Precompute B = UTy
3: while no convergence on λ achieved do

4: - Precompute C = U · diag
(

d211
d211+λ

, . . . ,
d2nn

d2nn+λ

)

5: - Compute ŷ = CB, the vector containing all ŷi
6: - Compute d = diag

(
CUT

)
, the diagonal of the HAT matrix, by taking the

row-wise dot-product of C and U
7: - Compute ε = y−ŷ

1−d
, the leave-one-out errors

8: - Compute MSETR-PRESS = 1
N

∑N
i=1 ε

2
i

9: end while
10: Keep the best MSETR-PRESS and the associated λ value

Example: Time-Accuracy Trade-offs for Several ELM Variants. In or-
der to illustrate what time-accuracy trade-offs exist within ELM, and to moti-
vate the choice of model studied later in this paper, this section presents time-
accuracy trade-offs of several models:

– ELM: the basic ELM [1].
– Optimally Pruned ELM (OP-ELM): ELM trained by generating a set

of neurons, ranking them by relevance, and then determining the optimal
prefix of that sorted list of neurons in terms of leave-one-out error [8]

– TROP-ELM:OP-ELM with efficient optimization of the Tikhonov regular-
ization integrated, using the SVD approach to computing H† [5]



Compressive Extreme Learning Machine 169

– TR-ELM: Tikhonov-regularized ELM [3], with efficient optimization of reg-
ularization parameter λ, using the SVD approach. [9]

– BIP(0.2), BIP(rand), BIP(CV): ELMs pretrained using Batch Intrinsic
Plasticity mechanism [10], aimed at adapting the hidden layer weights and
biases, such that they retain as much information from the input as possible.
The variants included here have the BIP parameter μexp fixed to a 0.2,
randomized, or cross-validated over 20 possible values.

0 100 200 300 400 500 600 700 800 900 1,000
0

1

2

3

4

5

6

7

8

#hidden neurons

tr
ai
n
in
g
ti
m
e

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 100 200 300 400 500 600 700 800 900 1,000
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

#hidden neurons

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 1 2 3 4 5 6 7
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

training time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
·10−2

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

testing time

m
se

te
st

OP-3-ELM
TROP-3-ELM
TR-3-ELM
BIP(CV)-TR-3-ELM
BIP(0.2)-TR-3-ELM
BIP(rand)-TR-3-ELM

Fig. 1. Results for various ELM variants on Abalone UCI data set

All these models are trained and tested on the Abalone data set from the UCI
repository [11] (see Section 4 for details), use ternary weights (see [9]), and have
an initial number of hidden neurons varying between 2 and 1000. Each method
trains and optimizes the ELM in its own way, with results as summarized in
Figure 1. Depending on the users criteria, these results suggest:

– if training time most important, then BIP(rand)-TR-3-ELM is the obvious
choice from all candidates as it provides almost optimal performance, while
keeping training time low.

– if test error is most important, then BIP(CV)-TR-3-ELM is the best choice.
However, since it cross-validates over 20 possible parameter values, the train-
ing time is 20 times as high, while only giving slightly better accuracy.



170 M. van Heeswijk, A. Lendasse, and Y. Miche

– if testing time is most important, then surprisingly TR-3-ELM is also the
most attractive model. Even though OP-ELM and TROP-ELM tend to be
faster in test, they suffer from slight overfitting as the number of initial
hidden neurons increases. Therefore, the TR-3-ELM is the best choice, since
it generally results in models with the best accuracy and lowest testing time.

Since TR-ELM offers attractive trade-offs between speed and accuracy, this
model will be central in the rest of the paper. Furthermore, since due to the
proper regularization the TR-ELM does not seem to overfit even for large num-
ber of neurons: more neurons generally means better accuracy. Naturally, this
comes at an increase in training time, which is something that will be addressed
in the next section, where the Compressive ELM is presented.

3 Compressive Extreme Learning Machine

Considering training time-accuracy trade-offs like in Figure 1, two possible
strategies present itself to obtain models that are preferable over other mod-
els:

– reducing test error, using some efficient algorithm (“in terms of training
time-accuracy plot: “pushing the curve down”)

– reducing computational time, while retaining as much accuracy as possible
(“in terms of training time-accuracy plot: “pushing the curve to the left”)

The latter is the strategy that is taken in Compressive ELM: instead of per-
forming the training in the original problem space, it performs the training in a
reduced space, and then project the solution back to the original space.

Johnson-Lindenstrauss and Approximate Matrix Decompositions.
Given anm×nmatrix, an approximate matrix decomposition can be achieved by
first embedding the rows of the matrix into a lower-dimensional space (through
one of many available low-distortion Johnson-Lindenstrauss-like embeddings),
solving the decomposition, and then projecting back to the full space. If such
an embedding (or sketch) is accurate, then this allows for solving the problem
with high accuracy in reduced time. The algorithm for Approximate SVD is
summarized in Algorithm 3, and more background can be found in [12].

Algorithm 3. Approximate SVD [12]

Given an m× n matrix A, compute k-term approximate SVD A ≈ UDV T as follows:

1: - Form the n×(k+p) random matrix Ω. (where p is small over sampling parameter)

2: - Form the m ×(k + p) sampling matrix Y = AΩ. (”sketch” it by applying Ω)
3: - Form the m ×(k + p) orthonormal matrix Q, such that range(Q) = range(Y ).
4: - Compute B = Q∗A.
5: - Form the SVD of B so that B = ÛDV T

6: - Compute the matrix U = QÛ



Compressive Extreme Learning Machine 171

Faster Sketching. Typically, the bottleneck in Algorithm 3 is the time it takes
to sketch the matrix. Rather than using a class of random matrices of Gaussian
variables for sketching A, one can also use random matrices that are sparse
or structured in some way [13,14], for which the matrix-vector product can be
computed more efficiently. Furthermore, Ailon and Chazelle [15] introduced the
Fast Johnson-Lindenstrauss Transform (FJLT), which uses a class of random
matrices that allow application of an n × n matrix to a vector in O(n log(n)),
rather than the usual O(n2). Besides this obvious speedup, this class of matrices
is also more successful in creating a low-distortion embedding when applied to
a sparse matrix. These transforms consist of the application of three easy-to-
compute matrices (

P
)
k×n

(
H

)
n×n

(
D
)
n×n

whereP ,H , andD vary depending on the exact scheme. Generally,D is a diagonal
matrix with random Rademacher variables (−1,+1) on the diagonal,H is encod-
ing either the discrete Hadamard or discrete Fourier transform, and P is a sparse
random matrix or a matrix sampling random columns fromH. TheD matrix can
be applied to a vector x inO(n), TheH matrix can be applied inO(n log(n)), and
the P matrix adds a factor nnz(P ) or k, depending on the type.

4 Experiments

This section describes the experiments that investigate the trade-off between
computational time (both training and test), and the accuracy of the Compres-
sive ELM in relation to, the dimensionality of the space into which the problem is
reduced, using the sketch. For sketching, TR-3-ELMs with the following sketch-
ing schemes are considered, and compared with the standard TR-3-ELM:

– Gaussian: sketching is performed using a k × n matrix of random Gaussian
variables

– FJLT: the transform introduced in [15], for which P is a sparse matrix of
random Gaussian variables, and H encodes the Discrete Hadamard Trans-
form

– SRHT: a variant of the FJLT, for which P is a matrix selecting k random
columns from H , and H encodes the Discrete Hadamard Transform

The number of hidden neurons in each model is varied between 2 and 1000, and
parameter k is chosen from [50, 100, 200, 400, 600]. Experiments are repeated
with 200 random realizations of the training and test set, and average results
over those 200 runs are reported.

Data and Preprocessing. As data sets, different regression tasks from the
UCI machine learning repository [11] are tested. Due to space restrictions only
the results for CaliforniaHousing and FJLT sketching are presented here, but
similar results hold for the other data sets and sketching methods. In each run,
the data is divided randomly into 8000 random samples for training and and
the remaining 12640 samples for testing. The data is preprocessed in such a way
that each input and output variable is zero mean and unit variance.



172 M. van Heeswijk, A. Lendasse, and Y. Miche

Results. The results of the experiment are summarized in Figure 2. There, it
can be seen that

– setting k lower than the number of neurons results in faster training times
(which makes sense since the problem solved is smaller).

– as long as parameter k is chosen large enough, the method is not losing
efficiency (i.e. there is no model that achieves better error in the same com-
putational time), and it is potentially gaining efficiency (as shown by the
bottom-left plot of Figure 2.

Finally, the experiments showed that sketches with Gaussian matrices are gen-
erally the fastest. Furthermore, for the tested problem sizes, the SRHT (which
allows an efficient matrix multiplication) is generally faster than the FJLT (which
uses sparse matrices). Although for this problem size the SRHT and FJLT are
slower, they might still be needed in case the matrix to sketch is sparse [15].

0 100 200 300 400 500 600 700 800 900 1,000
0

2

4

6

8

10

12

#hidden neurons

tr
ai
n
in
g
ti
m
e

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0 100 200 300 400 500 600 700 800 900 1,000
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

#hidden neurons

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

training time

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

testing time

m
se

te
st

TR-3-ELM
CS-TR-3-ELM(k=50)
CS-TR-3-ELM(k=100)
CS-TR-3-ELM(k=200)
CS-TR-3-ELM(k=400)
CS-TR-3-ELM(k=600)

Fig. 2. Results for Compressive ELMs using FJLT sketching with varying k on Cali-
forniaHousing UCI data set



Compressive Extreme Learning Machine 173

5 Conclusion

In this paper, the trade-off between computational time and test error has been
investigated, in particular the trade-off between training time and test error.
Having information about this trade-off for different models is useful information
in selecting the most suitable model for a particular task.

The Compressive ELM proposed in this paper investigates a way to reduce
training time by doing the optimization in a reduced space of k dimensions,
and is shown to be efficient in the sense that (given k large enough), among
the tested models the Compressive ELM achieves the best test error for each
computational time (i.e. there are no models that achieve better test error and
can be trained in the same or less time). A promising candidate for setting
k such that it optimally reduces computational time (yet retains accuracy),
would be to let k be informed by the theoretical bounds currently known for
the sketching schemes. These theoretical bounds give lower bounds on k for
which a low-distortion embedding of the given n points can be achieved with
high probability. Although these bounds are typically not sharp (and therefore
not optimal), in case the minimal k for successful embedding is lower than the
number of neurons in the ELM, it can be exploited to reduce the training time.

Finally, developing low-distortion embeddings and sharpening their associated
bounds is currently a hot topic of research, and any new developments in this
area can easily be integrated to improve the performance of Compressive ELM.

References

1. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: Theory and
applications. Neurocomputing 70(1-3), 489–501 (2006)

2. Huang, G.-B., Chen, L., Siew, C.-K.: Universal Approximation Using Incremental
Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transac-
tions on Neural Networks 17(4), 879–892 (2006)

3. Deng, W.-Y., Zheng, Q.-H., Chen, L.: Regularized extreme learning machine. In:
IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2009,
pp. 389–395 (2009)

4. van Heeswijk, M., Miche, Y., Oja, E., Lendasse, A.: GPU-accelerated and paral-
lelized ELM ensembles for large-scale regression. Neurocomputing 74(16), 2430–
2437 (2011)

5. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: A
double-regularized ELM using LARS and Tikhonov regularization. Neurocomput-
ing 74(16), 2413–2421 (2011)

6. Nelder, J., Mead, R.: A simplex method for function minimization. The Computer
Journal 7(4), 308–313 (1965)

7. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence Properties
of the Nelder–Mead Simplex Method in Low Dimensions. SIAM Journal on Opti-
mization 9, 112–147 (1998)

8. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM:
optimally pruned extreme learning machine. IEEE Transactions on Neural Net-
works 21(1), 158–162 (2010)



174 M. van Heeswijk, A. Lendasse, and Y. Miche

9. van Heeswijk, M., Miche, Y.: Binary/Ternary Extreme Learning Machines. Neu-
rocomputing (to appear)

10. Neumann, K., Steil, J.J.: Batch intrinsic plasticity for extreme learning machines.
In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS, vol. 6791, pp. 339–346. Springer,
Heidelberg (2011)

11. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
12. Halko, N., Martinsson, P.-G., Tropp, J.: Finding structure with randomness: Proba-

bilistic algorithms for constructing approximate matrix decompositions (September
2011) arXiv:0909.4061

13. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with
binary coins. Journal of Computer and System Sciences 66(4), 671–687 (2003)

14. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Struc-
tures & Algorithms, 142–156 (2008)

15. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC 2006, pp. 557–563. ACM Press, New York
(2006)


	Compressive ELM: Improved Models throughExploiting Time-Accuracy Trade-Offs
	1 Introduction
	2 Background
	3 Compressive Extreme Learning Machine
	4 Experiments
	5 Conclusion
	References




